Research Article
BibTex RIS Cite

TÜRKİYE’DE DÜZEY 2 VE DÜZEY 3 BÖLGELERİ İÇİN İŞLERİN OTOMASYON RİSKİ

Year 2024, Volume: 02 Issue: 02, 93 - 122, 18.10.2024
https://doi.org/10.61138/bolgeselkalkinmadergisi.1445257

Abstract

Dijitalleşmenin etkisi ülkeler arasında farklılaşmakta, diğer yandan ülkelerin kendi sınırları dahilinde olan bölgeler de bu süreçten farklı düzeyde etkilenmektedir. Özellikle bölgesel eşitsizlikleri azaltmayı hedefleyen ülkeler için dijitalleşmenin bölgesel sonuçlarının değerlendirilmesi çok önemlidir. Dijitalleşme ve bunun iş gücü piyasası üzerindeki etkisi konusunda giderek gelişen bir literatür olmasına rağmen, yerel düzeyde otomasyon riskine ilişkin değerlendirmeler sınırlıdır. Bu makale, Türkiye’de otomasyon etkisinin mekansal farklılıklarını inceleyerek bölgesel çalışmalar alanına katkıda bulunmaktadır. Farklı bölgelerin kendine özgü ihtiyaçlarına cevap verebilecek mekana özgü müdahalelerin hazırlanmasına yönelik iç görüler sunmaktadır. Frey ve Osborne tarafından geliştirilen otomasyon riski metodolojisi kullanılarak, İBBS Düzey 2 ve Düzey 3 bölgeleri için otomasyon riskleri hesaplanmış ve dijital teknolojilerin bölgesel iş gücü piyasasına etkisi belirlenmiştir. Temel bulgu, Türkiye’deki çalışanların yüzde 54’ünün dijital dönüşüm nedeniyle işlerinden olma riskinin yüksek olduğunu ortaya koymaktadır. Buna ek olarak, imalat sektörünün baskın olduğu bölge ve şehirlerin otomasyon riskinin, Türkiye ortalamasının üstünde olduğu görülmektedir. Bu durum, tüm bölgelere uyan tek bir yaklaşım yerine, aşağıdan yukarıya, mekan bazlı bir stratejiyi vurgulayan; özel, yerelleştirilmiş ulusal politikalara duyulan ihtiyacın altını çizmektedir.

References

  • Acemoglu, D., and Autor, D. (2010). Skills, Tasks and Technologies: Implications for Employment and Earning. In O. Ashenfelter and, D. Card (Eds.), Handbook of Labor Economics 2010. Amsterdam: North Holland, 1043-1171.
  • Arntz, M., Gregory, T., and Zierahn, U. (2016). The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis. Paris: OECD Publishing, 19-25. Autor, D. H., and Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market. American Economic Review, 103 (5), 1553-1597.
  • Autor, D. H., Levy, F., and Murnane, R. J. (2003). The Skill Content of Recent Technological Change: An Empirical Exploration. The Quarterly Journal of Economics, 118 (4), 1279-1333.
  • Autor, D., and Salomons, A. (2018) Is Automation Labor Share– Displacing? Productivity Growth, Employment, and the Labor Share. Brookings Papers on Economic Activity, 2018, 1-63.
  • Brynjolfsson, E., and McAfee, A. (2011). Race Against The Machine. Lexinton, Massachusetts: Digital Frontier Press.
  • Crowley, F., and Doran, J. (2019). Automation and Irish Towns: Who’s Most at Risk? Cork: Spatial and Regional Economics Research Centre, Department of Economics, University College Cork.
  • Dao M. C., Das M., Koczan Z., and Lian W. (2017). Why Is Labor Receiving a Smaller Share of Global Income? Theory and Empirical Evidence. International Monetary Fund, Working Paper No: 2017/169, 36-38.
  • Frey, C. B., and Osborne, M. A. (2013). The Future of Employment: How Susceptible are Jobs to Computerisation? Oxford, Oxford Martin Programme on Technology and Employment, 18-41.
  • Goos, M., Manning, A., and Salomons, A. (2014). Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. American Economic Review, 104 (8), 2509-2526.
  • Graetz, G., and Michaels, G. (2018). Robots at Work. The Review of Economics and Statistics, C (5), 753-768.
  • ILO (International Labour Office). (2012). “International Standard Classification of Occupations Structure, Group Definitions and Correspondence Tables”, https://www.ilo. org/wcmsp5/groups/public/---dgreports/---dcomm/--publ/documents/publication/wcms172572.pdf, (Accessed: 13.02.2024).
  • Karabarbounis, L., and Neiman, B. (2014). The Global Decline of the Labor Share. The Quarterly Journal of Economics, 129 (1), 61-103.
  • Keynes, J. M. (1933). Economic Possibilities for Our Grandchildren (1930). In Essays in Persuasion. New York: W.W. Norton&Co., 358-373.
  • Michaels, G., Natraj, A., and Van Reenen, J. (2014). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over 25 Years. Review of Economics and Statistics, 96 (1), 60-77.
  • Ministry of Industry and Technology. (2019). “Entrepreneur Information System Database (EIS)”, “İşyeri Kayıt, Net Satışlar ve İstihdam”, https://eis.sanayi.gov.tr, (Accessed: 25.02.2024).
  • Mokyr, J., Vickers, C., and Ziebarth, L. N. (2015). The History of Technological Anxiety and the Future of Economic Growth: Is this Time Different? Journal of Economic Perspectives, 29, 31-50.
  • Nedelkoska, L., and Quintini, G. (2018). Automation, Skills Use and Training. OECD Social, Employment and Migration Working Papers, Paris: OECD Publications, 47-49.
  • OECD. (2018a). Automation, Skills Use and Training. Paris: OECD Publications, 47.
  • OECD. (2018b). Job Creation and Local Economic Development. Paris, OECD Publications, 26-29, 40.
  • Pouliakas, K. (2018). “Automation Risk in the EU Labour Market: A Skill-Needs Approach”, https://www.cedefop.europa. eu/files/automation_risk_in_the_eu_labour_market.pdf, (Accessed: 05.04.2024).
  • Romer, P. M. (1990). Endogenous Technological Change. The Journal of Political Economy, 98, 71-102.
  • STB (T.C. Sanayi ve Teknoloji Bakanlığı). (2017). “Sosyoekonomik Gelişmişlik Sıralaması Araştırmaları (SEGE)”, https://www. sanayi.gov.tr/merkez-birimi/b94224510b7b/sege/il-segeraporlari, (Accessed: 02.05.2024).
  • Schumpeter, J. A. (1942). Capitalism, Socialism and Democracy. New York: Harper and Brothers.
  • TURKSTAT (Turkish Statistical Institution). (2019). “Labour Force Statistics”, https://biruni.tuik.gov.tr/medas/?locale=tr, (Accessed: 27.02.2024).
  • TURKSTAT (Turkish Statistical Institution). (2023). “Labour Force Statistics”, https://data.tuik.gov.tr/Kategori/ GetKategori?p=Istihdam,-Issizlik-ve-Ucret-108, (Accessed: 25.02.2024).
  • US Bureau of Labor Statistics. “Standard Occupational Classification”, https://www.bls.gov/soc/ISCO_SOC_ Crosswalk.xls, (Accessed: 25.01.2024).
  • WB (World Bank). (2016). World Development Report 2016: Digital Dividends. Washington DC: World Bank.

AUTOMATION RISK OF JOBS FOR NUTS II AND NUTS III REGIONS IN TÜRKİYE

Year 2024, Volume: 02 Issue: 02, 93 - 122, 18.10.2024
https://doi.org/10.61138/bolgeselkalkinmadergisi.1445257

Abstract

The impact of digitalization varies across countries, while subregions within countries are also affected by this process at different levels. Especially for countries aiming to reduce regional disparities, it’s essential to assess the regional consequences of digitalization. Despite a growing body of literature on digitalization and its impact on the labour market, there is limited consideration of automation risk at the local level. This paper contributes to the field of regional studies by examining spatial variations in the effects of automation in Türkiye. It potentially offers insights for crafting localized interventions that can address the unique needs of different regions. By deploying the automation risk methodology developed by Frey and Osborne, automation risks are calculated for NUTS II and NUTS III regions and to determine the impact of digital technologies on the regional labour market. The primary finding reveals that 54 percent of employees in Türkiye are at high risk of job displacement due to digital transformation. Additionally, regions and cities with a strong focus on the manufacturing sector face above-average automation risks. This underscores the need for tailored, localized national policies instead of one-size-fits-all approach, emphasizing a bottom-up, place-based strategy.

References

  • Acemoglu, D., and Autor, D. (2010). Skills, Tasks and Technologies: Implications for Employment and Earning. In O. Ashenfelter and, D. Card (Eds.), Handbook of Labor Economics 2010. Amsterdam: North Holland, 1043-1171.
  • Arntz, M., Gregory, T., and Zierahn, U. (2016). The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis. Paris: OECD Publishing, 19-25. Autor, D. H., and Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market. American Economic Review, 103 (5), 1553-1597.
  • Autor, D. H., Levy, F., and Murnane, R. J. (2003). The Skill Content of Recent Technological Change: An Empirical Exploration. The Quarterly Journal of Economics, 118 (4), 1279-1333.
  • Autor, D., and Salomons, A. (2018) Is Automation Labor Share– Displacing? Productivity Growth, Employment, and the Labor Share. Brookings Papers on Economic Activity, 2018, 1-63.
  • Brynjolfsson, E., and McAfee, A. (2011). Race Against The Machine. Lexinton, Massachusetts: Digital Frontier Press.
  • Crowley, F., and Doran, J. (2019). Automation and Irish Towns: Who’s Most at Risk? Cork: Spatial and Regional Economics Research Centre, Department of Economics, University College Cork.
  • Dao M. C., Das M., Koczan Z., and Lian W. (2017). Why Is Labor Receiving a Smaller Share of Global Income? Theory and Empirical Evidence. International Monetary Fund, Working Paper No: 2017/169, 36-38.
  • Frey, C. B., and Osborne, M. A. (2013). The Future of Employment: How Susceptible are Jobs to Computerisation? Oxford, Oxford Martin Programme on Technology and Employment, 18-41.
  • Goos, M., Manning, A., and Salomons, A. (2014). Explaining Job Polarization: Routine-Biased Technological Change and Offshoring. American Economic Review, 104 (8), 2509-2526.
  • Graetz, G., and Michaels, G. (2018). Robots at Work. The Review of Economics and Statistics, C (5), 753-768.
  • ILO (International Labour Office). (2012). “International Standard Classification of Occupations Structure, Group Definitions and Correspondence Tables”, https://www.ilo. org/wcmsp5/groups/public/---dgreports/---dcomm/--publ/documents/publication/wcms172572.pdf, (Accessed: 13.02.2024).
  • Karabarbounis, L., and Neiman, B. (2014). The Global Decline of the Labor Share. The Quarterly Journal of Economics, 129 (1), 61-103.
  • Keynes, J. M. (1933). Economic Possibilities for Our Grandchildren (1930). In Essays in Persuasion. New York: W.W. Norton&Co., 358-373.
  • Michaels, G., Natraj, A., and Van Reenen, J. (2014). Has ICT Polarized Skill Demand? Evidence from Eleven Countries over 25 Years. Review of Economics and Statistics, 96 (1), 60-77.
  • Ministry of Industry and Technology. (2019). “Entrepreneur Information System Database (EIS)”, “İşyeri Kayıt, Net Satışlar ve İstihdam”, https://eis.sanayi.gov.tr, (Accessed: 25.02.2024).
  • Mokyr, J., Vickers, C., and Ziebarth, L. N. (2015). The History of Technological Anxiety and the Future of Economic Growth: Is this Time Different? Journal of Economic Perspectives, 29, 31-50.
  • Nedelkoska, L., and Quintini, G. (2018). Automation, Skills Use and Training. OECD Social, Employment and Migration Working Papers, Paris: OECD Publications, 47-49.
  • OECD. (2018a). Automation, Skills Use and Training. Paris: OECD Publications, 47.
  • OECD. (2018b). Job Creation and Local Economic Development. Paris, OECD Publications, 26-29, 40.
  • Pouliakas, K. (2018). “Automation Risk in the EU Labour Market: A Skill-Needs Approach”, https://www.cedefop.europa. eu/files/automation_risk_in_the_eu_labour_market.pdf, (Accessed: 05.04.2024).
  • Romer, P. M. (1990). Endogenous Technological Change. The Journal of Political Economy, 98, 71-102.
  • STB (T.C. Sanayi ve Teknoloji Bakanlığı). (2017). “Sosyoekonomik Gelişmişlik Sıralaması Araştırmaları (SEGE)”, https://www. sanayi.gov.tr/merkez-birimi/b94224510b7b/sege/il-segeraporlari, (Accessed: 02.05.2024).
  • Schumpeter, J. A. (1942). Capitalism, Socialism and Democracy. New York: Harper and Brothers.
  • TURKSTAT (Turkish Statistical Institution). (2019). “Labour Force Statistics”, https://biruni.tuik.gov.tr/medas/?locale=tr, (Accessed: 27.02.2024).
  • TURKSTAT (Turkish Statistical Institution). (2023). “Labour Force Statistics”, https://data.tuik.gov.tr/Kategori/ GetKategori?p=Istihdam,-Issizlik-ve-Ucret-108, (Accessed: 25.02.2024).
  • US Bureau of Labor Statistics. “Standard Occupational Classification”, https://www.bls.gov/soc/ISCO_SOC_ Crosswalk.xls, (Accessed: 25.01.2024).
  • WB (World Bank). (2016). World Development Report 2016: Digital Dividends. Washington DC: World Bank.
There are 27 citations in total.

Details

Primary Language English
Subjects Regional Economy
Journal Section Research Articles
Authors

Özlem Baran Kaya 0009-0003-4153-8704

Publication Date October 18, 2024
Submission Date February 29, 2024
Acceptance Date August 12, 2024
Published in Issue Year 2024 Volume: 02 Issue: 02

Cite

APA Baran Kaya, Ö. (2024). AUTOMATION RISK OF JOBS FOR NUTS II AND NUTS III REGIONS IN TÜRKİYE. Bölgesel Kalkınma Dergisi, 02(02), 93-122. https://doi.org/10.61138/bolgeselkalkinmadergisi.1445257