Research Article
BibTex RIS Cite

Boron–doped WO3 thin films prepared using thermionic vacuum arc technique: physical properties

Year 2024, , 53 - 61, 28.06.2024
https://doi.org/10.30728/boron.1407455

Abstract

WO3 ince filmin fiziksel özelliklerinin iyileştirilmesi araştırmacılar arasında büyük ilgi görmektedir. Bu çalışmada, cam ve Silikon alttaşlar üzerine depolanan WO3 ince filmlerinin fiziksel özelliklerinin iyileştirilmesi için katkı maddesi olarak bor seçildi. Burada, farklı bor yüzdesine sahip filmlerin hazırlanmasında iyi bilinen plazma bazlı termiyonik vakum ark (TVA) tekniğinden yararlanılmıştır. Daha sonra, hazırlanan filmler uygun ölçüm cihazlarıyla karakterize edilir. Filmlerin pürüzlülüğü doğrudan bor miktarına ve alttaşların yapısına bağlıdır. Yapısal ölçüm, her iki alttaşta da WO3 fazlarının oluşumunu kanıtladı. Katkı miktarındaki artış, XRD desenlerindeki baskın tepe noktasında bir kaymaya neden olur. Filmlerin hesaplanan kristal boyutları 14 ila 49 nm arasında değişmektedir. Optik sonuçlara göre, WO3:B (%1) ve WO3:B (%3) filmlerinin optik bant aralığı (Eg) sırasıyla 3,23 ve 3,25 eV olarak elde edilmiştir. Borun artması filmlerin paketleme yoğunluğunun artmasına neden olur. Bu davranış alttaş özellikleriyle ilişkili değildir. Bu araştırma sonuçlarına bakıldığında, kristal boyutu ile daha düşük optik kayıp fonksiyonu arasında doğrudan bir ilişki vardır.

Supporting Institution

KOCAELİ SAĞLIK VE TEKNOLOJİ ÜNİVERSİTESİ

Project Number

KOSTÜ-BAP-2023/1

References

  • [1] Al-Kuhaili, M. F., & Drmosh, Q. A. (2022). Investigating the structural and optoelectronic properties of co-sputtered Fe-doped WO3 thin films and their suitability for photocatalytic applications. Materials Chemistry and Physics, 281, 125897. https://doi.org/10.1016/j.matchemphys.2022.125897.
  • [2] Thakur, A. K., Limaye, M. V., Rakshit, S., Maity, K. N., Gupta, V., Sharma, P. K., & Singh, S. B. (2018). Controlled synthesis of WO3 nanostructures: optical, structural and electrochemical properties. Materials Research Express, 6(2), 025006. https://doi.org/10.1088/2053-1591/aae991.
  • [3] Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978. https://doi.org/10.1103/PhysRev.56.978.
  • [4] Demirkol, U., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Özgür, M., Elmas, S., ... & Korkmaz, Ş. (2019). Determination of the structural, morphological and optical properties of graphene doped SnO thin films deposited by using thermionic vacuum arc technique. Physica B: Condensed Matter, 569, 14-19. https://doi.org/10.1016/j.physb.2019.05.035.
  • [5] Ammar, A. U., Stan, M., Popa, A., Toloman, D., Macavei, S., Leostean, C., ... & Rostas, A. M. (2023). All-in-one supercapacitor devices based on nanosized Mn4+-doped WO3. Journal of Energy Storage, 72, 108599. https://doi.org/10.1016/j.est.2023.108599.
  • [6] Gupta, D., Chauhan, V., Mahajan, A., Gupta, R., Ali, S. A., & Kumar, R. (2023). Influence of gamma radiation on optical, structural and surface morphological properties of WO3 thin films grown by RF sputtering. Radiation Physics and Chemistry, 202, 110554. https://doi.org/10.1016/j.radphyschem.2022.110554.
  • [7] Kavitha, V. S., Krishnan, R. R., Sreedharan, R. S., Suresh, K., Jayasankar, C. K., & Pillai, V. M. (2019). Tb3+-doped WO3 thin films: A potential candidate in white light emitting devices. Journal of Alloys and Compounds, 788, 429-445. https://doi.org/10.1016/j.jallcom.2019.02.222.
  • [8] Jain, R. K., & Khanna, A. (2021). CuO-doped WO3 thin film H2S sensors. Sensors and Actuators B: Chemical, 343, 130153. https://doi.org/10.1016/j.snb.2021.130153.
  • [9] Reddy G V, A., Kumar, K. N., Sattar, S. A., Shetty, H. D., Prakash, N. G., Jafri, R. I., ... & Ansar, S. (2023). Effect of post annealing on DC magnetron sputtered tungsten oxide (WO3) thin films for smartwindow applications. Physica B: Condensed Matter, 664, 414996. https://doi.org/10.1016/j.physb.2023.414996.
  • [10] Elmas, S., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Özgür, M., Demirkol, U., ... & Korkmaz, Ş. (2019). Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B: Condensed Matter, 557, 27-33. https://doi.org/10.1016/j.physb.2018.12.039.
  • [11] Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., ... & Korkmaz, Ş. (2019). Sn doped ZnO thin film deposition using thermionic vacuum arc technique. Journal of Alloys and Compounds, 774, 1017-1023. https://doi.org/10.1016/j.jallcom.2018.10.020.
  • [12] Alsaad, A. M., Al-Bataineh, Q. M., Ahmad, A. A., Albataineh, Z., & Telfah, A. (2020). Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra. Optik, 211, 164641. https://doi.org/10.1016/j.ijleo.2020.164641
  • [13] Eskalen, H., Kavun, Y., Kerli, S., & Eken, S. (2020). An investigation of radiation shielding properties of boron doped ZnO thin films. Optical Materials, 105, 109871. https://doi.org/10.1016/j.optmat.2020.109871
  • [14] Wong, L. H., & Lai, Y. S. (2021). Substrate temperature dependence of material, optical, and electronic properties of boron-doped ZnO thin films. Optical Materials, 115, 111052. https://doi.org/10.1016/j.optmat.2021.111052.
  • [15] Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., ... & Korkmaz, Ş. (2019). Al doped ZnO thin film deposition by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 30, 624-630. https://doi.org/10.1007/s10854-018-0329-x.
  • [16] Raja, M., Marnadu, R., Balaji, M., Ravikumar, K., Krishna, V. G., Kumar, M., & Massoud, E. E. S. (2022). Fabrication and characterization of novel Ga-doped WO3 films and n-Ga@ WO3/p-Si junction diode for optoelectronic device applications. Inorganic Chemistry Communications, 139, 109291. https://doi.org/10.1016/j.inoche.2022.109291.
  • [17] Mohan, L., Avani, A. V., Kathirvel, P., Marnadu, R., Packiaraj, R., Joshua, J. R., ... & Saravanakumar, S. (2021). Investigation on structural, morphological and electrochemical properties of Mn doped WO3 nanoparticles synthesized by co-precipitation method for supercapacitor applications. Journal of Alloys and Compounds, 882, 160670. https://doi.org/10.1016/j.jallcom.2021.160670.
  • [18] Lokhande, B. J., Patil, P. S., & Uplane, M. D. (2001). Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Physica B: Condensed Matter, 302, 59-63. https://doi.org/10.1016/S0921-4526(01)00405-7.
  • [19] Xu, X. G., Yang, H. L., Wu, Y., Zhang, D. L., Wu, S. Z., Miao, J., ... & Wang, B. Y. (2010). Intrinsic room temperature ferromagnetism in boron-doped ZnO. Applied Physics Letters, 97(23) 1-9. https://doi.org/10.1063/1.3524493.
  • [20] Thalji, M. R., Ali, G. A., Algarni, H., & Chong, K. F. (2019). Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. Journal of Power Sources, 438, 227028. https://doi.org/10.1016/j.jpowsour.2019.227028.
  • [21] Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224.
  • [22] Kavitha, V. S., Suresh, S., Chalana, S. R., & Pillai, V. M. (2019). Luminescent Ta doped WO3 thin films as a probable candidate for excitonic solar cell applications. Applied Surface Science, 466, 289-300. https://doi.org/10.1016/j.apsusc.2018.10.007.
  • [23] Sriram, S. R., Parne, S. R., Pothukanuri, N., & Edla, D. R. (2023). Synthesis and characterization of pure and Cu-doped WO3 thin films for high performance of toxic gas sensing applications. Applied Surface Science Advances, 15, 100411. https://doi.org/10.1016/j.apsadv.2023.100411.
  • [24] Charles, C., Martin, N., Devel, M., Ollitrault, J., & Billard, A. (2013). Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films, 534, 275-281. https://doi.org/10.1016/j.tsf.2013.03.004.
  • [25] Hutchins, M. G., Abu-Alkhair, O., El-Nahass, M. M., & Abd El-Hady, K. (2006). Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films. Materials Chemistry and Physics, 98(2-3), 401-405. https://doi.org/10.1016/j.matchemphys.2005.09.052.
  • [26] Al-Salami, A. E., Dahshan, A., & Shaaban, E. R. (2017). Effect of film thickness on structural and optical properties of Cd-Zn-Te grown on glass and ITO substrates using electron beam evaporation. Optik, 150, 34-47. https://doi.org/10.1016/j.ijleo.2017.09.062.
  • [27] Huang, X., Zhang, H., Lai, Y., & Li, J. (2017). The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics. Applied Physics A, 123, 1-7. https://doi.org/10.1007/s00339-017-0947-9.
  • [28] Sangwong, N., Somphan, W., Thongbai, P., Yamwong, T., & Meansiri, S. (2012). Electrical responses and dielectric relaxations in giant permittivity NaCu 3 Ti 3 TaO 12 ceramics. Applied Physics A, 108, 385-392. https://doi.org/10.1007/s00339-012-6897-3.

Termiyonik vakum ark tekniği kullanılarak hazırlanan bor katkılı WO3 ince filmler: fiziksel özellikler

Year 2024, , 53 - 61, 28.06.2024
https://doi.org/10.30728/boron.1407455

Abstract

Improvement in the physical properties of WO3 thin film is of great interest among researchers. In this work, boron as a dopant was selected for improvement in the physical characteristics of the WO3 thin films on glass and Silicon wafer substrates. Here, a plasma-based well-known thermionic vacuum arc (TVA) technique was utilized for preparing the films with different boron percent. Then, the prepared films are characterized by suitable measurement devices. The roughness of the films directly depends on the boron amount and nature of the substrate. The structural measurement proved the formation of WO3 phases on both substrates. An increase in the dopant amount causes a shift in the dominant peak in the XRD patterns. The films' calculated crystalline sizes vary from 14 to 49 nm. According to the optical results, the optical band gap (Eg) of the WO3:B (1%) and WO3:B (3%) films were obtained as 3,23 and 3,25 eV, respectively. The increase in the boron leads to an increase in the packing density of the films. This behavior was not related to substrate properties. Respecting this research results, there is a direct relationship between crystallite size and lower optical loss function.

Project Number

KOSTÜ-BAP-2023/1

References

  • [1] Al-Kuhaili, M. F., & Drmosh, Q. A. (2022). Investigating the structural and optoelectronic properties of co-sputtered Fe-doped WO3 thin films and their suitability for photocatalytic applications. Materials Chemistry and Physics, 281, 125897. https://doi.org/10.1016/j.matchemphys.2022.125897.
  • [2] Thakur, A. K., Limaye, M. V., Rakshit, S., Maity, K. N., Gupta, V., Sharma, P. K., & Singh, S. B. (2018). Controlled synthesis of WO3 nanostructures: optical, structural and electrochemical properties. Materials Research Express, 6(2), 025006. https://doi.org/10.1088/2053-1591/aae991.
  • [3] Patterson, A. L. (1939). The Scherrer formula for X-ray particle size determination. Physical Review, 56(10), 978. https://doi.org/10.1103/PhysRev.56.978.
  • [4] Demirkol, U., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Özgür, M., Elmas, S., ... & Korkmaz, Ş. (2019). Determination of the structural, morphological and optical properties of graphene doped SnO thin films deposited by using thermionic vacuum arc technique. Physica B: Condensed Matter, 569, 14-19. https://doi.org/10.1016/j.physb.2019.05.035.
  • [5] Ammar, A. U., Stan, M., Popa, A., Toloman, D., Macavei, S., Leostean, C., ... & Rostas, A. M. (2023). All-in-one supercapacitor devices based on nanosized Mn4+-doped WO3. Journal of Energy Storage, 72, 108599. https://doi.org/10.1016/j.est.2023.108599.
  • [6] Gupta, D., Chauhan, V., Mahajan, A., Gupta, R., Ali, S. A., & Kumar, R. (2023). Influence of gamma radiation on optical, structural and surface morphological properties of WO3 thin films grown by RF sputtering. Radiation Physics and Chemistry, 202, 110554. https://doi.org/10.1016/j.radphyschem.2022.110554.
  • [7] Kavitha, V. S., Krishnan, R. R., Sreedharan, R. S., Suresh, K., Jayasankar, C. K., & Pillai, V. M. (2019). Tb3+-doped WO3 thin films: A potential candidate in white light emitting devices. Journal of Alloys and Compounds, 788, 429-445. https://doi.org/10.1016/j.jallcom.2019.02.222.
  • [8] Jain, R. K., & Khanna, A. (2021). CuO-doped WO3 thin film H2S sensors. Sensors and Actuators B: Chemical, 343, 130153. https://doi.org/10.1016/j.snb.2021.130153.
  • [9] Reddy G V, A., Kumar, K. N., Sattar, S. A., Shetty, H. D., Prakash, N. G., Jafri, R. I., ... & Ansar, S. (2023). Effect of post annealing on DC magnetron sputtered tungsten oxide (WO3) thin films for smartwindow applications. Physica B: Condensed Matter, 664, 414996. https://doi.org/10.1016/j.physb.2023.414996.
  • [10] Elmas, S., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Özgür, M., Demirkol, U., ... & Korkmaz, Ş. (2019). Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B: Condensed Matter, 557, 27-33. https://doi.org/10.1016/j.physb.2018.12.039.
  • [11] Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., ... & Korkmaz, Ş. (2019). Sn doped ZnO thin film deposition using thermionic vacuum arc technique. Journal of Alloys and Compounds, 774, 1017-1023. https://doi.org/10.1016/j.jallcom.2018.10.020.
  • [12] Alsaad, A. M., Al-Bataineh, Q. M., Ahmad, A. A., Albataineh, Z., & Telfah, A. (2020). Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra. Optik, 211, 164641. https://doi.org/10.1016/j.ijleo.2020.164641
  • [13] Eskalen, H., Kavun, Y., Kerli, S., & Eken, S. (2020). An investigation of radiation shielding properties of boron doped ZnO thin films. Optical Materials, 105, 109871. https://doi.org/10.1016/j.optmat.2020.109871
  • [14] Wong, L. H., & Lai, Y. S. (2021). Substrate temperature dependence of material, optical, and electronic properties of boron-doped ZnO thin films. Optical Materials, 115, 111052. https://doi.org/10.1016/j.optmat.2021.111052.
  • [15] Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., ... & Korkmaz, Ş. (2019). Al doped ZnO thin film deposition by thermionic vacuum arc. Journal of Materials Science: Materials in Electronics, 30, 624-630. https://doi.org/10.1007/s10854-018-0329-x.
  • [16] Raja, M., Marnadu, R., Balaji, M., Ravikumar, K., Krishna, V. G., Kumar, M., & Massoud, E. E. S. (2022). Fabrication and characterization of novel Ga-doped WO3 films and n-Ga@ WO3/p-Si junction diode for optoelectronic device applications. Inorganic Chemistry Communications, 139, 109291. https://doi.org/10.1016/j.inoche.2022.109291.
  • [17] Mohan, L., Avani, A. V., Kathirvel, P., Marnadu, R., Packiaraj, R., Joshua, J. R., ... & Saravanakumar, S. (2021). Investigation on structural, morphological and electrochemical properties of Mn doped WO3 nanoparticles synthesized by co-precipitation method for supercapacitor applications. Journal of Alloys and Compounds, 882, 160670. https://doi.org/10.1016/j.jallcom.2021.160670.
  • [18] Lokhande, B. J., Patil, P. S., & Uplane, M. D. (2001). Studies on structural, optical and electrical properties of boron doped zinc oxide films prepared by spray pyrolysis technique. Physica B: Condensed Matter, 302, 59-63. https://doi.org/10.1016/S0921-4526(01)00405-7.
  • [19] Xu, X. G., Yang, H. L., Wu, Y., Zhang, D. L., Wu, S. Z., Miao, J., ... & Wang, B. Y. (2010). Intrinsic room temperature ferromagnetism in boron-doped ZnO. Applied Physics Letters, 97(23) 1-9. https://doi.org/10.1063/1.3524493.
  • [20] Thalji, M. R., Ali, G. A., Algarni, H., & Chong, K. F. (2019). Al3+ ion intercalation pseudocapacitance study of W18O49 nanostructure. Journal of Power Sources, 438, 227028. https://doi.org/10.1016/j.jpowsour.2019.227028.
  • [21] Tauc, J., Grigorovici, R., & Vancu, A. (1966). Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15(2), 627-637. https://doi.org/10.1002/pssb.19660150224.
  • [22] Kavitha, V. S., Suresh, S., Chalana, S. R., & Pillai, V. M. (2019). Luminescent Ta doped WO3 thin films as a probable candidate for excitonic solar cell applications. Applied Surface Science, 466, 289-300. https://doi.org/10.1016/j.apsusc.2018.10.007.
  • [23] Sriram, S. R., Parne, S. R., Pothukanuri, N., & Edla, D. R. (2023). Synthesis and characterization of pure and Cu-doped WO3 thin films for high performance of toxic gas sensing applications. Applied Surface Science Advances, 15, 100411. https://doi.org/10.1016/j.apsadv.2023.100411.
  • [24] Charles, C., Martin, N., Devel, M., Ollitrault, J., & Billard, A. (2013). Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films, 534, 275-281. https://doi.org/10.1016/j.tsf.2013.03.004.
  • [25] Hutchins, M. G., Abu-Alkhair, O., El-Nahass, M. M., & Abd El-Hady, K. (2006). Structural and optical characterisation of thermally evaporated tungsten trioxide (WO3) thin films. Materials Chemistry and Physics, 98(2-3), 401-405. https://doi.org/10.1016/j.matchemphys.2005.09.052.
  • [26] Al-Salami, A. E., Dahshan, A., & Shaaban, E. R. (2017). Effect of film thickness on structural and optical properties of Cd-Zn-Te grown on glass and ITO substrates using electron beam evaporation. Optik, 150, 34-47. https://doi.org/10.1016/j.ijleo.2017.09.062.
  • [27] Huang, X., Zhang, H., Lai, Y., & Li, J. (2017). The lowered dielectric loss tangent and grain boundary effects in fluorine-doped calcium copper titanate ceramics. Applied Physics A, 123, 1-7. https://doi.org/10.1007/s00339-017-0947-9.
  • [28] Sangwong, N., Somphan, W., Thongbai, P., Yamwong, T., & Meansiri, S. (2012). Electrical responses and dielectric relaxations in giant permittivity NaCu 3 Ti 3 TaO 12 ceramics. Applied Physics A, 108, 385-392. https://doi.org/10.1007/s00339-012-6897-3.
There are 28 citations in total.

Details

Primary Language English
Subjects Materials Engineering (Other)
Journal Section Research Article
Authors

Saliha Elmas 0000-0001-7803-1032

Project Number KOSTÜ-BAP-2023/1
Publication Date June 28, 2024
Submission Date December 20, 2023
Acceptance Date March 30, 2024
Published in Issue Year 2024

Cite

APA Elmas, S. (2024). Boron–doped WO3 thin films prepared using thermionic vacuum arc technique: physical properties. Journal of Boron, 9(2), 53-61. https://doi.org/10.30728/boron.1407455