[1] Alizadeh M., Sharifianjazi F., Haghshenasjazi E., Aghakhani M., Rajabi L., Production of nanosized boron oxide powder by high-energy ball milling, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 45 (1), 11-14, 2015.
[2] Ramachandran R., Jung D., Bernier N. A., Logan J. K., Waddington M. A., Spokoyny A. M., Sonochemical synthesis of small boron oxide nanoparticles, Inorg. Chem., 57, 8037−8041, 2018.
[3] Yang Q., Sha J., Wang L., Zou Y., Niu J., Cui C., Yang D., Crystalline boron oxide nanowires on silicon substrate, Physica E, 27, 319–324, 2005.
[4] Bhomia J., Sharma J., Sharma R. A., Singh Y., Some boron compounds of semicarbazones: Antimicrobial activity and precursor for the sol–gel transformation to nanosized boron oxide, New J. Chem., 42, 10376-10385, 2018.
[5] Huber C., Jahromy S. S., Jordan C., Schreiner M., Harasek M., Werner A., Winter F., Boric acid: A high potential candidate for thermochemical energy storage, Energies, 12 (6), 1086 (1-17), 2019.
[6] Sun Y., Chintersingh K. L., Schoenitz M., Dreizin, E. L., Reactive shell model for boron oxidation, J. Phys. Chem. C, 123 (18), 11807-11813, 2019.
[7] Yanase I., Ogaware R., Kobayashi H., Synthesis of boron carbide powder from polyvinyl borate precursor, Mat. Let., 63, 91-93, 2009.
[8] Mondal S., Banthia A. K., Low-temperature synthetic route for boron carbide, J Europ. Ceramic Soc., 25 (2-3), 287-291, 2005.
[9] Nanaji K., Janardhana R. K. S. K., Rao T. N., Anandan S., Energy level matching for efficient charge transfer in Ag doped - Ag modified TiO2 for enhanced visible light photocatalytic activity, J. Alloys Compd., 794, 662-671, 2019.
[10] Wang X., Wang X. J., Song J. K., Li Y., Wang Z. C., Gao Y. X., A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation, Sep. Purif. Technol., 222, 99-108, 2019.
[11] Wang X., Feng, X., Shang J., Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photo catalyst or supporting electrolyte, Front. Environ. Sci. Eng., 12 (6), 1-6, 2018.
[12] Li G., Wang B. D., Sun Q., Xu W. Q., Han Y. F., Visible-light photocatalytic activity of Fe and/or Ni doped ilmenite derived-titanium dioxide nanoparticles, J. Nanosci. Nanotechnol., 19 (6), 3343-3355, 2019.
[13] Ding Y., Liu H., Gao L. N., Fu M., Luo X., Zhang X., Liu Q., Zeng R. C., Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2, J. Alloys Compd., 785, 1189-1197, 2019.
[14] Wen W., Lou Z., Chen Y., Chen D., Tian S., Xiong Y., Tuning the structural properties of CeO2 by Pr and Fe codoping for enhanced visible-light catalytic activity, J. Chem. Technol. Biotechnol., 94 (5), 1576-1584, 2019.
[15] Chai H. Y., Lam S. M., Sin J. C., Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities, Mater. Lett., 242, 103-106, 2019.
[16] Xu Y., Ge F., Chen Z., Huang S., Wei W., Xie M., Xu H., Li H., One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance, Appl. Surf. Sci., 469, 739-746, 2019.
[17] Jung K. Y., Park S. B., Ihm S. K., Local structure and photocatalytic activity of B2O3-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method, Appl. Catal., B, 51 (4), 239-245, 2004.
[18] Sharma S. K., Singh V. P., Chauhan V. S., Kushwaha H. S., Vaish R., Photocatalytic self-cleaning transparent 2Bi(2)O(3)-B2O3 glass ceramics, J. Appl. Phys., 122 (9), 094901 (1-12), 2017.
[19] Zhu L. Y., Wang X. Q., Zhang G. H., Ren Q., Xu D., Structural characterization and photocatalytic activity of B2O3/ZrO2-TiO2 mesoporous fibers, Appl. Catal., B, 103 (3–4), 428-435, 2011.
[20] Resende S. F., Gouveia R. L., Oliveira B. S., Vasconcelos W. L., Augusti R., Synthesis of TiO2/SiO2-B2O3 Ternary Nanocomposites: Influence of Interfacial Properties on their Photocatalytic Activities with High Resolution Mass Spectrometry Monitoring, J. Braz. Chem. Soc., 28 (10), 1995-2003, 2017.
[21] Jinisha R., Gandhimathi R., Ramesh S. T., Nidheesh P. V., Velmathi S., Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst, Chemosphere, 200, 446-454, 2018.
[22] Pirinejad L., Maleki A., Shahmoradi B., Daraei H., Yang J. K., Lee S. M., Synthesis and application of Fe-N-Cr-TiO2 nanocatalyst for photocatalytic degradation of Acid Black 1 under LED light irradiation, J. Mol. Liq., 279, 232-240, 2019.
[23] Barros P. M., Yoshida V. P., Schiavon M. A., Boron-containing poly(vinyl alcohol) as a ceramic precursor, J. Non-Cryst. Solids, 352, 3444–3450, 2006.
[24] Mu Z., Hua J., Kumar H. S., Yang T. Y., Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation, Colloid Surf. A, 578, 123643 (1-8), 2019.
[25] Tijani J. O., Momoh U. O., Salau R. B., Bankole M. T., Abdulkareem A. S., Roos W. D., Synthesis and characterization of Ag2O/B2O3/TiO2 ternary nanocomposites for photocatalytic mineralization of local dyeing wastewater under artificial and natural sunlight irradiation, Environ. Sci. Pollut. Res., 26 (19), 19942-19967, 2019.
[26] Duran-Alvarez J. C., Santiago A. L., Ramirez-Ortega D., Acevedo-Pena P., Castillon F., Ramirez-Zamora R. M., Zanella R., Surface modification of B-TiO2 by deposition of Au nanoparticles to increase its photocatalytic activity under simulated sunlight irradiation, J. Sol-Gel Sci. Technol., 88 (2), 474-487, 2018.
[27] Surowka M., Kobielusz M., Trochowski M., Buchalska M., Kruczala K., Bros P., Macyk W., Iron and other metal species as phase-composition controllers influencing the photocatalytic activity of TiO2 materials, Appl. Catal., B, 247, 173-181, 2019.
[28] Chowdhury S., Jiang Y., Muthukaruppan S., Balasubramanian R., Effect of boron doping level on the photocatalytic activity of graphene aerogels, Carbon, 128, 237-248, 2018.
[29] Brooms T. J., Otieno B., Onyango M. S., Ochieng, A., Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 53 (2), 99-107, 2018.
Effect of Fe doping on photocatalytic activity of B2O3 processed using polyvinyl borate precursor
In this study, boron oxide (B2O3) powder has been
synthesized by the pyrolysis of polyvinyl borate precursor in air. For this
purpose, polyvinyl borate precursor was synthesized through the condensation
reaction of polyvinyl alcohol and boric acid, and then the polymeric precursor
was pyrolyzed at 500°C.The as-prepared B2O3
particles were doped with iron (Fe) ions using the wet impregnation method. The photocatalytic activity of both undoped B2O3
and iron doped B2O3 (Fe-B2O3)
powders was studied by investigating the degradation of the model dye, methylene
blue, under UV light irradiation. It was pointed out that iron doped B2O3
powder exhibited enhanced photocatalytic activity compared to undoped one. In
addition, various techniques of characterization such as FTIR, XRD, FESEM, EDX
and UV–Vis spectroscopy were performed to confirm the synthesis of B2O3
particles and the presence of iron ions in the crystal structure of the
prepared photocatalyst. The novelty of this study was to research the
photocatalytic performance of both B2O3 and Fe-B2O3
photocatalysts.
[1] Alizadeh M., Sharifianjazi F., Haghshenasjazi E., Aghakhani M., Rajabi L., Production of nanosized boron oxide powder by high-energy ball milling, Synth. React. Inorg. Met.-Org. Nano-Metal Chem., 45 (1), 11-14, 2015.
[2] Ramachandran R., Jung D., Bernier N. A., Logan J. K., Waddington M. A., Spokoyny A. M., Sonochemical synthesis of small boron oxide nanoparticles, Inorg. Chem., 57, 8037−8041, 2018.
[3] Yang Q., Sha J., Wang L., Zou Y., Niu J., Cui C., Yang D., Crystalline boron oxide nanowires on silicon substrate, Physica E, 27, 319–324, 2005.
[4] Bhomia J., Sharma J., Sharma R. A., Singh Y., Some boron compounds of semicarbazones: Antimicrobial activity and precursor for the sol–gel transformation to nanosized boron oxide, New J. Chem., 42, 10376-10385, 2018.
[5] Huber C., Jahromy S. S., Jordan C., Schreiner M., Harasek M., Werner A., Winter F., Boric acid: A high potential candidate for thermochemical energy storage, Energies, 12 (6), 1086 (1-17), 2019.
[6] Sun Y., Chintersingh K. L., Schoenitz M., Dreizin, E. L., Reactive shell model for boron oxidation, J. Phys. Chem. C, 123 (18), 11807-11813, 2019.
[7] Yanase I., Ogaware R., Kobayashi H., Synthesis of boron carbide powder from polyvinyl borate precursor, Mat. Let., 63, 91-93, 2009.
[8] Mondal S., Banthia A. K., Low-temperature synthetic route for boron carbide, J Europ. Ceramic Soc., 25 (2-3), 287-291, 2005.
[9] Nanaji K., Janardhana R. K. S. K., Rao T. N., Anandan S., Energy level matching for efficient charge transfer in Ag doped - Ag modified TiO2 for enhanced visible light photocatalytic activity, J. Alloys Compd., 794, 662-671, 2019.
[10] Wang X., Wang X. J., Song J. K., Li Y., Wang Z. C., Gao Y. X., A highly efficient TiOX (X = N and P) photocatalyst for inactivation of Microcystis aeruginosa under visible light irradiation, Sep. Purif. Technol., 222, 99-108, 2019.
[11] Wang X., Feng, X., Shang J., Efficient photoelectrochemical oxidation of rhodamine B on metal electrodes without photo catalyst or supporting electrolyte, Front. Environ. Sci. Eng., 12 (6), 1-6, 2018.
[12] Li G., Wang B. D., Sun Q., Xu W. Q., Han Y. F., Visible-light photocatalytic activity of Fe and/or Ni doped ilmenite derived-titanium dioxide nanoparticles, J. Nanosci. Nanotechnol., 19 (6), 3343-3355, 2019.
[13] Ding Y., Liu H., Gao L. N., Fu M., Luo X., Zhang X., Liu Q., Zeng R. C., Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2, J. Alloys Compd., 785, 1189-1197, 2019.
[14] Wen W., Lou Z., Chen Y., Chen D., Tian S., Xiong Y., Tuning the structural properties of CeO2 by Pr and Fe codoping for enhanced visible-light catalytic activity, J. Chem. Technol. Biotechnol., 94 (5), 1576-1584, 2019.
[15] Chai H. Y., Lam S. M., Sin J. C., Green synthesis of magnetic Fe-doped ZnO nanoparticles via Hibiscus rosa-sinensis leaf extracts for boosted photocatalytic, antibacterial and antifungal activities, Mater. Lett., 242, 103-106, 2019.
[16] Xu Y., Ge F., Chen Z., Huang S., Wei W., Xie M., Xu H., Li H., One-step synthesis of Fe-doped surface-alkalinized g-C3N4 and their improved visible-light photocatalytic performance, Appl. Surf. Sci., 469, 739-746, 2019.
[17] Jung K. Y., Park S. B., Ihm S. K., Local structure and photocatalytic activity of B2O3-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method, Appl. Catal., B, 51 (4), 239-245, 2004.
[18] Sharma S. K., Singh V. P., Chauhan V. S., Kushwaha H. S., Vaish R., Photocatalytic self-cleaning transparent 2Bi(2)O(3)-B2O3 glass ceramics, J. Appl. Phys., 122 (9), 094901 (1-12), 2017.
[19] Zhu L. Y., Wang X. Q., Zhang G. H., Ren Q., Xu D., Structural characterization and photocatalytic activity of B2O3/ZrO2-TiO2 mesoporous fibers, Appl. Catal., B, 103 (3–4), 428-435, 2011.
[20] Resende S. F., Gouveia R. L., Oliveira B. S., Vasconcelos W. L., Augusti R., Synthesis of TiO2/SiO2-B2O3 Ternary Nanocomposites: Influence of Interfacial Properties on their Photocatalytic Activities with High Resolution Mass Spectrometry Monitoring, J. Braz. Chem. Soc., 28 (10), 1995-2003, 2017.
[21] Jinisha R., Gandhimathi R., Ramesh S. T., Nidheesh P. V., Velmathi S., Removal of rhodamine B dye from aqueous solution by electro-Fenton process using iron-doped mesoporous silica as a heterogeneous catalyst, Chemosphere, 200, 446-454, 2018.
[22] Pirinejad L., Maleki A., Shahmoradi B., Daraei H., Yang J. K., Lee S. M., Synthesis and application of Fe-N-Cr-TiO2 nanocatalyst for photocatalytic degradation of Acid Black 1 under LED light irradiation, J. Mol. Liq., 279, 232-240, 2019.
[23] Barros P. M., Yoshida V. P., Schiavon M. A., Boron-containing poly(vinyl alcohol) as a ceramic precursor, J. Non-Cryst. Solids, 352, 3444–3450, 2006.
[24] Mu Z., Hua J., Kumar H. S., Yang T. Y., Visible light photocatalytic activity of Cu, N co-doped carbon dots/Ag3PO4 nanocomposites for neutral red under green LED radiation, Colloid Surf. A, 578, 123643 (1-8), 2019.
[25] Tijani J. O., Momoh U. O., Salau R. B., Bankole M. T., Abdulkareem A. S., Roos W. D., Synthesis and characterization of Ag2O/B2O3/TiO2 ternary nanocomposites for photocatalytic mineralization of local dyeing wastewater under artificial and natural sunlight irradiation, Environ. Sci. Pollut. Res., 26 (19), 19942-19967, 2019.
[26] Duran-Alvarez J. C., Santiago A. L., Ramirez-Ortega D., Acevedo-Pena P., Castillon F., Ramirez-Zamora R. M., Zanella R., Surface modification of B-TiO2 by deposition of Au nanoparticles to increase its photocatalytic activity under simulated sunlight irradiation, J. Sol-Gel Sci. Technol., 88 (2), 474-487, 2018.
[27] Surowka M., Kobielusz M., Trochowski M., Buchalska M., Kruczala K., Bros P., Macyk W., Iron and other metal species as phase-composition controllers influencing the photocatalytic activity of TiO2 materials, Appl. Catal., B, 247, 173-181, 2019.
[28] Chowdhury S., Jiang Y., Muthukaruppan S., Balasubramanian R., Effect of boron doping level on the photocatalytic activity of graphene aerogels, Carbon, 128, 237-248, 2018.
[29] Brooms T. J., Otieno B., Onyango M. S., Ochieng, A., Photocatalytic degradation of P-Cresol using TiO2/ZnO hybrid surface capped with polyaniline, J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 53 (2), 99-107, 2018.
Köysüren, Ö. (2019). Effect of Fe doping on photocatalytic activity of B2O3 processed using polyvinyl borate precursor. Journal of Boron, 4(4), 187-195. https://doi.org/10.30728/boron.596150