Research Article
BibTex RIS Cite

Kolemanit katkısının kordiyerit cam-seramiklerin kristalizasyon davranışı üzerindeki etkilerinin araştırılması

Year 2021, , 243 - 251, 31.03.2021
https://doi.org/10.30728/boron.702171

Abstract

Kordiyerit esaslı cam-seramikler, yüksek termal direnç özellikleri ile birlikte düşük dielektrik sabiti ve düşük termal genleşme katsayısına sahip mühendislik malzemeleridir. Düşük maliyetlerde üretilebilmesi ve iyi elektriksel özelliklere sahip olması dolayısıyla, kordiyerit cam-seramikler elektronik endüstrisinde alümina yerine altlık malzeme olarak kullanılabilmekte ve ayrıca çok katmanlı devre kartlarının, katalitik konvertörlerin ve ısı yalıtım malzemelerinin üretiminde de alternatif bir malzeme olarak değerlendirilebilmektedir. Kordiyerit esaslı camlar dar bir sinterleme sıcaklık aralığına ve yüksek viskoziteye sahip olduklarından, çekirdeklenme katalisti olmadan 1000 °C’nin altında kristalleştirilebilmeleri zordur. Düşük sıcaklıkta ve yüksek yoğunlukta cam-seramiklerin üretimi için viskoziteyi azaltıcı fluxlaştırıcı özellikteki ve çekirdeklenmeyi sağlayıcı katkıların (ZrO2, TiO2, CeO2, Y2O3, CaO, ZnO, P2O5, B2O3 gibi) ve miktarlarının seçimi oldukça önem arz etmektedir. Bu çalışmada, kordiyerit sitokiyometrisine uygun bileşimde hazırlanan karışımların camlaştırıldıktan sonraki kristalleşebilme kabiliyeti üzerinde kolemanit katkısının etkileri araştırılmıştır. Magnezya, kaolen ve kuvars hammaddelerine ağırlıkça % 0, 1, 2 ve 3 oranlarında kolemanit ilavesi ile oluşturulan karışımların endüstriyel koşullarda 1500 °C’de ergitilerek sonrasında ani soğutma ile cam yapı elde edilmiştir. Kırma ve öğütme işlemlerinden geçirilerek elde edilen cam tozların termal analiz tekniği ile camsı geçiş (Tg) ve kristalizasyon (Tc) sıcaklıkları belirlenmiştir. 1000 °C’de yapılan sinterleme sonrasında cam-seramik faz yapısındaki değişimler incelenmiştir.

Thanks

Yazarlar katkılarından dolayı Eti Maden İşletmeleri’ne ve Gizem Frit A.Ş’ye teşekkür ederler.

References

  • [1] Komatsu, T. (2015). Design and control of crystalliza-tion in oxide glasses. Journal of Non-Crystalline Solids, 428, 156-175.
  • [2] McMillan, P.W. (1964). Glass-Ceramics, Academic Press Inc. ISBN 9780124856608.
  • [3] Dimech, C. J. (2009). The Production of novel glass- ceramics from problematic UK wastes using borates [PhD Thesis, Imperial College London].
  • [4] McColm, I. J. (1983). Ceramic Science for Ma¬terials Technologists (pp. 204-234), L. Hill. ISBN 9780412003516.
  • [5] Singh, G., Sharma, M., & Vaish, R. (2020). Emerging trends in glass-ceramic photocatalysts. Chemical En-gineering Journal, 126971.
  • [6] Holand, W., & Beall, G.H. (2002). Glass-Ceramic Tech-nology (pp. 57-72), Wiley. ISBN 9781574981070.
  • [7] Vogel, V. (1994). Glass Chemistry (pp. 102-127), Springer-Verlag Berlin Heidelberg. DoI 10.1007/978¬3-642-78723-2.
  • [8] Stookey, S. D. (1959). Catalyzed crystallization of glass in theory and practice. Industrial & Engineering Chemistry, 51(7), 805-808.
  • [9] Akpinar, S., Kuşoğlu, İ. M., Ertugrul, O., & Onel, K. (2015). Microwave assisted sintering of in-situ cordier- ite foam. Ceramics International, 41(7), 8605-8613.
  • [10] Akpinar, S., Kusoglu, I. M., Altun, I. A., & Onel, K. (2009). Microwave Sintering: The Effect of Microwave Sintering on In-Situ Synthesis of Cordierite Powder. In European Congress and Exhibition on Powder Metal¬lurgy. European PM Conference Proceedings (p. 1). The European Powder Metallurgy Association.
  • [11] Szwagierczak, D., Synkiewicz, B., & Kulawik, J. (2018) . Low dielectric constant composites based on B2O3 and SiO2 rich glasses, cordierite and mullite. Ceramics International, 44(12), 14495-14501.
  • [12] Marghussian, V. K., Balazadegan, O. U., & Eftekhari- Yekta, B. (2009). Crystallization behaviour, microstruc-ture and mechanical properties of cordierite-mullite glass ceramics. Journal of Alloys and Compounds, 484(1-2), 902-906.
  • [13] Song, L., Wu, J., Li, Z., Hao, X., & Yu, Y (2015). Crys-tallization mechanisms and properties of a-cordierite glass-ceramics from K2O-MgO-Al2O3-SiO2 glasses. Journal of Non-Crystalline Solids, 419, 16-26.
  • [14] Wu, J., Li, Z., Huang, Y, Li, F., & Yang, Q. (2014). Fab-rication and characterization of low temperature cofired cordierite glass-ceramics from potassium feld¬spar. Journal of Alloys and Compounds, 583, 248-253. [15] Chen, G. H. (2008). Sintering, crystallization, and prop-erties of CaO doped cordierite-based glass-ceramics. Journal of Alloys and Compounds, 455(1-2), 298-302.
  • [16] Dittmer, M., Yamamoto, C. F., Bocker, C., & Rüssel, C. (2011). Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and with¬out the addition of yttria. Solid State Sciences, 13(12), 2146-2153.
  • [17] Zdaniewski, W. (1973). Crystallization and structure of a MgO-Al2O3-SiO2-TiO2 glass-ceramic. Journal of Materials Science, 8(2), 192-202.
  • [18] Gawronski, A., Patzig, C., Hoche, T., & Rüssel, C. (2015). Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass-ceram-ics in the system MgO/Al2O3/SiO2/ZrO2. Journal of Materials Science, 50(4), 1986-1995.
  • [19] Kim, B. H., & Lee, K. H. (1994). Crystallization and sinterability of cordierite-based glass powders contain-ing CeO2. Journal of Materials Science, 29(24), 6592-6598.
  • [20] Singh, K., Gupta, N., & Pandey, O. P (2007). Effect of Y2O3 on the crystallization behavior of SiO2-MgO- B2O3-Al2O3 glasses. Journal of Materials Science, 42(15), 6426-6432.
  • [21] Chen, G. H. (2007). Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics. Journal of Materials Science, 42(17), 7239-7244.
  • [22] Chen, G. H. (2007). Effect of ZnO addition on proper-ties of cordierite-based glass-ceramics. Journal of Ma-terials Science: Materials in Electronics, 18(12), 1253¬1257.
  • [23] Chen, G. H., & Liu, X. Y (2007). Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass- ceramics containing ZnO. Journal of Alloys and Com-pounds, 431(1-2), 282-286.
  • [24] Katzschmann, A., & Wange, P. (1995). Processabil- ity, crystallization and mechanical strength of P2O5- modified glasses and glass-ceramics in the system MgO-Al2O3-SiO2-TiO2. Glastech BerGlass, 68, 111-116.
  • [25] Winter, W. (1997). Sintering and crystallization of vol- ume-and surface-modified cordierite glass powders. Journal of Materials Science, 32(6), 1649-1655.
  • [26] Sarigüzel, M., & Günay, E. (2010). Glass formation and properties of cordierite compositions from talc- based natural raw materials with boron oxide addition, Anadolu University Journal of Science and Technolo- gy-A Applied Sciences and Engineering, 11, 115-124.
  • [27] Oprea, C., Stan, C., Rotiu, E., & Popescu, C. (1999). Non-isothermal crystallization of cordierite glasses. Journal of Thermal Analysis and Calorimetry, 56(2), 1-5.
  • [28] Torres, F. J., & Alarcon, J. (2005). Effect of MgO/CaO ratio on the microstructure of cordierite-based glass- ceramic glazes for floor tiles. Ceramics International, 31(5), 683-690.
  • [29] Torres, F. J., & Alarcon, J. (2004). Microstructural evo-lution in fast-heated cordierite-based glass-ceramic glazes for ceramic tile. Journal of the American Ce¬ramic Society, 87(7), 1227-1232.
  • [30] Torres, F. J., & Alarcon, J. (2003). Effect of additives on the crystallization of cordierite-based glass-ceramics as glazes for floor tiles. Journal of the European Ce¬ramic Society, 23(6), 817-826.
  • [31] Synkiewicz, B., Szwagierczak, D., & Kulawik, J. (2017). Multilayer LTCC structures based on glass-cordierite layers with different porosity. Microelectronics Interna-tional, 34(3), 110-115.
  • [32] Torres, F. J., de Sola, E. R., & Alarcon, J. (2006). Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO-MgO- Al2O3-SiO2 system. Journal of the European Ceramic Society, 26(12), 2285-2292.
  • [33] Wu, J. M., & Hwang, S. P. (2000). Effects of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glasses. Journal of the American Ceramic Society, 83(5), 1259-1265.

Investigation of the effects of colemanite addition on the crystallization behaviour of cordierite glass-ceramics

Year 2021, , 243 - 251, 31.03.2021
https://doi.org/10.30728/boron.702171

Abstract

 Cordierite based glass-ceramics are engineering materials with high thermal resistance properties, as well as low dielectric constant and low thermal expansion coefficient. Cordierite glass-ceramics can be produced at low costs and have good electrical properties. They can be used as a substrate instead of alumina in the electronics sector, as well as an alternative material in the production of multilayer circuit boards, catalytic converters, and thermal insulation materials. Since cordierite based glasses have a narrow sintering temperature range and high viscosity, it is difficult for them to be crystallized below 1000 °C without a nucleation catalyst. For the production of low temperature and high-density glass-ceramics, it is crucial to select the additives (ZrO2, TiO2, CeO2, Y2O3, CaO, ZnO, P2O5, B2O3, etc.) and their amounts that have the fluxing properties that reduce viscosity and provide nucleation. In this study, the effects of colemanite addition on the crystallization ability after vitrification of mixtures prepared in a composition suitable for cordierite stoichiometry were investigated. Colemanite at 0, 1, 2 and 3 wt. % ratios were added to the mixtures of magnesia, kaolin, and quartz raw materials were melted at 1500 °C in industrial conditions, and then glass structure was obtained by sudden cooling. Glass transition (Tg) and crystallization (Tc) temperatures of glass powders obtained by crushing and grinding were determined by thermal analysis technique. The changes in the phase structure of glass-ceramic after sintering at 1000 °C were examined.

References

  • [1] Komatsu, T. (2015). Design and control of crystalliza-tion in oxide glasses. Journal of Non-Crystalline Solids, 428, 156-175.
  • [2] McMillan, P.W. (1964). Glass-Ceramics, Academic Press Inc. ISBN 9780124856608.
  • [3] Dimech, C. J. (2009). The Production of novel glass- ceramics from problematic UK wastes using borates [PhD Thesis, Imperial College London].
  • [4] McColm, I. J. (1983). Ceramic Science for Ma¬terials Technologists (pp. 204-234), L. Hill. ISBN 9780412003516.
  • [5] Singh, G., Sharma, M., & Vaish, R. (2020). Emerging trends in glass-ceramic photocatalysts. Chemical En-gineering Journal, 126971.
  • [6] Holand, W., & Beall, G.H. (2002). Glass-Ceramic Tech-nology (pp. 57-72), Wiley. ISBN 9781574981070.
  • [7] Vogel, V. (1994). Glass Chemistry (pp. 102-127), Springer-Verlag Berlin Heidelberg. DoI 10.1007/978¬3-642-78723-2.
  • [8] Stookey, S. D. (1959). Catalyzed crystallization of glass in theory and practice. Industrial & Engineering Chemistry, 51(7), 805-808.
  • [9] Akpinar, S., Kuşoğlu, İ. M., Ertugrul, O., & Onel, K. (2015). Microwave assisted sintering of in-situ cordier- ite foam. Ceramics International, 41(7), 8605-8613.
  • [10] Akpinar, S., Kusoglu, I. M., Altun, I. A., & Onel, K. (2009). Microwave Sintering: The Effect of Microwave Sintering on In-Situ Synthesis of Cordierite Powder. In European Congress and Exhibition on Powder Metal¬lurgy. European PM Conference Proceedings (p. 1). The European Powder Metallurgy Association.
  • [11] Szwagierczak, D., Synkiewicz, B., & Kulawik, J. (2018) . Low dielectric constant composites based on B2O3 and SiO2 rich glasses, cordierite and mullite. Ceramics International, 44(12), 14495-14501.
  • [12] Marghussian, V. K., Balazadegan, O. U., & Eftekhari- Yekta, B. (2009). Crystallization behaviour, microstruc-ture and mechanical properties of cordierite-mullite glass ceramics. Journal of Alloys and Compounds, 484(1-2), 902-906.
  • [13] Song, L., Wu, J., Li, Z., Hao, X., & Yu, Y (2015). Crys-tallization mechanisms and properties of a-cordierite glass-ceramics from K2O-MgO-Al2O3-SiO2 glasses. Journal of Non-Crystalline Solids, 419, 16-26.
  • [14] Wu, J., Li, Z., Huang, Y, Li, F., & Yang, Q. (2014). Fab-rication and characterization of low temperature cofired cordierite glass-ceramics from potassium feld¬spar. Journal of Alloys and Compounds, 583, 248-253. [15] Chen, G. H. (2008). Sintering, crystallization, and prop-erties of CaO doped cordierite-based glass-ceramics. Journal of Alloys and Compounds, 455(1-2), 298-302.
  • [16] Dittmer, M., Yamamoto, C. F., Bocker, C., & Rüssel, C. (2011). Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics with and with¬out the addition of yttria. Solid State Sciences, 13(12), 2146-2153.
  • [17] Zdaniewski, W. (1973). Crystallization and structure of a MgO-Al2O3-SiO2-TiO2 glass-ceramic. Journal of Materials Science, 8(2), 192-202.
  • [18] Gawronski, A., Patzig, C., Hoche, T., & Rüssel, C. (2015). Effect of Y2O3 and CeO2 on the crystallisation behaviour and mechanical properties of glass-ceram-ics in the system MgO/Al2O3/SiO2/ZrO2. Journal of Materials Science, 50(4), 1986-1995.
  • [19] Kim, B. H., & Lee, K. H. (1994). Crystallization and sinterability of cordierite-based glass powders contain-ing CeO2. Journal of Materials Science, 29(24), 6592-6598.
  • [20] Singh, K., Gupta, N., & Pandey, O. P (2007). Effect of Y2O3 on the crystallization behavior of SiO2-MgO- B2O3-Al2O3 glasses. Journal of Materials Science, 42(15), 6426-6432.
  • [21] Chen, G. H. (2007). Effect of replacement of MgO by CaO on sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics. Journal of Materials Science, 42(17), 7239-7244.
  • [22] Chen, G. H. (2007). Effect of ZnO addition on proper-ties of cordierite-based glass-ceramics. Journal of Ma-terials Science: Materials in Electronics, 18(12), 1253¬1257.
  • [23] Chen, G. H., & Liu, X. Y (2007). Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass- ceramics containing ZnO. Journal of Alloys and Com-pounds, 431(1-2), 282-286.
  • [24] Katzschmann, A., & Wange, P. (1995). Processabil- ity, crystallization and mechanical strength of P2O5- modified glasses and glass-ceramics in the system MgO-Al2O3-SiO2-TiO2. Glastech BerGlass, 68, 111-116.
  • [25] Winter, W. (1997). Sintering and crystallization of vol- ume-and surface-modified cordierite glass powders. Journal of Materials Science, 32(6), 1649-1655.
  • [26] Sarigüzel, M., & Günay, E. (2010). Glass formation and properties of cordierite compositions from talc- based natural raw materials with boron oxide addition, Anadolu University Journal of Science and Technolo- gy-A Applied Sciences and Engineering, 11, 115-124.
  • [27] Oprea, C., Stan, C., Rotiu, E., & Popescu, C. (1999). Non-isothermal crystallization of cordierite glasses. Journal of Thermal Analysis and Calorimetry, 56(2), 1-5.
  • [28] Torres, F. J., & Alarcon, J. (2005). Effect of MgO/CaO ratio on the microstructure of cordierite-based glass- ceramic glazes for floor tiles. Ceramics International, 31(5), 683-690.
  • [29] Torres, F. J., & Alarcon, J. (2004). Microstructural evo-lution in fast-heated cordierite-based glass-ceramic glazes for ceramic tile. Journal of the American Ce¬ramic Society, 87(7), 1227-1232.
  • [30] Torres, F. J., & Alarcon, J. (2003). Effect of additives on the crystallization of cordierite-based glass-ceramics as glazes for floor tiles. Journal of the European Ce¬ramic Society, 23(6), 817-826.
  • [31] Synkiewicz, B., Szwagierczak, D., & Kulawik, J. (2017). Multilayer LTCC structures based on glass-cordierite layers with different porosity. Microelectronics Interna-tional, 34(3), 110-115.
  • [32] Torres, F. J., de Sola, E. R., & Alarcon, J. (2006). Effect of boron oxide on the microstructure of mullite-based glass-ceramic glazes for floor-tiles in the CaO-MgO- Al2O3-SiO2 system. Journal of the European Ceramic Society, 26(12), 2285-2292.
  • [33] Wu, J. M., & Hwang, S. P. (2000). Effects of (B2O3, P2O5) additives on microstructural development and phase-transformation kinetics of stoichiometric cordierite glasses. Journal of the American Ceramic Society, 83(5), 1259-1265.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Atilla Evcin

Süleyman Akpınar

Publication Date March 31, 2021
Acceptance Date February 11, 2021
Published in Issue Year 2021

Cite

APA Evcin, A., & Akpınar, S. (2021). Kolemanit katkısının kordiyerit cam-seramiklerin kristalizasyon davranışı üzerindeki etkilerinin araştırılması. Journal of Boron, 6(1), 243-251. https://doi.org/10.30728/boron.702171