Research Article
BibTex RIS Cite

Ni-B katalizörünün hidrojen üretiminde yanıt yüzey yöntemi ile optimizasyonu

Year 2021, , 216 - 226, 31.03.2021
https://doi.org/10.30728/boron.825013

Abstract

Son günlerde yaşanan COVID-19 salgını, temiz ve yenilenebilir enerji kaynaklarının kullanımının ne derece önemli olduğunu birkez daha göstermiştir. Bu çalışmada, geleceğin enerji kaynağı olarak düşünülen temiz hidrojen, Ni-B katalizörleri kullanılarak NaBH4’ün hidrolizi ile üretilmiştir. Hidroliz reaksiyonu esnasında reaksiyon kinetiğine doğrudan etkisinin olduğu bilinen ortam sıcaklığı, karıştırma hızı, katı-sıvı oranı ve kullanılan yakıtta NaBH4 _NaOH oranı gibi parametrelerin reaksiyon hızına olan etkileri yanıt yüzey metodu ile ayrıntılı olarak incelenmiştir. Kullanılan yanıt yüzey metodunda deneysel çalışmalar Taguchi L9 ortogonal dizisi kullanılarak gerçekleştirilmiş ve parametrelerin etkinliği varyans analizi ile belirlenmiştir. Oluşturulan model sonucunda, maksimum hidrojen üretim
hızının eldesi için optimum parametreler; ortam sıcaklığı 347,17ºK; karıştırma hızı 200,21 rpm; katı-sıvı oranı 2,86 mgkatalizör/mlyakıt; ve NaBH4--NaOH oranı 1,04 olarak belirlenmiştir. Varyans analizine göre hidrojen üretim hızını etkileyen parametrelerin etkinliği sırasıyla reaksiyon sıcaklığı, karıştırma hızı ve NaBH4_NaOH oranı olarak belirlenmiştir. Buna karşılık katı-sıvı oranının etkisinin belirgin bir şekilde ortaya çıkmadığı görülmüştür. Yanıt yüzey yöntemi kullanılarak geliştirilen modelden elde edilen tahmin sonuçları ile deneysel verilerin birbirilerini doğruladığı, yapılan doğrulama deneyleri sonucunda ortaya konulmuştur.

References

  • [1] Wong, I. C. K., Ng, Y K., & Lui, V. W. Y (2014). Can¬cers of the lung, head and neck on the rise: perspecti¬ves on the genotoxicity of air pollution. Chinese Jour¬nal of Cancer, 33(10), 476-480.
  • [2] Gilliland, F. D., Berhane, K., Rappaport, E. B., Tho¬mas, D. C., Avol, E., Gauderman, W. J., ... & Peters, J. M. (2001). The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epi¬demiology, 43-54.
  • [3] Dincer, I. (2020). Covid-19 coronavirus: closing carbon age, but opening hydrogen age. International Journal of Energy Research, 44(8), 6093-6097.
  • [4] Zoungrana, A., & Qakmakci, M. (2020). From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review. International Journal of Energy Research, 45(3), 3495-3522.
  • [5] Mao, J., Zou, J., Lu, C., Zeng, X., & Ding, W. (2017). Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M= V, Ni, La and Ce) nano-composites prepared by arc plasma method. Journal of Power Sources, 366, 131-142.
  • [6] Ma, M., Duan, R., Ouyang, L., Zhu, X., Chen, Z., Peng, C. , & Zhu, M. (2017). Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. Journal of Alloys and Compounds, 691, 929-935.
  • [7] Wang, Y, Shen, Y, Qi, K., Cao, Z., Zhang, K., & Wu, S. (2016). Nanostructured cobalt-phosphorous catalysts for hydrogen generation from hydrolysis of sodium bo- rohydride solution. Renewable Energy, 89, 285-294.
  • [8] Cui, Z., Guo, Y, & Ma, J. (2016). In situ synthesis of graphene supported Co-Sn-B alloy as an efficient ca-talyst for hydrogen generation from sodium borohy- dride hydrolysis. International Journal of Hydrogen Energy, 41(3), 1592-1599.
  • [9] Aydin, M., Hasimoglu, A., Bayrak, Y, & Ozdemir, O. K. (2015). Kinetic properties of co-reduced Co-B/graphe- ne catalyst powder for hydrogen generation of sodium borohydride. Journal of Renewable and Sustainable Energy, 7(1), 013117.
  • [10] Rakap, M. (2015). PVP-stabilized Ru-Rh nanopartic¬les as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds, 649, 1025-1030.
  • [11] Xu, D., Wang, H., Guo, Q., & Ji, S. (2011). Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4. Fuel Processing Technology, 92(8), 1606-1610.
  • [12] Tong, D. G., Han, X., Chu, W., Chen, H., & Ji, X. Y. (2007). Preparation of mesoporous Co-B catalyst via self-assembled triblock copolymer templates. Materi¬als Letters, 61(25), 4679-4682.
  • [13] Netskina, O. V., Kochubey, D. I., Prosvirin, I. P, Maly- khin, S. E., Komova, O. V., Kanazhevskiy, V. V., ... & Si- magina, V. I. (2017). Cobalt-boron catalyst for NaBH4 hydrolysis: The state of the active component forming from cobalt chloride in a reaction medium. Molecular Catalysis, 441, 100-108.
  • [14] Wang, X., Liao, J., Li, H., Wang, H., Wang, R., Pollet, B. G., & Ji, S. (2018). Highly active porous Co-B nano-alloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. International Journal of Hydro¬gen Energy, 43(37), 17543-17555.
  • [15] Kojima, Y, Kawai, Y, Nakanishi, H., & Matsumoto, S. (2004). Compressed hydrogen generation using che-mical hydride. Journal of Power Sources, 135(1-2), 36¬41.
  • [16] Demirci, U. B., & Garin, F. (2008). Promoted sulpha- ted-zirconia catalysed hydrolysis of sodium tetrahydro- borate. Catalysis Communications, 9(6), 1167-1172.
  • [17] Özdemir, E. (2015). Enhanced catalytic activity of Co-B/glassy carbon and Co-B/graphite catalysts for hydrolysis of sodium borohydride. International Jour¬nal of Hydrogen Energy, 40(40), 14045-14051.
  • [18] Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbre-ath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). So¬dium borohydride, its hydrolysis and its use as a redu¬cing agent and in the generation of hydrogen! Journal of the American Chemical Society, 75(1), 215-219.
  • [19] Uzundurukan, A., & Devrim, Y (2019). Hydrogen ge-neration from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. International Journal of Hydrogen Energy, 44(33), 17586-17594.
  • [20] Özkar, S., & Zahmakiran, M. (2005). Hydrogen ge-neration from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404, 728-731.
  • [21] Huff, C., Long, J. M., Heyman, A., & Abdel-Fattah, T M. (2018). Palladium nanoparticle multiwalled carbon nanotube composite as catalyst for hydrogen producti-on by the hydrolysis of sodium borohydride. ACS App-lied Energy Materials, 1(9), 4635-4640.
  • [22] Zabielaite, A., Balciunaite, A., Stalnioniene, I., Lichusina, S., Simkunaite, D., Vaiciuniene, J., ... & Nor- kus, E. (2018). Fiber-shaped Co modified with Au and Pt crystallites for enhanced hydrogen generation from sodium borohydride. International Journal of Hydrogen Energy, 43(52), 23310-23318.
  • [23] Gao, Z., Ding, C., Wang, J., Ding, G., Xue, Y, Zhang, Y, ... & Gao, X. (2019). Cobalt nanoparticles packaged into nitrogen-doped porous carbon derived from metal- organic framework nanocrystals for hydrogen produc-tion by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 44(16), 8365-8375.
  • [24] Nie, M., Zou, Y C., Huang, Y. M., & Wang, J. Q. (2012). Ni-Fe-B catalysts for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 37(2), 1568-1576.
  • [25] Duman, S., & Özkar, S. (2018). Ceria supported man-ganese^) nanoparticle catalysts for hydrogen ge-neration from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 43(32), 15262-15274.
  • [26] Balbay, A., & Saka, C. (2018). Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(7), 794-804.
  • [27]Al-Fatesh, A. S., Naeem, M. A., Fakeeha, A. H., & Aba- saeed, A. E. (2014). Role of La2O3 as promoter and support in Nİ/Y-AI2O3 catalysts for dry reforming of methane. Chinese Journal of Chemical Engineering, 22(1), 28-37.
  • [28] Hua, D., Hanxi, Y, Xinping, A., & Chuansin, C. (2003). Hydrogen production from catalytic hydrolysis of sodi-um borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy, 28(10), 1095-1100.
  • [29] Lee, J., Shin, H., Choi, K. S., Lee, J., Choi, J. Y., & Yu, H. K. (2019). Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation. In-ternational Journal of Hydrogen Energy, 44(5), 2943¬2950.
  • [30] Ghodke, N. P, Rayaprol, S., Bhoraskar, S. V., & Mat¬he, V. L. (2020). Catalytic hydrolysis of sodium borohy¬dride solution for hydrogen production using thermal plasma synthesized nickel nanoparticles. International Journal of Hydrogen Energy, 45(33), 16591-16605.
  • [31] Saka, C., Şahin, Ö., Demir, H., Karabulut, A., & Sa¬rikaya, A. (2015). Hydrogen generation from sodium borohydride hydrolysis with a Cu-Co-based catalyst: a kinetic study. Energy Sources, Part A: Recovery, Utili-zation, and Environmental Effects, 37(9), 956-964.
  • [32] Ekinci, A., Cengiz, E., Kuncan, M., & Şahin, Ö. (2020). Hydrolysis of sodium borohydride solutions both in the presence of Ni-B catalyst and in the case of microwave application. International Journal of Hydrogen Energy, 45(60), 34749-34760.
  • [33] Kazici, H. Ç., Yilmaz, Ş., Şahan, T., Yildiz, F., Er, Ö. F., & Kivrak, H. (2020). A comprehensive study of hydro¬gen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodo-logy. Frontiers in Energy, 14(3), 578-589.
  • [34] Özkan, G., Akkuş, M. S., & Özkan, G. (2019). The ef¬fects of operating conditions on hydrogen production from sodium borohydride using Box-Wilson optimi¬zation technique. International Journal of Hydrogen Energy, 44(20), 9811-9816.
  • [35] Wu, H. W., & Ku, H. W. (2012). Effects of modified flow field on optimal parameters estimation and cell per-formance of a pEm fuel cell with the Taguchi method. International Journal of Hydrogen Energy, 37(2), 1613-1627.
  • [36] Wu, H. W., & Gu, H. W. (2010). Analysis of operating parameters considering flow orientation for the per-formance of a proton exchange membrane fuel cell using the Taguchi method. Journal of Power Sources, 195(11), 3621-3630.
  • [37] Berkani, M., Kadmi, Y., Bouchareb, M. K., Bouhe- lassa, M., & Bouzaza, A. (2020). Combination of a Box-Behnken design technique with response surfa¬ce methodology for optimization of the photocatalytic mineralization of CI Basic Red 46 dye from aqueous solution. Arabian Journal of Chemistry, 13(11), 8338¬8346.
  • [38] Wang, H., Gan, H., Wang, G., & Zhong, G. (2020). Emission and performance optimization of marine fo¬ur-stroke dual-fuel engine based on response surface methodology. Mathematical Problems in Engineering, 2020, 1-9.
  • [39] Patel, N., Fernandes, R., & Miotello, A. (2009). Hydro-gen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study. Journal of Power So-urces, 188(2), 411-420.
  • [40] Fernandes, R., Patel, N., & Miotello, A. (2009). Hydro-gen generation by hydrolysis of alkaline NaBH4 soluti-on with Cr-promoted Co-B amorphous catalyst. Appli¬ed Catalysis B: Environmental, 92(1-2), 68-74.
  • [41] Hatami, M., Cuijpers, M. C., & Boot, M. D. (2015). Ex-perimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach. Energy Conversion and Management, 106, 1057-1070.

Optimization of Ni-B Catalyst with Response Surface Methodology in Hydrogen Production

Year 2021, , 216 - 226, 31.03.2021
https://doi.org/10.30728/boron.825013

Abstract

The COVID-19 pandemic shows once again how important the use of clean and renewable energy sources is. In this study, clean hydrogen, which is considered as the energy source of the future, was produced by the hydrolysis of NaBH4 using Ni-B catalysts. During the hydrolysis reaction, the effects of parameters such as reaction temperature, stirring speed, solid-liquid ratio and NaBH4_NaOH ratio in the fuel used, which are known to have a direct effect on the reaction kinetics, on the reaction rate were studied in detail by the response surface methodology. Experimental studies in the response surface methodology used were carried out using the Taguchi L9 orthogonal array and the efficiency of the parameters was determined by analysis of variance. As a result of the created model, optimum parameters for obtaining the maximum hydrogen production rate; reaction temperature
347.17ºK; stirring speed 200.21 rpm; solid-liquid ratio 2.86 mgcatalyst/mlfuel; and the ratio of NaBH 4-NaOH 1.04. According to the analysis of variance, the efficiency of the parameters affecting the hydrogen generation rate was determined as reaction temperature, stirring speed and NaBH4_NaOH ratio, respectively. On the other hand, it has been seen that the effect of solid-liquid ratio does not appear clearly. As a result of the validation tests, it
was revealed that the predictions obtained from the model developed using the response surface methodology are in good agreement with the experimental results.

References

  • [1] Wong, I. C. K., Ng, Y K., & Lui, V. W. Y (2014). Can¬cers of the lung, head and neck on the rise: perspecti¬ves on the genotoxicity of air pollution. Chinese Jour¬nal of Cancer, 33(10), 476-480.
  • [2] Gilliland, F. D., Berhane, K., Rappaport, E. B., Tho¬mas, D. C., Avol, E., Gauderman, W. J., ... & Peters, J. M. (2001). The effects of ambient air pollution on school absenteeism due to respiratory illnesses. Epi¬demiology, 43-54.
  • [3] Dincer, I. (2020). Covid-19 coronavirus: closing carbon age, but opening hydrogen age. International Journal of Energy Research, 44(8), 6093-6097.
  • [4] Zoungrana, A., & Qakmakci, M. (2020). From non-renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review. International Journal of Energy Research, 45(3), 3495-3522.
  • [5] Mao, J., Zou, J., Lu, C., Zeng, X., & Ding, W. (2017). Hydrogen storage and hydrolysis properties of core-shell structured Mg-MFx (M= V, Ni, La and Ce) nano-composites prepared by arc plasma method. Journal of Power Sources, 366, 131-142.
  • [6] Ma, M., Duan, R., Ouyang, L., Zhu, X., Chen, Z., Peng, C. , & Zhu, M. (2017). Hydrogen storage and hydrogen generation properties of CaMg2-based alloys. Journal of Alloys and Compounds, 691, 929-935.
  • [7] Wang, Y, Shen, Y, Qi, K., Cao, Z., Zhang, K., & Wu, S. (2016). Nanostructured cobalt-phosphorous catalysts for hydrogen generation from hydrolysis of sodium bo- rohydride solution. Renewable Energy, 89, 285-294.
  • [8] Cui, Z., Guo, Y, & Ma, J. (2016). In situ synthesis of graphene supported Co-Sn-B alloy as an efficient ca-talyst for hydrogen generation from sodium borohy- dride hydrolysis. International Journal of Hydrogen Energy, 41(3), 1592-1599.
  • [9] Aydin, M., Hasimoglu, A., Bayrak, Y, & Ozdemir, O. K. (2015). Kinetic properties of co-reduced Co-B/graphe- ne catalyst powder for hydrogen generation of sodium borohydride. Journal of Renewable and Sustainable Energy, 7(1), 013117.
  • [10] Rakap, M. (2015). PVP-stabilized Ru-Rh nanopartic¬les as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Journal of Alloys and Compounds, 649, 1025-1030.
  • [11] Xu, D., Wang, H., Guo, Q., & Ji, S. (2011). Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4. Fuel Processing Technology, 92(8), 1606-1610.
  • [12] Tong, D. G., Han, X., Chu, W., Chen, H., & Ji, X. Y. (2007). Preparation of mesoporous Co-B catalyst via self-assembled triblock copolymer templates. Materi¬als Letters, 61(25), 4679-4682.
  • [13] Netskina, O. V., Kochubey, D. I., Prosvirin, I. P, Maly- khin, S. E., Komova, O. V., Kanazhevskiy, V. V., ... & Si- magina, V. I. (2017). Cobalt-boron catalyst for NaBH4 hydrolysis: The state of the active component forming from cobalt chloride in a reaction medium. Molecular Catalysis, 441, 100-108.
  • [14] Wang, X., Liao, J., Li, H., Wang, H., Wang, R., Pollet, B. G., & Ji, S. (2018). Highly active porous Co-B nano-alloy synthesized on liquid-gas interface for hydrolysis of sodium borohydride. International Journal of Hydro¬gen Energy, 43(37), 17543-17555.
  • [15] Kojima, Y, Kawai, Y, Nakanishi, H., & Matsumoto, S. (2004). Compressed hydrogen generation using che-mical hydride. Journal of Power Sources, 135(1-2), 36¬41.
  • [16] Demirci, U. B., & Garin, F. (2008). Promoted sulpha- ted-zirconia catalysed hydrolysis of sodium tetrahydro- borate. Catalysis Communications, 9(6), 1167-1172.
  • [17] Özdemir, E. (2015). Enhanced catalytic activity of Co-B/glassy carbon and Co-B/graphite catalysts for hydrolysis of sodium borohydride. International Jour¬nal of Hydrogen Energy, 40(40), 14045-14051.
  • [18] Schlesinger, H. I., Brown, H. C., Finholt, A. E., Gilbre-ath, J. R., Hoekstra, H. R., & Hyde, E. K. (1953). So¬dium borohydride, its hydrolysis and its use as a redu¬cing agent and in the generation of hydrogen! Journal of the American Chemical Society, 75(1), 215-219.
  • [19] Uzundurukan, A., & Devrim, Y (2019). Hydrogen ge-neration from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: A kinetic study. International Journal of Hydrogen Energy, 44(33), 17586-17594.
  • [20] Özkar, S., & Zahmakiran, M. (2005). Hydrogen ge-neration from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst. Journal of Alloys and Compounds, 404, 728-731.
  • [21] Huff, C., Long, J. M., Heyman, A., & Abdel-Fattah, T M. (2018). Palladium nanoparticle multiwalled carbon nanotube composite as catalyst for hydrogen producti-on by the hydrolysis of sodium borohydride. ACS App-lied Energy Materials, 1(9), 4635-4640.
  • [22] Zabielaite, A., Balciunaite, A., Stalnioniene, I., Lichusina, S., Simkunaite, D., Vaiciuniene, J., ... & Nor- kus, E. (2018). Fiber-shaped Co modified with Au and Pt crystallites for enhanced hydrogen generation from sodium borohydride. International Journal of Hydrogen Energy, 43(52), 23310-23318.
  • [23] Gao, Z., Ding, C., Wang, J., Ding, G., Xue, Y, Zhang, Y, ... & Gao, X. (2019). Cobalt nanoparticles packaged into nitrogen-doped porous carbon derived from metal- organic framework nanocrystals for hydrogen produc-tion by hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 44(16), 8365-8375.
  • [24] Nie, M., Zou, Y C., Huang, Y. M., & Wang, J. Q. (2012). Ni-Fe-B catalysts for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 37(2), 1568-1576.
  • [25] Duman, S., & Özkar, S. (2018). Ceria supported man-ganese^) nanoparticle catalysts for hydrogen ge-neration from the hydrolysis of sodium borohydride. International Journal of Hydrogen Energy, 43(32), 15262-15274.
  • [26] Balbay, A., & Saka, C. (2018). Effect of phosphoric acid addition on the hydrogen production from hydrolysis of NaBH4 with Cu based catalyst. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 40(7), 794-804.
  • [27]Al-Fatesh, A. S., Naeem, M. A., Fakeeha, A. H., & Aba- saeed, A. E. (2014). Role of La2O3 as promoter and support in Nİ/Y-AI2O3 catalysts for dry reforming of methane. Chinese Journal of Chemical Engineering, 22(1), 28-37.
  • [28] Hua, D., Hanxi, Y, Xinping, A., & Chuansin, C. (2003). Hydrogen production from catalytic hydrolysis of sodi-um borohydride solution using nickel boride catalyst. International Journal of Hydrogen Energy, 28(10), 1095-1100.
  • [29] Lee, J., Shin, H., Choi, K. S., Lee, J., Choi, J. Y., & Yu, H. K. (2019). Carbon layer supported nickel catalyst for sodium borohydride (NaBH4) dehydrogenation. In-ternational Journal of Hydrogen Energy, 44(5), 2943¬2950.
  • [30] Ghodke, N. P, Rayaprol, S., Bhoraskar, S. V., & Mat¬he, V. L. (2020). Catalytic hydrolysis of sodium borohy¬dride solution for hydrogen production using thermal plasma synthesized nickel nanoparticles. International Journal of Hydrogen Energy, 45(33), 16591-16605.
  • [31] Saka, C., Şahin, Ö., Demir, H., Karabulut, A., & Sa¬rikaya, A. (2015). Hydrogen generation from sodium borohydride hydrolysis with a Cu-Co-based catalyst: a kinetic study. Energy Sources, Part A: Recovery, Utili-zation, and Environmental Effects, 37(9), 956-964.
  • [32] Ekinci, A., Cengiz, E., Kuncan, M., & Şahin, Ö. (2020). Hydrolysis of sodium borohydride solutions both in the presence of Ni-B catalyst and in the case of microwave application. International Journal of Hydrogen Energy, 45(60), 34749-34760.
  • [33] Kazici, H. Ç., Yilmaz, Ş., Şahan, T., Yildiz, F., Er, Ö. F., & Kivrak, H. (2020). A comprehensive study of hydro¬gen production from ammonia borane via PdCoAg/AC nanoparticles and anodic current in alkaline medium: experimental design with response surface methodo-logy. Frontiers in Energy, 14(3), 578-589.
  • [34] Özkan, G., Akkuş, M. S., & Özkan, G. (2019). The ef¬fects of operating conditions on hydrogen production from sodium borohydride using Box-Wilson optimi¬zation technique. International Journal of Hydrogen Energy, 44(20), 9811-9816.
  • [35] Wu, H. W., & Ku, H. W. (2012). Effects of modified flow field on optimal parameters estimation and cell per-formance of a pEm fuel cell with the Taguchi method. International Journal of Hydrogen Energy, 37(2), 1613-1627.
  • [36] Wu, H. W., & Gu, H. W. (2010). Analysis of operating parameters considering flow orientation for the per-formance of a proton exchange membrane fuel cell using the Taguchi method. Journal of Power Sources, 195(11), 3621-3630.
  • [37] Berkani, M., Kadmi, Y., Bouchareb, M. K., Bouhe- lassa, M., & Bouzaza, A. (2020). Combination of a Box-Behnken design technique with response surfa¬ce methodology for optimization of the photocatalytic mineralization of CI Basic Red 46 dye from aqueous solution. Arabian Journal of Chemistry, 13(11), 8338¬8346.
  • [38] Wang, H., Gan, H., Wang, G., & Zhong, G. (2020). Emission and performance optimization of marine fo¬ur-stroke dual-fuel engine based on response surface methodology. Mathematical Problems in Engineering, 2020, 1-9.
  • [39] Patel, N., Fernandes, R., & Miotello, A. (2009). Hydro-gen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study. Journal of Power So-urces, 188(2), 411-420.
  • [40] Fernandes, R., Patel, N., & Miotello, A. (2009). Hydro-gen generation by hydrolysis of alkaline NaBH4 soluti-on with Cr-promoted Co-B amorphous catalyst. Appli¬ed Catalysis B: Environmental, 92(1-2), 68-74.
  • [41] Hatami, M., Cuijpers, M. C., & Boot, M. D. (2015). Ex-perimental optimization of the vanes geometry for a variable geometry turbocharger (VGT) using a Design of Experiment (DoE) approach. Energy Conversion and Management, 106, 1057-1070.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Hüseyin Elçiçek 0000-0003-1064-6668

Publication Date March 31, 2021
Acceptance Date January 1, 2021
Published in Issue Year 2021

Cite

APA Elçiçek, H. (2021). Ni-B katalizörünün hidrojen üretiminde yanıt yüzey yöntemi ile optimizasyonu. Journal of Boron, 6(1), 216-226. https://doi.org/10.30728/boron.825013