Research Article
BibTex RIS Cite

NiO@ N-katkılı indirgenmiş grafen oksit sentezi ve hidrojen üretimde kullanılması

Year 2021, , 290 - 297, 30.06.2021
https://doi.org/10.30728/boron.840655

Abstract

Amonyak boran (AB), kimyasal hidrojen depolama bileşikleri arasında oldukça umut verici bir aday olarak kabul edilmektedir. Hidrojen üretim sistemlerinin etkinliğinin artırılmasında ki en önemli kilit noktası, maliyeti düşük ve aktivitesi yüksek bir katalizör geliştirmektedir. Yapılan bu çalışmada, soy metal içermeyen NiO bileşiğinin azot katkılı indirgenmiş grafen oksit destek malzemesi üzerinde (NiO@N-rGO) sentezi gerçekleştirilmiş ve AB’nin katalitik dehidrojenasyon deneylerinde (25oC-50 oC) etkinliği araştırılmıştır. Yapılan çalışmalar sonucunda, NiO ve azot katkılı rGO desteği arasındaki sinerjik etkinin katalizörün performansını arttırdığı görülmüş ve devir frekansı değeri (TOF): 63 mol H2 min−1 (mol Ni)−1 ve aktivasyon enerji değeri: 48.7 kJ mol−1 olarak bulunmuştur. Elde edilen bu sonuçlar, sentezlenen NiO@N-rGO katalizörün literatüre ki bir çok Ni-bazlı katalizörlerden daha aktif olduğunu göstermiştir.

References

  • [1] Xu, Q., Chandra, M., Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature, Journal of Power Sources, 163 (1), 364-370, 2006.
  • [2] Barış, M., Şimşek, T., Taşkaya, H., Chattopadhyay, A. K., Synthesis of Fe-Fe2B catalysts via solvothermal route for hydrogen generation by hydrolysis of NaBH4, Bor Dergisi, 3 (1), 51 - 62, 2018.
  • [3] Çakanyıldırım, Ç., Özsaçmacı, G., Metin, G., Co-Mn/TiO2 catalyst to enhance the NaBH4 decomposition, Bor Dergisi, 1(1), 1-5, 2016.
  • [4] Zhang, H., Zhang, L., Rodriguez-Perez, I. A., Miao, W., Chen, K., Wang, W., Li, Y., Han, S., Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis, Applied Surface Science, 540 (1), 148296, 2021.
  • [5] Balbay, A., Selvi̇tepe, N., Saka, C., Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis, International Journal of Hydrogen Energy, 46 (1), 425-438, 2021.
  • [6] Abdelhamid, H. N., Salts Induced Formation of Hierarchical Porous ZIF‐8 and Their Applications for CO2 Sorption and Hydrogen Generation via NaBH4 Hydrolysis, Macromolecular Chemistry and Physics, 221 (7), 2000031, 2020.
  • [7] Amri, N. E., Roger, K., Polyvinylpyrrolidone (PVP) impurities drastically impact the outcome of nanoparticle syntheses, Journal of Colloid and Interface Science, 576 (15), 435-443, 2020.
  • [8] Karaca, T., Sevim, M., Metin, Ö., Facile synthesis of monodisperse copper–platinum alloy nanoparticles and their superb catalysis in the hydrolytic dehydrogenation of ammonia borane and hydrazine borane, ChemCatChem, 9 (22), 4185-4190, 2017.
  • [9] Xu, P., Lu, W., Zhang, J., Zhang, L., Efficient Hydrolysis of Ammonia Borane for Hydrogen Evolution Catalyzed by Plasmonic Ag@ Pd Core–Shell Nanocubes, ACS Sustainable Chemistry & Engineering, 8 (33), 12366-12377, 2020.
  • [10] Shore, S.G., Parry, R.W., The crystalline compound ammonia-borane, H3NBH3, Journal of the American Chemical Society, 77 (22), 6084-6085, 1955.
  • [11] Faverio, C., Boselli, M. F., Medici, F., Benaglia, M., Ammonia borane as a reducing agent in organic synthesis, Organic & Biomolecular Chemistry, 18, 7789-7813, 2020.
  • [12] Li, H., Yang, Q., Chen, X., Shore, S.G., Ammonia borane, past as prolog, Journal of Organometallic Chemistry, 751, 60-66, 2014.
  • [13] Vijayalakshmi, K.P., Suresh, C.H., Ammonia Borane Clusters: Energetics of Dihydrogen Bonding, Cooperativity, and the Role of Electrostatics, The Journal of Physical Chemistry A,. 121 (13), 2704-2714, 2017.
  • [14] Ren, X., Lv, H., Yang, S., Wang, Y., Li, J., Wei, R., Xu, D., Liu, B., Promoting Effect of Heterostructured NiO/Ni on Pt Nanocatalysts toward Catalytic Hydrolysis of Ammonia Borane, The Journal of Physical Chemistry Letters, 10 (23), 7374-7382, 2019.
  • [15] Zhou, L., Zhang, T., Tao, Z., Chen, J., Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane, Nano Research, 7 (5), 774-781, 2014.
  • [16] Zhao, B., Liu, J., Zhou, L., Long, D., Feng, K., Sun, X., Zhong, J., Probing the electronic structure of M-graphene oxide (M=Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane, Applied Surface Science, 362, 79-85, 2016.
  • [17] Zhang, J., Chen, C., Yan, W., Duan, F., Zhang, B., Gao, Z., Qin, Y., Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane, Catalysis Science & Technology, 6 (7), 2112-2119, 2016.
  • [18] Mahyari, M., Shaabani, A., Nickel nanoparticles immobilized on three-dimensional nitrogen-doped graphene as a superb catalyst for the generation of hydrogen from the hydrolysis of ammonia borane, Journal of Materials Chemistry A, 2 (39),16652-16659, 2014.
  • [19] Du, X., Liu, C., Du, C., Cai, P., Cheng, G., Luo, W., Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature, Nano Research, 10 (8), p. 2856-2865, 2017.
  • [20] Lu, Y., Huang, Y., Zhang, M., Chen, Y., Nitrogen-doped graphene materials for supercapacitor applications, Journal of Nanoscience and Nanotechnology, 14 (2), 1134-1144, 2014.
  • [21] Hummers Jr, W.S., Offeman, R.E., Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (6), 1339-1339, 1958.
  • [22] Tan, Y.Q., Song, Y.H., Zheng, Q., Facile regulation of glutaraldehyde-modified graphene oxide for preparing free-standing papers and nanocomposite films, Chinese Journal of Polymer Science, 31 (3), 399-406, 2013.
  • [23] Long, D., Li, W., Ling, L., Miyawaki, J., Mochida, I., Yoon, S.H., Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide, Langmuir, 26 (20), 16096-16102, 2010.
  • [24] Ariharan, A., Viswanathan, B., Nandhakumar, V., Nitrogen doped graphene as potential material for hydrogen storage, Graphene, 6 (2), 41-60, 2017.
  • [25] Yung, T.Y., Huang, L.Y., Chan, T.Y., Wang, K.S., Liu, T.Y., Chen, P.T., Chao, C.Y., Liu, L.K., Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction, Nanoscale Research Letters, 9 (1), 444, 2014.
  • [26] Klug, H. P., Alexander, L. E., X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd Edition, John Wiley & Sons, 992, 1974.
  • [27] Naveen, A. N., Selladurai, S., Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application, Electrochimica Acta, 173, 290-301, 2015.
  • [28] Tao, H.C., Yang, X.L., Zhang, L.L., Ni, S.B., One-step synthesis of nickel sulfide/N-doped graphene composite as anode materials for lithium ion batteries, Journal of Electroanalytical Chemistry, 739, 36-42, 2015.
  • [29] Li, G., Zhang, Y., Highly selective two-electron oxygen reduction to generate hydrogen peroxide using graphite felt modified with N-doped graphene in an electro-Fenton system, New Journal of Chemistry, 43 (32), 12657-12667, 2019.
  • [30] Salavati-Niasari, M., Entesari, M., Controlled synthesis of spherical α-Ni(OH)2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO, Polyhedron, 33 (1), 302-309, 2012.
  • [31] Chen, X.A., Chen, X., Zhang, F., Yang, Z., Huang, S., One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor, Journal of Power Sources, 243, 555-561, 2013.
  • [32] Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.X., Fu, Q., Ma, X., Xue, Q., Toward N-doped graphene via solvothermal synthesis, Chemistry of Materials, 23 (5), 1188-1193, 2011.
  • [33] Liu, L., Chen, R., Liu, W., Wu, J., Gao, D., Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide, Journal of Hazardous Materials, 320, 96-104, 2016.
  • [34] Su, F., Lv, X., Miao, M., High‐performance two‐ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles, Small, 11 (7), 854-861, 2015.
  • [35] McIntyre, N., Cook, M., X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Analytical Chemistry, 47 (13), 2208-2213, 1975.
  • [36] Zhou, Q., Yang, H., Xu, C., Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane, International Journal of Hydrogen Energy, 41 (30), 12714-12721, 2016.
  • [37] Xi, P., Chen, F., Xie, G., Ma, C., Liu, H., Shao, C., Wang, J., Xu, Z., Xu, X., Zeng, Z., Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Nanoscale, 4 (18), 5597-5601, 2012.
  • [38] Amali, A. J., Aranishi, K., Uchida, T., Xu, Q., PdPt Nanocubes: A High‐Performance Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane, Particle & Particle Systems Characterization, 30 (10), 888-892, 2013.
  • [39] Cao, C. Y., Chen, C. Q., Li, W., Song, W. G., Cai, W., Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane, ChemSusChem, 3 (11), 1241-1244, 2010.
  • [40] Metin, Ö., Mazumder, V., Özkar, S., Sun, S., Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane, Journal of the American Chemical Society, 132 (5), 1468-1469, 2010.
  • [41] Kalidindi, S. B., Indirani, M., Jagirdar, B. R., First Row Transition Metal Ion-Assisted Ammonia−Borane Hydrolysis for Hydrogen Generation, Inorganic Chemistry, 47 (16), 7424-7429, 2008.
  • [42] Umegaki, T., Yan, J.-M., Zhang, X.B., Shioyama, H., Kuriyama, N., Xu, Q., Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane, International Journal of Hydrogen Energy, 34 (9), 3816-3822, 2009.
  • [43] Du, X., Yang, C., Zeng, X., Wu, T., Zhou, Y., Cai, P., Cheng, G., Luo, W., Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane, International Journal of Hydrogen Energy, 42 (20), 14181-14187, 2017.
  • [44] Manna, J., Akbayrak, S., Özkar, S., Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane, Journal of Colloid and Interface Science, 508, 359-368, 2017.
  • [45] Yang, X. J., Li, L. L., Sang, W. L., Zhao, J. L., Wang, X. X., Yu, C., Zhang, X. H., Tang, C. C., Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane, Journal of Alloys and Compounds, 693, 642-649, 2017.
  • [46] Lin, Y., Yang, L., Jiang, H., Zhang, Y., Cao, D., Wu, C., Zhang, G., Jiang, J., Song, L., Boosted Reactivity of Ammonia Borane Dehydrogenation over Ni/Ni2P Heterostructure, The Journal of Physical Chemistry Letters, 10 (5), 1048-1054, 2019.
  • [47] Liu, Y., Zhang, J., Liu, Q., Li, X., TiN nanotube supported Ni catalyst Ni@ TiN-NTs: experimental evidence of structure–activity relations in catalytically hydrolyzing ammonia borane for hydrogen evolution, RSC Advances, 10 (61), 37209-37217, 2020.
  • [48] Ghosh, S., Kadam, S. R., Houben, L., Bar-Ziv, R., Bar-Sadan, M., Nickel phosphide catalysts for hydrogen generation through water reduction, ammonia-borane and borohydride hydrolysis, Applied Materials Today, 20, 100693, 2020.
  • [49] Feng, K., Zhong, J., Zhao, B., Zhang, H., Xu, L., Sun, X., Lee, S. T., CuxCo1− xO Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High‐Efficiency Hydrolysis of Ammonia–Borane, Angewandte Chemie, 128 (39), 12129-12133, 2016.

The synthesis of NiO@ N-doped reduced graphene oxide and its application for hydrogen generation

Year 2021, , 290 - 297, 30.06.2021
https://doi.org/10.30728/boron.840655

Abstract

Ammonia borane (AB) is considered a highly promising candidate among chemical hydrogen storage compounds. The improvement of efficient and low-cost catalysts is key to comprehending a highly efficient hydrogen generation reaction. In this study, the synthesis of non-noble nickel oxide was performed on nitrogen-doped graphene (NiO@N-rGO) and its efficiency towards the catalytic dehydrogenation of AB was investigated under mild conditions (25oC-50oC). The synergic effect between NiO and nitrogen-doped rGO has increased the performance of the catalyst. As a result, the turnover frequency (63 mol H2 min−1 (mol Ni) −1 of NiO@N-rGO is higher than most Ni-based catalysts. The activation energy (Ea) measured to be 48.7 kJ mol−1 is among the values of the most active catalysts.

References

  • [1] Xu, Q., Chandra, M., Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia–borane at room temperature, Journal of Power Sources, 163 (1), 364-370, 2006.
  • [2] Barış, M., Şimşek, T., Taşkaya, H., Chattopadhyay, A. K., Synthesis of Fe-Fe2B catalysts via solvothermal route for hydrogen generation by hydrolysis of NaBH4, Bor Dergisi, 3 (1), 51 - 62, 2018.
  • [3] Çakanyıldırım, Ç., Özsaçmacı, G., Metin, G., Co-Mn/TiO2 catalyst to enhance the NaBH4 decomposition, Bor Dergisi, 1(1), 1-5, 2016.
  • [4] Zhang, H., Zhang, L., Rodriguez-Perez, I. A., Miao, W., Chen, K., Wang, W., Li, Y., Han, S., Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis, Applied Surface Science, 540 (1), 148296, 2021.
  • [5] Balbay, A., Selvi̇tepe, N., Saka, C., Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis, International Journal of Hydrogen Energy, 46 (1), 425-438, 2021.
  • [6] Abdelhamid, H. N., Salts Induced Formation of Hierarchical Porous ZIF‐8 and Their Applications for CO2 Sorption and Hydrogen Generation via NaBH4 Hydrolysis, Macromolecular Chemistry and Physics, 221 (7), 2000031, 2020.
  • [7] Amri, N. E., Roger, K., Polyvinylpyrrolidone (PVP) impurities drastically impact the outcome of nanoparticle syntheses, Journal of Colloid and Interface Science, 576 (15), 435-443, 2020.
  • [8] Karaca, T., Sevim, M., Metin, Ö., Facile synthesis of monodisperse copper–platinum alloy nanoparticles and their superb catalysis in the hydrolytic dehydrogenation of ammonia borane and hydrazine borane, ChemCatChem, 9 (22), 4185-4190, 2017.
  • [9] Xu, P., Lu, W., Zhang, J., Zhang, L., Efficient Hydrolysis of Ammonia Borane for Hydrogen Evolution Catalyzed by Plasmonic Ag@ Pd Core–Shell Nanocubes, ACS Sustainable Chemistry & Engineering, 8 (33), 12366-12377, 2020.
  • [10] Shore, S.G., Parry, R.W., The crystalline compound ammonia-borane, H3NBH3, Journal of the American Chemical Society, 77 (22), 6084-6085, 1955.
  • [11] Faverio, C., Boselli, M. F., Medici, F., Benaglia, M., Ammonia borane as a reducing agent in organic synthesis, Organic & Biomolecular Chemistry, 18, 7789-7813, 2020.
  • [12] Li, H., Yang, Q., Chen, X., Shore, S.G., Ammonia borane, past as prolog, Journal of Organometallic Chemistry, 751, 60-66, 2014.
  • [13] Vijayalakshmi, K.P., Suresh, C.H., Ammonia Borane Clusters: Energetics of Dihydrogen Bonding, Cooperativity, and the Role of Electrostatics, The Journal of Physical Chemistry A,. 121 (13), 2704-2714, 2017.
  • [14] Ren, X., Lv, H., Yang, S., Wang, Y., Li, J., Wei, R., Xu, D., Liu, B., Promoting Effect of Heterostructured NiO/Ni on Pt Nanocatalysts toward Catalytic Hydrolysis of Ammonia Borane, The Journal of Physical Chemistry Letters, 10 (23), 7374-7382, 2019.
  • [15] Zhou, L., Zhang, T., Tao, Z., Chen, J., Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane, Nano Research, 7 (5), 774-781, 2014.
  • [16] Zhao, B., Liu, J., Zhou, L., Long, D., Feng, K., Sun, X., Zhong, J., Probing the electronic structure of M-graphene oxide (M=Ni, Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane, Applied Surface Science, 362, 79-85, 2016.
  • [17] Zhang, J., Chen, C., Yan, W., Duan, F., Zhang, B., Gao, Z., Qin, Y., Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane, Catalysis Science & Technology, 6 (7), 2112-2119, 2016.
  • [18] Mahyari, M., Shaabani, A., Nickel nanoparticles immobilized on three-dimensional nitrogen-doped graphene as a superb catalyst for the generation of hydrogen from the hydrolysis of ammonia borane, Journal of Materials Chemistry A, 2 (39),16652-16659, 2014.
  • [19] Du, X., Liu, C., Du, C., Cai, P., Cheng, G., Luo, W., Nitrogen-doped graphene hydrogel-supported NiPt-CeOx nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature, Nano Research, 10 (8), p. 2856-2865, 2017.
  • [20] Lu, Y., Huang, Y., Zhang, M., Chen, Y., Nitrogen-doped graphene materials for supercapacitor applications, Journal of Nanoscience and Nanotechnology, 14 (2), 1134-1144, 2014.
  • [21] Hummers Jr, W.S., Offeman, R.E., Preparation of graphitic oxide, Journal of the American Chemical Society, 80 (6), 1339-1339, 1958.
  • [22] Tan, Y.Q., Song, Y.H., Zheng, Q., Facile regulation of glutaraldehyde-modified graphene oxide for preparing free-standing papers and nanocomposite films, Chinese Journal of Polymer Science, 31 (3), 399-406, 2013.
  • [23] Long, D., Li, W., Ling, L., Miyawaki, J., Mochida, I., Yoon, S.H., Preparation of Nitrogen-Doped Graphene Sheets by a Combined Chemical and Hydrothermal Reduction of Graphene Oxide, Langmuir, 26 (20), 16096-16102, 2010.
  • [24] Ariharan, A., Viswanathan, B., Nandhakumar, V., Nitrogen doped graphene as potential material for hydrogen storage, Graphene, 6 (2), 41-60, 2017.
  • [25] Yung, T.Y., Huang, L.Y., Chan, T.Y., Wang, K.S., Liu, T.Y., Chen, P.T., Chao, C.Y., Liu, L.K., Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction, Nanoscale Research Letters, 9 (1), 444, 2014.
  • [26] Klug, H. P., Alexander, L. E., X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd Edition, John Wiley & Sons, 992, 1974.
  • [27] Naveen, A. N., Selladurai, S., Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application, Electrochimica Acta, 173, 290-301, 2015.
  • [28] Tao, H.C., Yang, X.L., Zhang, L.L., Ni, S.B., One-step synthesis of nickel sulfide/N-doped graphene composite as anode materials for lithium ion batteries, Journal of Electroanalytical Chemistry, 739, 36-42, 2015.
  • [29] Li, G., Zhang, Y., Highly selective two-electron oxygen reduction to generate hydrogen peroxide using graphite felt modified with N-doped graphene in an electro-Fenton system, New Journal of Chemistry, 43 (32), 12657-12667, 2019.
  • [30] Salavati-Niasari, M., Entesari, M., Controlled synthesis of spherical α-Ni(OH)2 hierarchical nanostructures via a simple hydrothermal process and their conversion to NiO, Polyhedron, 33 (1), 302-309, 2012.
  • [31] Chen, X.A., Chen, X., Zhang, F., Yang, Z., Huang, S., One-pot hydrothermal synthesis of reduced graphene oxide/carbon nanotube/α-Ni(OH)2 composites for high performance electrochemical supercapacitor, Journal of Power Sources, 243, 555-561, 2013.
  • [32] Deng, D., Pan, X., Yu, L., Cui, Y., Jiang, Y., Qi, J., Li, W.X., Fu, Q., Ma, X., Xue, Q., Toward N-doped graphene via solvothermal synthesis, Chemistry of Materials, 23 (5), 1188-1193, 2011.
  • [33] Liu, L., Chen, R., Liu, W., Wu, J., Gao, D., Catalytic reduction of 4-nitrophenol over Ni-Pd nanodimers supported on nitrogen-doped reduced graphene oxide, Journal of Hazardous Materials, 320, 96-104, 2016.
  • [34] Su, F., Lv, X., Miao, M., High‐performance two‐ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles, Small, 11 (7), 854-861, 2015.
  • [35] McIntyre, N., Cook, M., X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Analytical Chemistry, 47 (13), 2208-2213, 1975.
  • [36] Zhou, Q., Yang, H., Xu, C., Nanoporous Ru as highly efficient catalyst for hydrolysis of ammonia borane, International Journal of Hydrogen Energy, 41 (30), 12714-12721, 2016.
  • [37] Xi, P., Chen, F., Xie, G., Ma, C., Liu, H., Shao, C., Wang, J., Xu, Z., Xu, X., Zeng, Z., Surfactant free RGO/Pd nanocomposites as highly active heterogeneous catalysts for the hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage, Nanoscale, 4 (18), 5597-5601, 2012.
  • [38] Amali, A. J., Aranishi, K., Uchida, T., Xu, Q., PdPt Nanocubes: A High‐Performance Catalyst for Hydrolytic Dehydrogenation of Ammonia Borane, Particle & Particle Systems Characterization, 30 (10), 888-892, 2013.
  • [39] Cao, C. Y., Chen, C. Q., Li, W., Song, W. G., Cai, W., Nanoporous nickel spheres as highly active catalyst for hydrogen generation from ammonia borane, ChemSusChem, 3 (11), 1241-1244, 2010.
  • [40] Metin, Ö., Mazumder, V., Özkar, S., Sun, S., Monodisperse Nickel Nanoparticles and Their Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane, Journal of the American Chemical Society, 132 (5), 1468-1469, 2010.
  • [41] Kalidindi, S. B., Indirani, M., Jagirdar, B. R., First Row Transition Metal Ion-Assisted Ammonia−Borane Hydrolysis for Hydrogen Generation, Inorganic Chemistry, 47 (16), 7424-7429, 2008.
  • [42] Umegaki, T., Yan, J.-M., Zhang, X.B., Shioyama, H., Kuriyama, N., Xu, Q., Preparation and catalysis of poly(N-vinyl-2-pyrrolidone) (PVP) stabilized nickel catalyst for hydrolytic dehydrogenation of ammonia borane, International Journal of Hydrogen Energy, 34 (9), 3816-3822, 2009.
  • [43] Du, X., Yang, C., Zeng, X., Wu, T., Zhou, Y., Cai, P., Cheng, G., Luo, W., Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane, International Journal of Hydrogen Energy, 42 (20), 14181-14187, 2017.
  • [44] Manna, J., Akbayrak, S., Özkar, S., Nickel(0) nanoparticles supported on bare or coated cobalt ferrite as highly active, magnetically isolable and reusable catalyst for hydrolytic dehydrogenation of ammonia borane, Journal of Colloid and Interface Science, 508, 359-368, 2017.
  • [45] Yang, X. J., Li, L. L., Sang, W. L., Zhao, J. L., Wang, X. X., Yu, C., Zhang, X. H., Tang, C. C., Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane, Journal of Alloys and Compounds, 693, 642-649, 2017.
  • [46] Lin, Y., Yang, L., Jiang, H., Zhang, Y., Cao, D., Wu, C., Zhang, G., Jiang, J., Song, L., Boosted Reactivity of Ammonia Borane Dehydrogenation over Ni/Ni2P Heterostructure, The Journal of Physical Chemistry Letters, 10 (5), 1048-1054, 2019.
  • [47] Liu, Y., Zhang, J., Liu, Q., Li, X., TiN nanotube supported Ni catalyst Ni@ TiN-NTs: experimental evidence of structure–activity relations in catalytically hydrolyzing ammonia borane for hydrogen evolution, RSC Advances, 10 (61), 37209-37217, 2020.
  • [48] Ghosh, S., Kadam, S. R., Houben, L., Bar-Ziv, R., Bar-Sadan, M., Nickel phosphide catalysts for hydrogen generation through water reduction, ammonia-borane and borohydride hydrolysis, Applied Materials Today, 20, 100693, 2020.
  • [49] Feng, K., Zhong, J., Zhao, B., Zhang, H., Xu, L., Sun, X., Lee, S. T., CuxCo1− xO Nanoparticles on Graphene Oxide as A Synergistic Catalyst for High‐Efficiency Hydrolysis of Ammonia–Borane, Angewandte Chemie, 128 (39), 12129-12133, 2016.
There are 49 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Derya Öncel 0000-0001-5490-0707

Publication Date June 30, 2021
Acceptance Date May 10, 2021
Published in Issue Year 2021

Cite

APA Öncel, D. (2021). The synthesis of NiO@ N-doped reduced graphene oxide and its application for hydrogen generation. Journal of Boron, 6(2), 290-297. https://doi.org/10.30728/boron.840655