Research Article
BibTex RIS Cite

Investigating the effect of drawing process parameters on borosilicate glass fiber thickness

Year 2022, , 403 - 410, 29.03.2022
https://doi.org/10.30728/boron.953341

Abstract

Borosilicate glasses have many usage areas due to high thermal and chemical resistance with a very low thermal expansion coefficient. The number of waste borosilicate glasses is increasing in direct proportion to their usage areas. Creating new usage areas by recycling these glasses will provide cost savings. In this paper, the fiber drawing method is used to recycle borosilicate glass. The aim of this article is to investigate the effect of winding speed and temperature of drawing process on fiber thickness. The fiber drawing process was performed at specific temperatures (1100 °C, 1200 °C, and 1300 °C) and at specific winding speeds (50 rpm, 175 rpm, and 300 rpm). In this context, the thermal behavior of borosilicate glasses was determined by DSC and TGA analysis. The structural, elemental, and chemical corrosion resistance properties of borosilicate glass fibers were examined by SEM, XPS, and corrosion test, respectively. The results show that the fiber thickness increased with the increase in the amount of material fed in the crucible, while it decreased with the increase of fiber drawing speed and time.

References

  • [1] P. K. Vallittu, T. O. Närhi, and L. Hupa, “Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants,” Dent. Mater., vol. 31, no. 4, pp. 371–381, 2015.
  • [2] N. Shen, A. Samanta, Q. Wang, and H. Ding, “Selective laser melting of fiber-reinforced glass composites,” Manuf. Lett., vol. 14, no. September, pp. 6–9, 2017.
  • [3] S. Liu and L. E. Banta, “Parametric Study of Glass Fiber Drawing Process,” Int. J. Appl. Glas. Sci., vol. 1, no. 2, pp. 180–187, 2010.
  • [4] A. Yurdakul, G. Gunkaya, E. Dolekcekic, T. Kavas, and B. Karasu, “Novel glass compositions for fiber drawing,” Ceram. Int., vol. 41, no. 10, pp. 13105–13114, 2015.
  • [5] Quentin CHOUFFART, “Experimental and numerical Investigation of the continuous Glass Fiber Drawing Process,” no. February, 2018.
  • [6] P. Brøndsted, H. Lilholt, and A. Lystrup, “Composite materials for wind power turbine blades,” Annu. Rev. Mater. Res., vol. 35, no. 1, pp. 505–538, 2005.
  • [7] T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites - A review,” J. Reinf. Plast. Compos., vol. 33, no. 13, pp. 1258–1275, 2014.
  • [8] A. Cevahir, Glass fibers. Elsevier Ltd., 2017.
  • [9] D. S. Chandra, K. V. K. Reddy, and O. Hebbal, “Fabrication and mechanical characterization of glass and carbon fiber reinforced composite’s used for marine applications,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 228–232, 2018.
  • [10] D. J. Krug, M. Z. Asuncion, V. Popova, and R. M. Laine, “Transparent fiber glass reinforced composites,” Compos. Sci. Technol., vol. 77, pp. 95–100, 2013.
  • [11] H. Petersen, Y. Kusano, P. Brøndsted, and K. Almdal, “Preliminary Characterization of Glass Fiber Sizing.,” Proc. 34th Risø Int. Symp. Mater. Sci., vol. 34, pp. 333–340, 2013.
  • [12] J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non. Cryst. Solids, vol. 140, no. C, pp. 199–208, 1992.
  • [13] Q. Chouffart, P. Simon, and V. E. Terrapon, “Numerical and experimental study of the glass flow and heat transfer in the continuous glass fiber drawing process,” J. Mater. Process. Technol., vol. 231, pp. 75–88, 2016.
  • [14] S. Liu and W. Virginia, “Process Model and Control System for the Glass Fiber Drawing Process,” Stress Int. J. Biol. Stress, 2010.
  • [15] D. Xu et al., “Optimization of draw processing parameters for As2Se3 glass fiber,” Opt. Fiber Technol., vol. 38, no. May, pp. 46–50, 2017.
  • [16] S. Roy Choudhury and Y. Jaluria, “Practical aspects in the drawing of an optical fiber,” J. Mater. Res., vol. 13, no. 2, pp. 483–493, 1998.
  • [17] D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, and A. P. Stebner, “Recycling glass fiber thermoplastic composites from wind turbine blades,” J. Clean. Prod., vol. 209, pp. 1252–1263, 2019.
  • [18] D. A. KROHN and A. R. COOPER, “Strengthening of Glass Fibers: I, Cladding,” J. Am. Ceram. Soc., vol. 52, no. 12, pp. 661–664, 1969.
  • [19] M. M. Lima and R. Monteiro, “Characterisation and thermal behaviour of a borosilicate glass,” Thermochim. Acta, vol. 373, no. 1–2, pp. 69–74, 2001.
  • [20] P. K. Gupta, M. L. Lur, and P. J. Bray, “Boron Coordination in Rapidly Cooled and in Annealed Aluminum Borosilicate Glass Fibers,” J. Am. Ceram. Soc., vol. 68, no. 3, p. C‐82, 1985.

Çekme İşlemi Parametrelerinin Borosilikat Cam Elyaf Kalınlığı Üzerine Etkisinin Araştırılması

Year 2022, , 403 - 410, 29.03.2022
https://doi.org/10.30728/boron.953341

Abstract

Borosilikat camları çok düşük termal genleşme katsayısı ile yüksek termal dayanım ve kimyasal dirence sahip olması sebebiyle birçok kullanım alanına sahiptir. Atık borosilikat camların sayısı kullanım alanları ile doğru orantılı olarak artmaktadır. Bu camların geri dönüştürülerek yeni kullanım alanları oluşturulması maliyet açısından tasarruf sağlayacaktır. Bu makalede, borosilikat camın geri dönüştürülmesi için fiber çekme yöntemi kullanılmıştır. Bu makalenin amacı, fiber çekme işleminin sarım hızı ve çekme sıcaklığının fiber kalınlığına etkisini araştırmaktır. Fiber çekme işlemi belirli sıcaklıklarda (1100 °C, 1200 °C ve 1300 °C) ve belirli sarım hızlarında (50 rpm, 175 rpm ve 300 rpm) gerçekleştirilmiştir. Bu kapsamda, borosilikat camların termal davranışı DSC ve TGA analizleri ile belirlenmiştir. Borosilikat cam fiberlerin yapısal, elementel ve kimyasal korozyon direnç özellikleri sırasıyla SEM, XPS ve korozyon testi ile incelenmiştir. Sonuçlar potaya beslenen malzeme miktarının artmasıyla fiber kalınlığının arttığını, fiber çekme hızı ve süresinin artmasıyla ise fiber kalınlığının azaldığını göstermektedir.

Supporting Institution

TENMAK-Bor Araştırma Enstitüsü

References

  • [1] P. K. Vallittu, T. O. Närhi, and L. Hupa, “Fiber glass-bioactive glass composite for bone replacing and bone anchoring implants,” Dent. Mater., vol. 31, no. 4, pp. 371–381, 2015.
  • [2] N. Shen, A. Samanta, Q. Wang, and H. Ding, “Selective laser melting of fiber-reinforced glass composites,” Manuf. Lett., vol. 14, no. September, pp. 6–9, 2017.
  • [3] S. Liu and L. E. Banta, “Parametric Study of Glass Fiber Drawing Process,” Int. J. Appl. Glas. Sci., vol. 1, no. 2, pp. 180–187, 2010.
  • [4] A. Yurdakul, G. Gunkaya, E. Dolekcekic, T. Kavas, and B. Karasu, “Novel glass compositions for fiber drawing,” Ceram. Int., vol. 41, no. 10, pp. 13105–13114, 2015.
  • [5] Quentin CHOUFFART, “Experimental and numerical Investigation of the continuous Glass Fiber Drawing Process,” no. February, 2018.
  • [6] P. Brøndsted, H. Lilholt, and A. Lystrup, “Composite materials for wind power turbine blades,” Annu. Rev. Mater. Res., vol. 35, no. 1, pp. 505–538, 2005.
  • [7] T. P. Sathishkumar, S. Satheeshkumar, and J. Naveen, “Glass fiber-reinforced polymer composites - A review,” J. Reinf. Plast. Compos., vol. 33, no. 13, pp. 1258–1275, 2014.
  • [8] A. Cevahir, Glass fibers. Elsevier Ltd., 2017.
  • [9] D. S. Chandra, K. V. K. Reddy, and O. Hebbal, “Fabrication and mechanical characterization of glass and carbon fiber reinforced composite’s used for marine applications,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 228–232, 2018.
  • [10] D. J. Krug, M. Z. Asuncion, V. Popova, and R. M. Laine, “Transparent fiber glass reinforced composites,” Compos. Sci. Technol., vol. 77, pp. 95–100, 2013.
  • [11] H. Petersen, Y. Kusano, P. Brøndsted, and K. Almdal, “Preliminary Characterization of Glass Fiber Sizing.,” Proc. 34th Risø Int. Symp. Mater. Sci., vol. 34, pp. 333–340, 2013.
  • [12] J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non. Cryst. Solids, vol. 140, no. C, pp. 199–208, 1992.
  • [13] Q. Chouffart, P. Simon, and V. E. Terrapon, “Numerical and experimental study of the glass flow and heat transfer in the continuous glass fiber drawing process,” J. Mater. Process. Technol., vol. 231, pp. 75–88, 2016.
  • [14] S. Liu and W. Virginia, “Process Model and Control System for the Glass Fiber Drawing Process,” Stress Int. J. Biol. Stress, 2010.
  • [15] D. Xu et al., “Optimization of draw processing parameters for As2Se3 glass fiber,” Opt. Fiber Technol., vol. 38, no. May, pp. 46–50, 2017.
  • [16] S. Roy Choudhury and Y. Jaluria, “Practical aspects in the drawing of an optical fiber,” J. Mater. Res., vol. 13, no. 2, pp. 483–493, 1998.
  • [17] D. S. Cousins, Y. Suzuki, R. E. Murray, J. R. Samaniuk, and A. P. Stebner, “Recycling glass fiber thermoplastic composites from wind turbine blades,” J. Clean. Prod., vol. 209, pp. 1252–1263, 2019.
  • [18] D. A. KROHN and A. R. COOPER, “Strengthening of Glass Fibers: I, Cladding,” J. Am. Ceram. Soc., vol. 52, no. 12, pp. 661–664, 1969.
  • [19] M. M. Lima and R. Monteiro, “Characterisation and thermal behaviour of a borosilicate glass,” Thermochim. Acta, vol. 373, no. 1–2, pp. 69–74, 2001.
  • [20] P. K. Gupta, M. L. Lur, and P. J. Bray, “Boron Coordination in Rapidly Cooled and in Annealed Aluminum Borosilicate Glass Fibers,” J. Am. Ceram. Soc., vol. 68, no. 3, p. C‐82, 1985.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Cennet Yıldırım 0000-0003-0042-5044

Eda Turgut 0000-0002-7822-0834

Sedat Sürdem 0000-0001-8220-7934

Abdulkerim Yörükoğlu 0000-0003-3194-3901

Publication Date March 29, 2022
Acceptance Date January 2, 2022
Published in Issue Year 2022

Cite

APA Yıldırım, C., Turgut, E., Sürdem, S., Yörükoğlu, A. (2022). Investigating the effect of drawing process parameters on borosilicate glass fiber thickness. Journal of Boron, 7(1), 403-410. https://doi.org/10.30728/boron.953341