BibTex RIS Cite

Boron-Substituted Bioceramics: A Review

Year 2016, Volume: 1 Issue: 1, 6 - 14, 24.03.2016

Abstract

Biomaterials can be designed by imitating and taking inspiration from the forms and compositions of natural tissues. The inorganic component of the hard tissues; bone, dentin and enamel, is hydroxyapatite (Ca10(PO4)6(OH)2) containing various trace elements that are important in biochemical reactions of bone metabolism. Boron is considered as an essential element for human physiology and it has many biologic affects especially on hard tissues. Substitution of boron into the structure of hydroxyapatite or other bioceramics, such as calcium phosphates and bioglasses, could enhance angiogenesis and osteogenesis of the damaged tissue. This review covers briefly the recent and very recent works on preparing numerous bioceramic, bioglass and glass-ceramic systems containing boron.

References

  • Williams, D. F., On the nature of biomaterials, Biomaterials, 30(30), 5897-5909, 2009.
  • Hench, L. L., Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74(7), 1487-1510, 1991.
  • Ito, A., Ohgushi, H., “Encyclopedia of Biomaterials and Biomedical Engineering”, Calcium Phosphate Ceramics: New Generation Produced in Japan, Informa Healthcare Inc., USA, 461-469, 2008.
  • Tanaka, Y., & Yamashita, K. “Bioceramics and their clinical applications”, Fabrication processes for bioceramics, Cambridge: Woodhead Publishing Limited, England, 28-52, 2008.
  • Bohner, M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, 31, D37-D47, 2000.
  • Albee, F. H., Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Annals of Surgery, 71(1), 32, 1920.
  • Ray, R. D., Degge, J., Gloyd, P., Mooney, G. A. R. T. H., Bone regeneration. The Journal of Bone & Joint Surgery, 34(3), 638-647, 1952.
  • Furlong, R. J., & Osborn, J. F, Fixation of hip prostheses by hydroxyapatite ceramic coatings, Journal of Bone & Joint Surgery, British Volume, 73(5), 741-745, 1991.
  • Brown, W. E., Chow, L. C., Dental Restorative Cement Pastes. US patent No. 4, 518, 430, May 21, 1985.
  • Dorozhkin, S. V., Bioceramics of calcium orthophosphates, Biomaterials, 31(7), 1465-1485, 2010.
  • Bronner, F., “Principles of Bone Biology”, Chap.25: Metals in bone: aluminum, boron, cadmium, chromium, lead, silicon, and strontium, Academic, San Diego, 295-303, 1996.
  • Hughes, J. M., & Rakovan, J., The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl), Reviews in Mineralogy and Geochemistry, 48(1), 1-12, 2002.
  • Ternane, R., Cohen-Adad, M. T., Boulon, G., Florian, P., Massiot, D., Trabelsi-Ayedi, M., Kbir-Ariguib, N. Synthesis and characterization of new oxyboroapatite. Investigation of the ternary system CaO–P2O5–B2O3, Solid State Ionics, 160(1), 183-195, 2003.
  • Wopenka, B., Pasteris, J. D., A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C, 25(2), 131-143, 2005.
  • Vallet-Regi, M., González-Calbet, J. M., Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry, 32(1), 1-31, 2004.
  • Lloyd, J. D., Borates and their biological applications, The International Research Group on Wood Preservation. Doc IRG/WP, 98-30178, 1998.
  • Woods, W. G., An introduction to boron: history, sources, uses, and chemistry. Environmental health perspectives, 102(Suppl 7), 5, 1994.
  • Carrano, C. J., Schellenberg, S., Amin, S. A., Green, D. H., Küpper, F. C., Boron and marine life: a new look at an enigmatic bioelement, Marine Biotechnology, 11(4), 431-440, 2009.
  • Hunter, P., Not boring at all, EMBO reports, 10(2), 125-128, 2009.
  • Nielsen, F. H., Is boron nutritionally relevant?, Nutrition Reviews, 66(4), 183-191, 2008.
  • Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics, Trends in Biotechnology, 31(10), 594-605, 2013.
  • Dzondo-Gadet, M., Mayap-Nzietchueng, R., Hess, K., Nabet, P., Belleville, F., Dousset, B., Action of boron at the molecular level, Biological Trace Element Research, 85(1), 23-33, 2002.
  • Lakhkar, N. J., Lee, I. H., Kim, H. W., Salih, V., Wall, I. B., Knowles, J. C., Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses. Advanced Drug Delivery Reviews, 65(4), 405-420, 2013.
  • Chapin, R. E., Ku, W. W., Kenney, M. A., McCoy, H., The effects of dietary boric acid on bone strength in rats. Biological Trace Element Research,66(1-3), 395-399, 1998.
  • Moseman, R. F., Chemical disposition of boron in animals and humans, Environmental Health Perspectives, 102 (Suppl 7), 113, 1994.
  • Trumbo, P., Yates, A. A., Schlicker, S., Poos, M., Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, 510-521, 2001.
  • Meacham, S. L., Taper, L. J., Volpe S. L., Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes, Environmental Health Perspectives, 102(Suppl 7), 79-82, 1994.
  • Nielsen, F. H., Stoecker, B. J., Penland, J. G. “Advances in Plant and Animal Boron Nutrition”, Boron as a dietary factor for bone microarchitecture and central nervous system function, Springer Netherlands, 277-290, 2007.
  • Nielsen, F. H., Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats, Biofactors, 20(3), 161-171, 2004.
  • Gorustovich, A. A., Steimetz, T., Nielsen, F. H., Guglielmotti, M. B., A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Archives of Oral Biology, 53(7), 677-682, 2008.
  • Hakki, S. S., Dundar, N., Kayis, S. A., Hakki, E. E., Hamurcu, M., Kerimoglu, U., Baspinar, N., Basoglu, A., Nielsen, F. H., Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 27(2), 148-153. (2013).
  • Uysal, T., Ustdal, A., Sonmez, M. F., Ozturk, F., Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, Angle Orthodontist, 79(5), 984-990, 2009.
  • Armstrong, T. A., Flowers, W. L., Spears, J. W., Nielsent, F. H., Long-term effects of boron supplementation on reproductive characteristics and bone mechanical properties in gilts, Journal of Animal Science, 80(1), 154-161, 2002.
  • Hakki, S. S., Bozkurt, B. S., Hakki, E. E., Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1), Journal of Trace Elements in Medicine and Biology, 24(4), 243-250, 2010.
  • Gümüşderelioğlu, M., Tunçay, E. Ö., Kaynak, G., Demirtaş, T. T., Aydın, S. T., Hakkı, S. S., Encapsulated boron as an osteoinductive agent for bone scaffolds, Journal of Trace Elements in Medicine and Biology, 31, 120-128, 2015.
  • Hayakawa, S., Sakai, A., Tsuru, K., Osaka, A., Fujii, E., Kawabata, K., Jaeger, C., Preparation and characterization of boron-containing hydroxyapatite, Key Engineering Materials, 361-363, 191-194, 2008.
  • Barheine, S., Hayakawa, S., Osaka, A., Jaeger, C., Surface, interface, and bulk structure of borate containing apatitic biomaterials, Chemistry of Materials, 21(14), 3102-3109, 2009.
  • Ternane, R., Cohen-Adad, M. T., Panczer, G., Goutaudier, C., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Florian P., Massiot, D., Introduction of boron in hydroxyapatite: synthesis and structural characterization, Journal of Alloys and Compounds, 333(1), 62-71, 2002.
  • Barheine, S., Hayakawa, S., Jäger, C., Shirosaki, Y., Osaka, A. Effect of Disordered Structure of Boron‐Containing Calcium Phosphates on their In Vitro Biodegradability, Journal of the American Ceramic Society, 94(8), 2656-2662, 2011.
  • Güler, H., Gündoğmaz, G., Kurtuluş, F., Çelik, G., Gacanoğlu, Ş. S., Solid state synthesis of calcium borohydroxyapatite, Solid State Sciences, 13(11), 1916-1920, 2011.
  • AlHammad, M. S., Nanostructure hydroxyapatite based ceramics by sol gel method, Journal of Alloys and Compounds, 661, 251-256, 2016.
  • Albayrak O., Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment, Materials Characterization, 2016, doi: 10.1016/j.matchar.2016.01.006
  • Ternane, R., Panczer, G., Cohen-Adad, M. T., Goutaudier, C., Boulon, G., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Relationships between structural and luminescence properties in Eu3+-doped new calcium borohydroxyapatite, Optical Materials, 16(1), 291-300, 2001.
  • Ternane, R., Cohen-Adad, M. T., Panczer, G., Goutaudier, C., Dujardin, C., Boulon, G., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Structural and luminescent properties of new Ce3+ doped calcium borophosphate with apatite structure, Solid State Sciences, 4(1), 53-59, 2002.
  • Çiftçi, E., Köse, S., Korkusuz, P., Timuçin, M., Korkusuz, F., Boron Containing Nano Hydroxyapatites (Bn-HAp) Stimulate Mesenchymal Stem Cell Adhesion, Proliferation and Differentiation, Key Engineering Materials, 631, 2014.
  • Ali, D., Sen, S., Finite Element Analysis of the Effect of Boron Nitride Nanotubes in Beta Tricalcium Phosphate and Hydroxyapatite Elastic Modulus Using the RVE Model, Composites Part B, 2016, doi: 10.1016/j.compositesb.2016.01.003.
  • Atila, A., Halici, Z., Cadirci, E., Karakus, E., Palabiyik, S. S., Ay, N., Bakan, F., Yilmaz, S., Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxyapatite in rat femurs. Materials Science and Engineering: C, 58, 1082-1089, 2016.
  • Hadj Youssef, N., Belkhiria, M. S., Videau, J. J., Ben Amara, M., Investigation of the physico-chemical properties of calcium borophosphate glasses. Effect of the substitution of sodium for calcium, Materials Letters, 44(5), 269-274, 2000.
  • Massera, J., Shpotyuk, Y., Sabatier, F., Jouan, T., Boussard-Plédel, C., Roiland, C., Bureau, B., Petit, L., Boetti, N. G., Milanese, D., Hupa, L. Processing and characterization of novel borophosphate glasses and fibers for medical applications. Journal of Non-Crystalline Solids, 425, 52-60, 2015.
  • Ducel, J. F., Videau, J. J., Effect of additional calcium hydroxyapatite on sodium borophosphate glasses: physical and chemical characterizations, Materials Letters, 18(1), 69-72, 1993.
  • Ciceo-Lucacel, R., Radu, T., Ponta, O., Simon, V., Novel selenium containing boro-phosphate glasses: Preparation and structural study. Materials Science and Engineering: C, 39, 61-66, 2014.
  • Erol, M. M., Mouriňo, V., Newby, P., Chatzistavrou, X., Roether, J. A., Hupa, L., Boccaccini, A. R., Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering, Acta Biomaterialia, 8(2), 792-801, 2012.
  • Wang, H., Zhao, S., Xiao, W., Xue, J., Shen, Y., Zhou, J., Huang, W., Rahaman, M.N., Zhang, C., Wang, D, Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds, Materials Science and Engineering: C, 58, 194-203, 2016.
  • Haro Durand, L. A., Góngora, A., López, J. M. P., Boccaccini, A. R., Zago, M. P., Baldi, A., Gorustovich, A., In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system, Journal of Materials Chemistry B, 2(43), 7620-7630, 2014.
  • Haro Durand, L. A., Vargas, G. E., Romero, N. M., Vera-Mesones, R., Porto-López, J. M., Boccaccini, A. R., Zago, M. P., Baldi, A., Gorustovich, A., Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass, Journal of Materials Chemistry B, 3(6), 1142-1148, 2015.
  • Liang, W., Rüssel, C., Day, D. E.,Völksch, G., Bioactive comparison of a borate, phosphate and silicate glass, Journal of Materials Research, 21(01), 125-131, 2006.
  • Liang, W., Tu, Y., Zhou, H., Liu, C., Rüssel, C., Borophosphate glass-ceramic scaffolds by a sodium silicate bonding process, Journal of Non-Crystalline Solids, 357(3), 958-962, 2011.
  • Mantsos, T., Chatzistavrou, X., Roether, J. A., Hupa, L., Arstila, H. Boccaccini, A. R., Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly (D, L-lactic acid) coatings, Biomedical Materials, 4(5), 055002, 2009.
  • Liu, X., Pan, H., Fu, H., Fu, Q., Rahaman, M. N., & Huang, W., Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution, Biomedical Materials, 5(1), 015005, 2010.
  • Pu, Y., Huang, Y., Qi, S., Chen, C., Seo, H. J., In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics, Materials Science and Engineering: C, 55, 126-130, 2015.
  • Wu, C., Miron, R., Sculean, A., Kaskel, S., Doert, T., Schulze, R., Zhang, Y., Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds, Biomaterials, 32(29), 7068-7078, 2011.
Year 2016, Volume: 1 Issue: 1, 6 - 14, 24.03.2016

Abstract

References

  • Williams, D. F., On the nature of biomaterials, Biomaterials, 30(30), 5897-5909, 2009.
  • Hench, L. L., Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74(7), 1487-1510, 1991.
  • Ito, A., Ohgushi, H., “Encyclopedia of Biomaterials and Biomedical Engineering”, Calcium Phosphate Ceramics: New Generation Produced in Japan, Informa Healthcare Inc., USA, 461-469, 2008.
  • Tanaka, Y., & Yamashita, K. “Bioceramics and their clinical applications”, Fabrication processes for bioceramics, Cambridge: Woodhead Publishing Limited, England, 28-52, 2008.
  • Bohner, M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements, Injury, 31, D37-D47, 2000.
  • Albee, F. H., Studies in bone growth: triple calcium phosphate as a stimulus to osteogenesis. Annals of Surgery, 71(1), 32, 1920.
  • Ray, R. D., Degge, J., Gloyd, P., Mooney, G. A. R. T. H., Bone regeneration. The Journal of Bone & Joint Surgery, 34(3), 638-647, 1952.
  • Furlong, R. J., & Osborn, J. F, Fixation of hip prostheses by hydroxyapatite ceramic coatings, Journal of Bone & Joint Surgery, British Volume, 73(5), 741-745, 1991.
  • Brown, W. E., Chow, L. C., Dental Restorative Cement Pastes. US patent No. 4, 518, 430, May 21, 1985.
  • Dorozhkin, S. V., Bioceramics of calcium orthophosphates, Biomaterials, 31(7), 1465-1485, 2010.
  • Bronner, F., “Principles of Bone Biology”, Chap.25: Metals in bone: aluminum, boron, cadmium, chromium, lead, silicon, and strontium, Academic, San Diego, 295-303, 1996.
  • Hughes, J. M., & Rakovan, J., The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl), Reviews in Mineralogy and Geochemistry, 48(1), 1-12, 2002.
  • Ternane, R., Cohen-Adad, M. T., Boulon, G., Florian, P., Massiot, D., Trabelsi-Ayedi, M., Kbir-Ariguib, N. Synthesis and characterization of new oxyboroapatite. Investigation of the ternary system CaO–P2O5–B2O3, Solid State Ionics, 160(1), 183-195, 2003.
  • Wopenka, B., Pasteris, J. D., A mineralogical perspective on the apatite in bone. Materials Science and Engineering: C, 25(2), 131-143, 2005.
  • Vallet-Regi, M., González-Calbet, J. M., Calcium phosphates as substitution of bone tissues, Progress in Solid State Chemistry, 32(1), 1-31, 2004.
  • Lloyd, J. D., Borates and their biological applications, The International Research Group on Wood Preservation. Doc IRG/WP, 98-30178, 1998.
  • Woods, W. G., An introduction to boron: history, sources, uses, and chemistry. Environmental health perspectives, 102(Suppl 7), 5, 1994.
  • Carrano, C. J., Schellenberg, S., Amin, S. A., Green, D. H., Küpper, F. C., Boron and marine life: a new look at an enigmatic bioelement, Marine Biotechnology, 11(4), 431-440, 2009.
  • Hunter, P., Not boring at all, EMBO reports, 10(2), 125-128, 2009.
  • Nielsen, F. H., Is boron nutritionally relevant?, Nutrition Reviews, 66(4), 183-191, 2008.
  • Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A., Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics, Trends in Biotechnology, 31(10), 594-605, 2013.
  • Dzondo-Gadet, M., Mayap-Nzietchueng, R., Hess, K., Nabet, P., Belleville, F., Dousset, B., Action of boron at the molecular level, Biological Trace Element Research, 85(1), 23-33, 2002.
  • Lakhkar, N. J., Lee, I. H., Kim, H. W., Salih, V., Wall, I. B., Knowles, J. C., Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses. Advanced Drug Delivery Reviews, 65(4), 405-420, 2013.
  • Chapin, R. E., Ku, W. W., Kenney, M. A., McCoy, H., The effects of dietary boric acid on bone strength in rats. Biological Trace Element Research,66(1-3), 395-399, 1998.
  • Moseman, R. F., Chemical disposition of boron in animals and humans, Environmental Health Perspectives, 102 (Suppl 7), 113, 1994.
  • Trumbo, P., Yates, A. A., Schlicker, S., Poos, M., Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. National Academy Press, Washington, 510-521, 2001.
  • Meacham, S. L., Taper, L. J., Volpe S. L., Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes, Environmental Health Perspectives, 102(Suppl 7), 79-82, 1994.
  • Nielsen, F. H., Stoecker, B. J., Penland, J. G. “Advances in Plant and Animal Boron Nutrition”, Boron as a dietary factor for bone microarchitecture and central nervous system function, Springer Netherlands, 277-290, 2007.
  • Nielsen, F. H., Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats, Biofactors, 20(3), 161-171, 2004.
  • Gorustovich, A. A., Steimetz, T., Nielsen, F. H., Guglielmotti, M. B., A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Archives of Oral Biology, 53(7), 677-682, 2008.
  • Hakki, S. S., Dundar, N., Kayis, S. A., Hakki, E. E., Hamurcu, M., Kerimoglu, U., Baspinar, N., Basoglu, A., Nielsen, F. H., Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 27(2), 148-153. (2013).
  • Uysal, T., Ustdal, A., Sonmez, M. F., Ozturk, F., Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, Angle Orthodontist, 79(5), 984-990, 2009.
  • Armstrong, T. A., Flowers, W. L., Spears, J. W., Nielsent, F. H., Long-term effects of boron supplementation on reproductive characteristics and bone mechanical properties in gilts, Journal of Animal Science, 80(1), 154-161, 2002.
  • Hakki, S. S., Bozkurt, B. S., Hakki, E. E., Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1), Journal of Trace Elements in Medicine and Biology, 24(4), 243-250, 2010.
  • Gümüşderelioğlu, M., Tunçay, E. Ö., Kaynak, G., Demirtaş, T. T., Aydın, S. T., Hakkı, S. S., Encapsulated boron as an osteoinductive agent for bone scaffolds, Journal of Trace Elements in Medicine and Biology, 31, 120-128, 2015.
  • Hayakawa, S., Sakai, A., Tsuru, K., Osaka, A., Fujii, E., Kawabata, K., Jaeger, C., Preparation and characterization of boron-containing hydroxyapatite, Key Engineering Materials, 361-363, 191-194, 2008.
  • Barheine, S., Hayakawa, S., Osaka, A., Jaeger, C., Surface, interface, and bulk structure of borate containing apatitic biomaterials, Chemistry of Materials, 21(14), 3102-3109, 2009.
  • Ternane, R., Cohen-Adad, M. T., Panczer, G., Goutaudier, C., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Florian P., Massiot, D., Introduction of boron in hydroxyapatite: synthesis and structural characterization, Journal of Alloys and Compounds, 333(1), 62-71, 2002.
  • Barheine, S., Hayakawa, S., Jäger, C., Shirosaki, Y., Osaka, A. Effect of Disordered Structure of Boron‐Containing Calcium Phosphates on their In Vitro Biodegradability, Journal of the American Ceramic Society, 94(8), 2656-2662, 2011.
  • Güler, H., Gündoğmaz, G., Kurtuluş, F., Çelik, G., Gacanoğlu, Ş. S., Solid state synthesis of calcium borohydroxyapatite, Solid State Sciences, 13(11), 1916-1920, 2011.
  • AlHammad, M. S., Nanostructure hydroxyapatite based ceramics by sol gel method, Journal of Alloys and Compounds, 661, 251-256, 2016.
  • Albayrak O., Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment, Materials Characterization, 2016, doi: 10.1016/j.matchar.2016.01.006
  • Ternane, R., Panczer, G., Cohen-Adad, M. T., Goutaudier, C., Boulon, G., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Relationships between structural and luminescence properties in Eu3+-doped new calcium borohydroxyapatite, Optical Materials, 16(1), 291-300, 2001.
  • Ternane, R., Cohen-Adad, M. T., Panczer, G., Goutaudier, C., Dujardin, C., Boulon, G., Kbir-Ariguib, N., Trabelsi-Ayedi, M., Structural and luminescent properties of new Ce3+ doped calcium borophosphate with apatite structure, Solid State Sciences, 4(1), 53-59, 2002.
  • Çiftçi, E., Köse, S., Korkusuz, P., Timuçin, M., Korkusuz, F., Boron Containing Nano Hydroxyapatites (Bn-HAp) Stimulate Mesenchymal Stem Cell Adhesion, Proliferation and Differentiation, Key Engineering Materials, 631, 2014.
  • Ali, D., Sen, S., Finite Element Analysis of the Effect of Boron Nitride Nanotubes in Beta Tricalcium Phosphate and Hydroxyapatite Elastic Modulus Using the RVE Model, Composites Part B, 2016, doi: 10.1016/j.compositesb.2016.01.003.
  • Atila, A., Halici, Z., Cadirci, E., Karakus, E., Palabiyik, S. S., Ay, N., Bakan, F., Yilmaz, S., Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxyapatite in rat femurs. Materials Science and Engineering: C, 58, 1082-1089, 2016.
  • Hadj Youssef, N., Belkhiria, M. S., Videau, J. J., Ben Amara, M., Investigation of the physico-chemical properties of calcium borophosphate glasses. Effect of the substitution of sodium for calcium, Materials Letters, 44(5), 269-274, 2000.
  • Massera, J., Shpotyuk, Y., Sabatier, F., Jouan, T., Boussard-Plédel, C., Roiland, C., Bureau, B., Petit, L., Boetti, N. G., Milanese, D., Hupa, L. Processing and characterization of novel borophosphate glasses and fibers for medical applications. Journal of Non-Crystalline Solids, 425, 52-60, 2015.
  • Ducel, J. F., Videau, J. J., Effect of additional calcium hydroxyapatite on sodium borophosphate glasses: physical and chemical characterizations, Materials Letters, 18(1), 69-72, 1993.
  • Ciceo-Lucacel, R., Radu, T., Ponta, O., Simon, V., Novel selenium containing boro-phosphate glasses: Preparation and structural study. Materials Science and Engineering: C, 39, 61-66, 2014.
  • Erol, M. M., Mouriňo, V., Newby, P., Chatzistavrou, X., Roether, J. A., Hupa, L., Boccaccini, A. R., Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering, Acta Biomaterialia, 8(2), 792-801, 2012.
  • Wang, H., Zhao, S., Xiao, W., Xue, J., Shen, Y., Zhou, J., Huang, W., Rahaman, M.N., Zhang, C., Wang, D, Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds, Materials Science and Engineering: C, 58, 194-203, 2016.
  • Haro Durand, L. A., Góngora, A., López, J. M. P., Boccaccini, A. R., Zago, M. P., Baldi, A., Gorustovich, A., In vitro endothelial cell response to ionic dissolution products from boron-doped bioactive glass in the SiO2–CaO–P2O5–Na2O system, Journal of Materials Chemistry B, 2(43), 7620-7630, 2014.
  • Haro Durand, L. A., Vargas, G. E., Romero, N. M., Vera-Mesones, R., Porto-López, J. M., Boccaccini, A. R., Zago, M. P., Baldi, A., Gorustovich, A., Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass, Journal of Materials Chemistry B, 3(6), 1142-1148, 2015.
  • Liang, W., Rüssel, C., Day, D. E.,Völksch, G., Bioactive comparison of a borate, phosphate and silicate glass, Journal of Materials Research, 21(01), 125-131, 2006.
  • Liang, W., Tu, Y., Zhou, H., Liu, C., Rüssel, C., Borophosphate glass-ceramic scaffolds by a sodium silicate bonding process, Journal of Non-Crystalline Solids, 357(3), 958-962, 2011.
  • Mantsos, T., Chatzistavrou, X., Roether, J. A., Hupa, L., Arstila, H. Boccaccini, A. R., Non-crystalline composite tissue engineering scaffolds using boron-containing bioactive glass and poly (D, L-lactic acid) coatings, Biomedical Materials, 4(5), 055002, 2009.
  • Liu, X., Pan, H., Fu, H., Fu, Q., Rahaman, M. N., & Huang, W., Conversion of borate-based glass scaffold to hydroxyapatite in a dilute phosphate solution, Biomedical Materials, 5(1), 015005, 2010.
  • Pu, Y., Huang, Y., Qi, S., Chen, C., Seo, H. J., In situ hydroxyapatite nanofiber growth on calcium borate silicate ceramics in SBF and its structural characteristics, Materials Science and Engineering: C, 55, 126-130, 2015.
  • Wu, C., Miron, R., Sculean, A., Kaskel, S., Doert, T., Schulze, R., Zhang, Y., Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds, Biomaterials, 32(29), 7068-7078, 2011.
There are 61 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Bengi Yılmaz

Zafer Evis

Publication Date March 24, 2016
Published in Issue Year 2016 Volume: 1 Issue: 1

Cite

APA Yılmaz, B., & Evis, Z. (2016). Boron-Substituted Bioceramics: A Review. Journal of Boron, 1(1), 6-14.

© 2016 All Rights Reserved
TENMAK Boron Research Institute