A method of microwave assisted synthesis of a new surfactant family whose hydrophilic head is derived from the ethanolamine adduct of boric acid containing polar –NR-B(OH)2 , -O-B(OH)2, and (OH)3B→NR-. These compounds were synthesized in two steps. First the boric acid adduct was prepared by reacting ethylene diamine with boric acid and then the adduct was reacted with alkenyl succinic anhydride. The product with boronated alkanol amine showed good yields (>90%). Both reaction steps were carried out by microwave. Boron NMR suggests that probably Boron is mostly in –O-B(OH)2 form (~80%), about 13% as (OH)3B→NR-(CH2)2-O-B(OH)2, and approximately 7% in the form of (OH)2B-NR-[(CH2)2-OH]2. The product apparently exhibited good detergency. Parameters characterizing their surface activity (critical micelle concentration, surface tension, and molecular area at the water−air interface) was studied with the dodecenyl succinic anhydride derivative of the Boronated diethanolamine adduct. The compounds show promise for use in organized molecular systems. By altering the hydrocarbon chain length of alkenyl succinic anhydride, the derivatives can be either water or solvent soluble. Hexadecenyl succinic anhydride derivatives are highly oil-soluble, whereas the dodecenyl succinic acid anhydride derivative is primarily water soluble. Total B2O3 content in the product is approximately 12.4%. Besides their surface activity, this series of products have a great potential for treating wood for antifungal and anti-termite properties.
Primary Language | English |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | March 24, 2016 |
Published in Issue | Year 2016 Volume: 1 Issue: 1 |
Journal of Boron by Turkish Energy Nuclear Mineral Research Agency is licensed under CC BY-NC-SA 4.0