BibTex RIS Cite
Year 2016, Volume: 1 Issue: 2, 110 - 117, 09.09.2016

Abstract

References

  • McCabe W. L., Smith J. C., Harriot P., Unit Operations of Chemical Engineering, 4th edition, McGraw-Hill, New York, 1985.
  • Özdural A. R., Modeling Chromatographic Separation, In: Murray Moo-Young, editor. Comprehensive Biotechnology, 2nd edition, Volume 2, Elsevier, 681–695, 2011.
  • Sewell P., Clarke B., Chromatographic Separations, Wiley, New York, 1988.
  • Jonsson J. A., Chromatographic Theory and Basic Principles, Marcel Dekker, New York, 1987.
  • Braithwaite A., Smith F. J., Chromatographic Methods, 5th edition, Blackie, London, 1996.
  • Skoog D. A., West D. M., Holler F. J., Crouch S. R., Fundamentals of Analytical Chemistry, 8th edition, Thomson-Brooks Cole: Belmont, 2003.
  • Costa C., Rodrigues A., Intraparticle diffusion of phenol in macro reticular adsorbents: Modelling and experimental study of batch and CSTR adsorber, Chemical Engineering Science, 40, 983-993, 1985.
  • Costa C., Rodrigues A., Design of cyclic fixed-bed adsorption processes. Part I: Phenol adsorption on polymeric adsorbents, AIChE Journal, 31, 1645-1654, 1985.
  • Rodrigues A.E., Lu Z.P., Loureiro J.M., Carta G., Peak Resolution in Linear Chromatography: Effects of Intraparticle Convection, Journal of Chromatography A, 653, 189-198, 1993.
  • Hong L., Felinger A., Kaczmarski K., Guiochon G., Measurement of intraparticle diffusion in reversed phase liquid chromatography, Chemical Engineering Science, 59, 3399-3412, 2004.
  • Kaczmarski K., Gritti F., Guiochon G., Thermodynamics and mass transfer kinetics of phenol in reversed phase liquid chromatography, Chemical Engineering Science, 61, 5895-5906, 2006.
  • Samsonov G.V., El’kin G.E., Atabekjan T.V., Melenevsky A.T., Intraparticle and film diffusion control in the preparative ion-exchange chromatography. Reactive and Functional Polymers, 38, 151-155, 1998.
  • Guiochon G., Felinger A., Shirazi D.G.G., Katti AM., Fundamentals of Preparative and Nonlinear Chromatography, 2nd edition, Elsevier , Amsterdam, 2006.
  • Guiochon G., Preparative liquid chromatography, Journal of Chromatography A, 965, 129-161, 2002.
  • Guiochon G., Golshan-Shirazi S., Katti AM., Fundamentals of Preparative and Non-linear Chromatography, Academic Press, Boston, MA, 1994.
  • Phillips M.W., Subramanian G., Cramer SM., Theoretical optimization of operating parameters in non-ideal displacement chromatography, Journal of Chromatography, 454, 1-21, 1988.
  • Golshan-Shirazi S., Lin B., Guiochon G., Effect of mass-transfer kinetics on the elution of a binary mixture in nonlinear liquid chromatography, Journal of Physical Chemistry, 93, 6871-6880, 1989.
  • Cooney, D.O., Determining external film mass transfer coefficients for adsorption columns, AIChE Journal, 37, 1274, 1991.
  • Berninger AJ., Whitley R.D., Zhang X., Wang N.H.L., A versatile model for simulation of reaction and nonequilibrium dynamics in multi component fixed-bed adsorption processes. Computers and Chemical Engineering, 15, 749-768, 1991.
  • Suzuki M., Adsorption Engineering. Elsevier, Amsterdam, 1990.
  • Ruthven D.M., Principles of Adsorption and Adsorption Process, Wiley, New York, 1984.
  • Heeter G.A., Liapis A.I., Frontal chromatography of proteins, Effect of axial dispersion on column performance, Journal of Chromatography A, 796 (1), 157164, 1998.
  • Carta, G. Cincotti A., Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, 53 (19), 34833488, 1998.
  • Kempe H., Axelsson A., Nilsson B., Zacchi G., Simulation of chromatographic processes applied to separation of proteins, Journal of Chromatography A, 846 (1-2), 1-12, 1999.
  • Rutherford S. W., Do D. D., Adsorption dynamics of carbon dioxide on a carbon molecular sieve 5A, Carbon, 38 (9), 1339-1350, 2000.
  • Morbidelli M., Servida A., Storti G., Carra S., Simulation of multi component adsorption beds. Model analysis and numerical solution, Industrial & Engineering Chemistry Fundamentals, 21, 123-131, 1982.
  • Morbidelli M., Storti G., Carra S., Niederjaufner G., Pontoglio A., Study of a Separation Process Through Adsorption on Molecular Sieves, Application to a Chlorotoluene Isomers Mixture, Chemical Engineering Science, 39, 383-393, 1984.
  • Özdural A. R., Alkan A., Kerkhof P. A. J. M., Modeling chromatographic columns: Non-equilibrium packedbed adsorption with non-linear adsorption isotherms, Journal of Chromatography A, 1041, 77-85, 2004.
  • Coppola A. P., Levan M. D, Adsorption with axial diffusion in shallow beds, Chemical Engineering Science, 38 (7), 991-997, 1983.
  • Frey D. D., Narahari C. R., Butler C. D., General local-equilibrium chromatographic theory for eluents containing adsorbing buffers, AIChE Journal, 48 (3), 561-571, 2002.
  • Ritter J. A., Yang R. T., Equilibrium theory for hysteresis-dependent fixed-bed desorption, Chemical Engineering Science, 46 (2), 563-574, 1991.
  • Carta, G. Cincotti A., Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, 53 (19), 34833488, 1998.
  • Heeter G. A., Liapis A.I., Frontal chromatography of proteins, Effect of axial dispersion on column performance, Journal of Chromatography A, 796 (1), 157164, 1998.

Determination of mass transfer coefficients of 10B and 11B isotopes on chelating and weak base anion exchange resins

Year 2016, Volume: 1 Issue: 2, 110 - 117, 09.09.2016

Abstract

Abstract

The successful design and the operation of chromatographic separations require the optimization of a large number of parameters which affect the separation in a usually nonlinear and interacting fashion. Additionally, modeling studies of chromatographic separations allow prediction of the dynamic behavior of the solute in the column against different operating alternatives without experimental effort, as well as scaling up the separation process. Thus the model based understanding of chromatographic separation, largely prevents the inconveniences of experimenting with the real process whether the operation is batch or continuous. There are several models to be used for chromatographic separations whether it is at the analytical scale or at the preparative/production scale, including the ideal model, the equilibrium dispersive model, the transport dispersive model and the general rate (GR) model. The GR model is widely acknowledged as being the most comprehensive among the chromatography models available in the literature as it accounts for axial dispersion and all the mass transfer resistances, e.g. external mass transfer of solute molecules from bulk phase to the external surface of the adsorbent, diffusion of the solute molecules through the particle, and adsorption-desorption processes on the site of the particles. In this study the mass transfer resistances of 10B and 11B isotopes are determined for chelating resin of different particle diameter and weak base anion exchange resin.

Keywords: Mass Transfer Resistances, General Rate Model, Boron Isotopes, Chelating Resin, Weak Base Anion Exchange Resin

References

  • McCabe W. L., Smith J. C., Harriot P., Unit Operations of Chemical Engineering, 4th edition, McGraw-Hill, New York, 1985.
  • Özdural A. R., Modeling Chromatographic Separation, In: Murray Moo-Young, editor. Comprehensive Biotechnology, 2nd edition, Volume 2, Elsevier, 681–695, 2011.
  • Sewell P., Clarke B., Chromatographic Separations, Wiley, New York, 1988.
  • Jonsson J. A., Chromatographic Theory and Basic Principles, Marcel Dekker, New York, 1987.
  • Braithwaite A., Smith F. J., Chromatographic Methods, 5th edition, Blackie, London, 1996.
  • Skoog D. A., West D. M., Holler F. J., Crouch S. R., Fundamentals of Analytical Chemistry, 8th edition, Thomson-Brooks Cole: Belmont, 2003.
  • Costa C., Rodrigues A., Intraparticle diffusion of phenol in macro reticular adsorbents: Modelling and experimental study of batch and CSTR adsorber, Chemical Engineering Science, 40, 983-993, 1985.
  • Costa C., Rodrigues A., Design of cyclic fixed-bed adsorption processes. Part I: Phenol adsorption on polymeric adsorbents, AIChE Journal, 31, 1645-1654, 1985.
  • Rodrigues A.E., Lu Z.P., Loureiro J.M., Carta G., Peak Resolution in Linear Chromatography: Effects of Intraparticle Convection, Journal of Chromatography A, 653, 189-198, 1993.
  • Hong L., Felinger A., Kaczmarski K., Guiochon G., Measurement of intraparticle diffusion in reversed phase liquid chromatography, Chemical Engineering Science, 59, 3399-3412, 2004.
  • Kaczmarski K., Gritti F., Guiochon G., Thermodynamics and mass transfer kinetics of phenol in reversed phase liquid chromatography, Chemical Engineering Science, 61, 5895-5906, 2006.
  • Samsonov G.V., El’kin G.E., Atabekjan T.V., Melenevsky A.T., Intraparticle and film diffusion control in the preparative ion-exchange chromatography. Reactive and Functional Polymers, 38, 151-155, 1998.
  • Guiochon G., Felinger A., Shirazi D.G.G., Katti AM., Fundamentals of Preparative and Nonlinear Chromatography, 2nd edition, Elsevier , Amsterdam, 2006.
  • Guiochon G., Preparative liquid chromatography, Journal of Chromatography A, 965, 129-161, 2002.
  • Guiochon G., Golshan-Shirazi S., Katti AM., Fundamentals of Preparative and Non-linear Chromatography, Academic Press, Boston, MA, 1994.
  • Phillips M.W., Subramanian G., Cramer SM., Theoretical optimization of operating parameters in non-ideal displacement chromatography, Journal of Chromatography, 454, 1-21, 1988.
  • Golshan-Shirazi S., Lin B., Guiochon G., Effect of mass-transfer kinetics on the elution of a binary mixture in nonlinear liquid chromatography, Journal of Physical Chemistry, 93, 6871-6880, 1989.
  • Cooney, D.O., Determining external film mass transfer coefficients for adsorption columns, AIChE Journal, 37, 1274, 1991.
  • Berninger AJ., Whitley R.D., Zhang X., Wang N.H.L., A versatile model for simulation of reaction and nonequilibrium dynamics in multi component fixed-bed adsorption processes. Computers and Chemical Engineering, 15, 749-768, 1991.
  • Suzuki M., Adsorption Engineering. Elsevier, Amsterdam, 1990.
  • Ruthven D.M., Principles of Adsorption and Adsorption Process, Wiley, New York, 1984.
  • Heeter G.A., Liapis A.I., Frontal chromatography of proteins, Effect of axial dispersion on column performance, Journal of Chromatography A, 796 (1), 157164, 1998.
  • Carta, G. Cincotti A., Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, 53 (19), 34833488, 1998.
  • Kempe H., Axelsson A., Nilsson B., Zacchi G., Simulation of chromatographic processes applied to separation of proteins, Journal of Chromatography A, 846 (1-2), 1-12, 1999.
  • Rutherford S. W., Do D. D., Adsorption dynamics of carbon dioxide on a carbon molecular sieve 5A, Carbon, 38 (9), 1339-1350, 2000.
  • Morbidelli M., Servida A., Storti G., Carra S., Simulation of multi component adsorption beds. Model analysis and numerical solution, Industrial & Engineering Chemistry Fundamentals, 21, 123-131, 1982.
  • Morbidelli M., Storti G., Carra S., Niederjaufner G., Pontoglio A., Study of a Separation Process Through Adsorption on Molecular Sieves, Application to a Chlorotoluene Isomers Mixture, Chemical Engineering Science, 39, 383-393, 1984.
  • Özdural A. R., Alkan A., Kerkhof P. A. J. M., Modeling chromatographic columns: Non-equilibrium packedbed adsorption with non-linear adsorption isotherms, Journal of Chromatography A, 1041, 77-85, 2004.
  • Coppola A. P., Levan M. D, Adsorption with axial diffusion in shallow beds, Chemical Engineering Science, 38 (7), 991-997, 1983.
  • Frey D. D., Narahari C. R., Butler C. D., General local-equilibrium chromatographic theory for eluents containing adsorbing buffers, AIChE Journal, 48 (3), 561-571, 2002.
  • Ritter J. A., Yang R. T., Equilibrium theory for hysteresis-dependent fixed-bed desorption, Chemical Engineering Science, 46 (2), 563-574, 1991.
  • Carta, G. Cincotti A., Film model approximation for non-linear adsorption and diffusion in spherical particles, Chemical Engineering Science, 53 (19), 34833488, 1998.
  • Heeter G. A., Liapis A.I., Frontal chromatography of proteins, Effect of axial dispersion on column performance, Journal of Chromatography A, 796 (1), 157164, 1998.
There are 33 citations in total.

Details

Journal Section Research Article
Authors

Gonca Sağlam This is me

Zeynep Aktosun This is me

Gülşah Özçelik This is me

Ahmet Rıfat Özdural This is me

Publication Date September 9, 2016
Published in Issue Year 2016 Volume: 1 Issue: 2

Cite

APA Sağlam, G., Aktosun, Z., Özçelik, G., Özdural, A. R. (2016). Determination of mass transfer coefficients of 10B and 11B isotopes on chelating and weak base anion exchange resins. Journal of Boron, 1(2), 110-117.