Review
BibTex RIS Cite

Review on magnesium diboride (MgB2) as excellent superconductor: Effects of the production techniques on the superconducting properties

Year 2017, Volume: 2 Issue: 2, 87 - 96, 25.09.2017

Abstract

Although there is
a wide variety of superconducting materials, only a few of them are suitable
for practical applications. Nowadays, low temperature superconductors such as
NbTi and Nb3Sn are widely used. However, after discovery of MgB2
with its considerably high critical temperature which has a simple crystal
structure and cheap raw materials used in its production, renewed interests
have emerged for employing MgB2 in commercial application as well.



This study reports
on the effects of production techniques on the superconducting properties of
magnesium diboride and includes an introduction to MgB2, its crystal
and electronic structure and basics of superconducting properties. The production
techniques would be explained as well as the probable problems during process
and the way for optimizing superconducting property of MgB2. Furthermore,
the improvement of superconducting properties by oxygen reduction, doping
elements as well as introducing of defects are covered. Finally, effects of
starting materials and studies done by our research team in this regard are
mentioned.

References

  • [1] Ma Z., Liu Y., Shi Q., Zhao Q., Gao, Z., Effect of Cu addition in reduction of MgO content for the synthesis of MgB2 through Sintering, J. Alloys Compd., 471 (1–2), 105–108, 2009.
  • [2] Russell V., Hirst R., Kanda F. A., King, A. J., An X-Ray study of the magnesium borides, Acta Crystallogr., 6 (11–12), 870, 1953.
  • [3] Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y., Akimitsu J., Superconductivity at 39K in magnesium diboride, Nature, 410 (6824), 63–64, 2001.
  • [4] Flükiger R., MgB2 Superconducting Wires Basics and Applications, Word Scientific ,2nd edition, Geneva, Switzerland, 2016.
  • [5] McMillan W. L., Transition temperature of strong-coupled superconductors, Phys. Rev., 167 (2), 331–344, 1968.
  • [6] Barua S., Hossain M. S., Al Ma Z., Patel D., Mustapic M., Somer M., Acar S., et al., Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder, Scr. Mater., 104, 37–40, 2015.
  • [7] Cheng F., Liu Y., Ma Z., Hossain M. S. Al, Somer, M., Sintering process and critical current density of low activation Mg1.1B2 superconductors from low temperature to high temperature, Phys. C Supercond. its Appl., 527, 9–13, 2016.
  • [8] Buzea C., Yamashita T., Review of the superconducting properties of MgB2, Supercond. Sci. Technol., 14 (11), R115–R146, 2001.
  • [9] Finnemore D. K., Ostenson J. E., Bud’ko S. L., Lapertot G., Canfield P. C., , Thermodynamic and transport properties of superconducting MgB2, Phys. Rev. Lett., 86 (11), 2420–2422, 2001.
  • [10] Bud’ko S. L., Lapertot G., Petrovic C., Cunningham C. E., Anderson N., Canfield P. C., Boron isotope effect in superconducting MgB2, Phys. Rev. Lett., 86 (9), 1877–1880, 2001.
  • [11] Kortus J., Mazin I. I., Belashchenko K. D., Antropov V. P., Boyer L. L., Superconductivity of metallic boron in MgB2, Phys. Rev. Lett., 86 (20), 4656–4659, 2001.
  • [12] An J. M., Pickett W. E., Superconductivity of MgB2 covalent bonds driven metallic, Phys. Rev. Lett., 86 (19), 4366–4369, 2001. [13] Bugoslavsky Y., Perkins G. K., Qi X., Cohen L. F., Caplin A. D., Vortex dynamics in superconducting MgB2 and prospects for applications, Nature, 410 (6828), 563–565, 2001.
  • [14] Larbalestier D. C., Cooley L. D., Rikel M. O., Polyanskii A. A., Jiang J., Patnaik S., Cai X. Y., et al., Strongly Linked Current Flow in Polycrystalline Forms of the Superconductor MgB2, Nature, 410 (6825), 186–189, 2001.
  • [15] Slusky J. S., Rogado N., Regan K. A., Hayward M. A., Khalifah P., He T., Inumaru K., et al., Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xAlxB2, Nature, 410 (6826), 343–345, 2001.
  • [16] Monteverde M., Núñez-Regueiro M., Rogado N., Regan K. A., Hayward M. A., He T., Loureiro, S. M., and Cava, R. J., Pressure dependence of the superconducting transition temperature of magnesium diboride, Science (80-. ), 292 (5514), 75–77, 2001.
  • [17] Nishibori E., Takata M., Sakata M., Tanaka H., Muranaka T., Akimitsu J., Bonding nature in MgB2, J. Phys. Soc. Japan, 70 (8), 2252–2254, 2001.
  • [18] Takahashi T., Sato T., Souma S., Muranaka T., Akimitsu J., High-resolution photoemission study of MgB2, Phys. Rev. Lett., 86 (21), 4915–4917, 2001.
  • [19] Karapetrov G., Iavarone M., Kwok W. K., Crabtree G. W., Hinks D. G., Scanning tunneling spectroscopy in MgB2, Phys. Rev. Lett., 86 (19), 4374–4377, 2001.
  • [20] Osborn R., Goremychkin E. A., Kolesnikov A. I., Hinks D. G., Phonon density of states in MgB2, Phys. Rev. Lett., 87 (1), 17005, 2001.
  • [21] Collings E. W., Sumption M. D., Bhatia M., Susner M. A., Bohnenstiehl, S. D., Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands, Supercond. Sci. Technol., 21 (10), 103001, 2008.
  • [22] Prikhna T. A., Properties of MgB2 bulk, 45, 2009.
  • [23] Gao Z., Ma Y., Zhang X., Wang D., Yu Z., Yang H., Wen H., Mossang E., Enhancement of the critical current density and the irreversibility field in maleic anhydride doped MgB2 Based Tapes, J. Appl. Phys., 102 (1), 13914, 2007.
  • [24] Ghorbani S. R., Farshidnia G., Wang X. L., Dou S. X., Flux pinning mechanism in SiC and nano-C doped MgB2 : Evidence for transformation from δTc to δℓ pinning, Supercond. Sci. Technol., 27 (12), 125003, 2014.
  • [25] Kováč P., Hušek I., Melišek T., Grivel J. C., Pachla W., Štrbík V., Diduszko R., et al., The role of MgO content in ex situ MgB2 wires, Supercond. Sci. Technol., 17 (10), L41, 2004.
  • [26] Susner M. A., Influences of crystalline anisotropy, doping, porosity, and connectivity on the critical current densities of superconducting magnesium diboride bulks, wires, and thin films, 2012.
  • [27] Kumakura H., Kitaguchi H., Matsumoto A., Hatakeyama, H., Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors, Appl. Phys. Lett., 84 (18), 3669–3671, 2004.
  • [28] Chen S. K., Lockman Z., Wei M., Glowacki B. A., MacManus-Driscoll, J. L., Improved current densities in MgB2 by liquid-assisted sintering, Appl. Phys. Lett., 86 (24), 242501, 2005.
  • [29] Maeda M., Zhao Y., Dou S. X., Nakayama Y., Kawakami T., Kobayashi H., Kubota Y., Fabrication of highly dense MgB2 bulk at ambient pressure, Supercond. Sci. Technol., 21 (3), 32004, 2008.
  • [30] Senkowicz B. J., Polyanskii A., Mungall R. J., Zhu Y., Giencke J. E., Voyles P. M., Eom C. B., et al., Understanding the route to high critical current density in mechanically alloyed Mg(B1− xCx )2, Supercond. Sci. Technol., 20 (7), 650, 2007. [31] Xu X., Kim J. H., Yeoh W. K., Zhang Y., Dou, S. X., Improved Jc of MgB2 superconductor by ball milling using different media, Supercond. Sci. Technol., 19 (11), L47, 2006.
  • [32] Choi E. M., Yurchenko V. V, Johansen T. H., Lee H.-S., Lee J. Y., Kang W. N., Lee S. I., Suppression of dendritic flux jumps in MgB2 films coated with a gold rim, Supercond. Sci. Technol., 22 (1), 15011, 2009.
  • [33] Moon S. H., Yun J. H., Lee H. N., Kye J. I., Kim H. G., Chung W., Oh B., High critical current densities in superconducting MgB2 thin films, Appl. Phys. Lett., 79 (15), 2429–2431, 2001.
  • [34] Karpinski J., Kazakov S. M., Jun J., Angst M., Puzniak R., Wisniewski A., Bordet, P., Single crystal growth of MgB2 and thermodynamics of Mg–B–N system at high pressure, Phys. C Supercond., 385 (1–2), 42–48, 2003.
  • [35] Grasso G., Malagoli A., Ferdeghini C., Roncallo S., Braccini V., Siri A. S., Cimberle M. R., Large transport critical currents in unsintered MgB2 superconducting tapes, Appl. Phys. Lett., 79 (2), 230–232, 2001.
  • [36] Schlachter S. I., Frank A., Ringsdorf B., Orschulko H., Obst B., Liu B., Goldacker W., Suitability of sheath materials for MgB2 powder-in-tube superconductors, Phys. C Supercond. its Appl., 445–448, 777–783, 2006.
  • [37] Soltanian S., Wang X. L., Li A. H., Collings E. W., Sumption M. D., Lee E., Liu H. K., Dou S. X., Fabrication and critical current density in 16-filament stainless steel/Fe/MgB2 square wire, Solid State Commun., 124 (1–2), 59–62, 2002.
  • [38] Flükiger R., Suo H. L., Musolino N., Beneduce C., Toulemonde P., Lezza P., Superconducting properties of MgB2 tapes and wires, Phys. C Supercond., 385 (1–2), 286–305, 2003.
  • [39] Sumption M. D., Bhatia M., Rindfleisch M., Tomsic M., Collings E. W., Transport properties of multifilamentary, in situ route, Cu-stabilized MgB2 strands: One metre segments and the Jc (B, T) dependence of short samples, Supercond. Sci. Technol., 19 (2), 155, 2006.
  • [40] Martínez E., Angurel L. A., Navarro R., Study of Ag and Cu/MgB2 powder-in-tube composite wires fabricated by in situ reaction at low temperatures, Supercond. Sci. Technol., 15 (7), 1043, 2002.
  • [41] Bellingeri E., Malagoli A., Modica M., Braccini V., Siri A. S., Grasso G., Neutron scattering studies of superconducting MgB2 tapes,” Supercond. Sci. Technol., 16 (2), 276, 2003.
  • [42] Canfield P. C., Finnemore D. K., Bud’ko S. L., Ostenson J. E., Lapertot G., Cunningham C. E., Petrovic C., Superconductivity in dense MgB2 wires, Phys. Rev. Lett., 86 (11), 2423–2426, 2001.
  • [43] Jin S., Mavoori H., Bower C., van Dover, R. B., High critical currents in iron-clad superconducting MgB2 wires, Nature, 411 (6837), pp. 563–565, 2001.
  • [44] Suo H., Beneduce C., Dhallé M., Musolino N., Genoud J.-Y., Flükiger R., Large transport critical currents in dense Fe- and Ni-Clad MgB2 superconducting tapes, Appl. Phys. Lett., 79 (19), 3116–3118, 2001.
  • [45] Takano Y., Takeya H., Fujii H., Kumakura H., Hatano T., Togano K., Kito H., Ihara H., Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering, Appl. Phys. Lett., 78 (19), 2914–2916, 2001.
  • [46] Kambara M., Babu N. H., Sadki E. S., Cooper J. R., Minami H., Cardwell D. A., Campbell A. M., Inoue I. H., High intergranular critical currents in metallic MgB2 superconductor, Supercond. Sci. Technol., 14 (4), L5, 2001.
  • [47] Grasso G., Malagoli A., Ferdeghini C., Roncallo S., Braccini V., Siri A. S., Cimberle M. R., Large transport critical currents in unsintered MgB2 superconducting tapes, Appl. Phys. Lett., 79 (2), 230–232, 2001.
  • [48] Kumakura H., Matsumoto A., Fujii H., Togano K., high transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes, Appl. Phys. Lett., 79 (15), 2435–2437, 2001.
  • [49] Soltanian S., Wang X. L., Kusevic I., Babic E., Li A. H., Qin M. J., Horvat J., et al., High-transport critical current density above 30 K in pure Fe-clad MgB2 tape, Phys. C Supercond. its Appl., 361 (2), 84–90, 2001.
  • [50] Kim J. H., Dou S. X., Wang J. L., Shi D. Q., Xu X., Hossain M. S. A., Yeoh W. K., Choi S., Kiyoshi T., The Effects of sintering temperature on superconductivity in MgB2 /Fe wires, Supercond. Sci. Technol., 20 (5), 448, 2007.
  • [51] Hon W. M., Ng D. H. L., Relationships between microstructure and superconducting behaviors of MgB2, J. Appl. Phys., 99 (8), 08M502, 2006.
  • [52] Shi Q., Liu Y., Gao Z., Zhao Q., Formation of MgO whiskers on the surface of bulk MgB2 superconductors during in situ sintering, J. Mater. Sci., 43 (4), 1438–1443, 2008.
  • [53] Soltanian S., Wang X., Horvat J., Qin M., Liu H., Munroe P. R., Dou, S. X., Effect of grain size and doping level of SiC on the superconductivity and critical current density in MgB2 superconductor, IEEE Trans. Appl. Supercond., 13 (2), 3273–3276, 2003.
  • [54] Perner O., Eckert J., Häßler W., Fischer C., Müller K.-H., Fuchs G., Holzapfel B., Schultz, L., Microstructure and impurity dependence in mechanically alloyed nanocrystalline MgB2 superconductors, Supercond. Sci. Technol., 17 (10), 1148, 2004.
  • [55] Jiang C. H., Hatakeyama H., Kumakura H., Effect of nanometer MgO addition on the in situ {PIT} processed MgB2/Fe tapes, Phys. C Supercond., 423 (1–2), 45–50, 2005.
  • [56] Singh D. K., Tiwari B., Jha R., Kishan H., Awana V. P. S., Role of MgO impurity on the superconducting properties of MgB2, Phys. C Supercond., 505, 104–108, 2014.
  • [57] Cui C., Liu D., Shen Y., Sun J., Meng F., Wang R., Liu S., et al., Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics, Acta Mater., 52 (20), 5757–5760, 2004.
  • [58] Cheng F., Liu Y., Ma Z., Shahriar Al Hossain M., Somer M., Improved superconducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering, Sci. Rep., 6, 25498, 2016.
  • [59] Fujii H., Ishitoya A., Itoh S., Ozawa K., Kitaguchi H., Effect of additions of Ca compounds to the filling powder on the reduction of MgO and the critical current density properties of ex situ processed MgB2 tapes, J. Alloys Compd., 664, pp. 650–656, 2016.
  • [60] Cimberle M. R., Novak M., Manfrinetti P., Palenzona A., Magnetic characterization of sintered MgB2 samples: effect of substitution or ‘doping’ with Li, Al and Si, Supercond. Sci. Technol., 15(1), 43, 2002.
  • [61] Profeta G., Continenza A., Massidda S., Phonon and electron-phonon renormalization in Al-doped MgB2, Phys. Rev. B, 68 (14), p. 144508, 2003.
  • [62] Mudgel M., Awana V. P. S., Lal R., Kishan H., Chandra L. S. S., Ganesan V., Narlikar A. V, Bhalla G. L., Anomalous thermoelectric power of the Mg1-x AlxB2 system with x=0.0–1.0, J. Phys. Condens. Matter, 20 (9), 95205, 2008.
  • [63] Berenov A., Serquis A., Liao X. Z., Zhu Y. T., Peterson D. E., Bugoslavsky Y., Yates K. A., et al., Enhancement of critical current density in low level Al-ddoped MgB2, Supercond. Sci. Technol., 17 (10), 1093, 2004. [64] Mudgel M., Chandra L. S. S., Ganesan V., Bhalla G. L., Kishan H., Awana V. P. S., Enhanced critical parameters of nano-carbon doped MgB2 superconductor, 2009.
  • [65] Zhao Y., Feng Y., Shen T. M., Li G., Yang Y., Cheng C. H., Cooperative doping effects of Ti and C on critical current density and irreversibility field of MgB2, J. Appl. Phys., 100 (12), 123902, 2006.
  • [66] Bateni A., Erdem E., Repp S., Weber S., Somer M., Al-doped MgB2 materials studied using electron paramagnetic resonance and raman spectroscopy, Appl. Phys. Lett., 108 (20), 202601, 2016.
  • [67] Zhao Y. G., Zhang X. P., Qiao P. T., Zhang H. T., Jia S. L., Zhu B. S. C. M. H., Han Z. H., et al., Effect of Li doping on structure and superconducting transition temperature of Mg1-xLixB2, 5, 2001.
  • [68] Kazakov S. M., Angst M., Karpinski J., Fita I. M., Puzniak, R., Substitution effect of Zn and Cu in MgB2 on Tc and structure, Solid State Commun., 119 (1), 1–5, 2001.
  • [69] Jemima Balaselvi S., Gayathri N., Bharathi A., Sastry V., Hariharan Y., Peculiarities in the carbon substitution of MgB2, Phys. C Supercond., 407 (1–2), 31–38, 2004.
  • [70] Gurevich A., Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B, 67 (18), 184515, 2003.
  • [71] Braccini V., Gurevich A., Giencke J. E., Jewell M. C., Eom C. B., Larbalestier D. C., Pogrebnyakov A., et al., High-field superconductivity in alloyed MgB2 thin films, Phys. Rev. B, 71(1), 12504, 2005.
  • [72] Ma Y., Zhang X., Nishijima G., Watanabe K., Awaji S., Bai X., Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Lett., 88 (7), 72502, 2006.
  • [73] Zhang X., Ma Y., Gao Z., Yu Z., Nishijima G., Watanabe K., The effect of different nanoscale material doping on the critical current properties of in situ processed MgB2 tapes, Supercond. Sci. Technol., 19 (6), 479, 2006.
  • [74] Birajdar B., Peranio N., Eibl O., Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes, Supercond. Sci. Technol., 21 (7), 73001, 2008.
  • [75] Mizutani S., Yamamoto A., Shimoyama J., Ogino H., Kishio K., Self-sintering-assisted high intergranular connectivity in ball-milled ex situ MgB2 bulks, Supercond. Sci. Technol., 27 (11), 114001, 2014.
Year 2017, Volume: 2 Issue: 2, 87 - 96, 25.09.2017

Abstract

References

  • [1] Ma Z., Liu Y., Shi Q., Zhao Q., Gao, Z., Effect of Cu addition in reduction of MgO content for the synthesis of MgB2 through Sintering, J. Alloys Compd., 471 (1–2), 105–108, 2009.
  • [2] Russell V., Hirst R., Kanda F. A., King, A. J., An X-Ray study of the magnesium borides, Acta Crystallogr., 6 (11–12), 870, 1953.
  • [3] Nagamatsu J., Nakagawa N., Muranaka T., Zenitani Y., Akimitsu J., Superconductivity at 39K in magnesium diboride, Nature, 410 (6824), 63–64, 2001.
  • [4] Flükiger R., MgB2 Superconducting Wires Basics and Applications, Word Scientific ,2nd edition, Geneva, Switzerland, 2016.
  • [5] McMillan W. L., Transition temperature of strong-coupled superconductors, Phys. Rev., 167 (2), 331–344, 1968.
  • [6] Barua S., Hossain M. S., Al Ma Z., Patel D., Mustapic M., Somer M., Acar S., et al., Superior critical current density obtained in MgB2 bulks through low-cost carbon-encapsulated boron powder, Scr. Mater., 104, 37–40, 2015.
  • [7] Cheng F., Liu Y., Ma Z., Hossain M. S. Al, Somer, M., Sintering process and critical current density of low activation Mg1.1B2 superconductors from low temperature to high temperature, Phys. C Supercond. its Appl., 527, 9–13, 2016.
  • [8] Buzea C., Yamashita T., Review of the superconducting properties of MgB2, Supercond. Sci. Technol., 14 (11), R115–R146, 2001.
  • [9] Finnemore D. K., Ostenson J. E., Bud’ko S. L., Lapertot G., Canfield P. C., , Thermodynamic and transport properties of superconducting MgB2, Phys. Rev. Lett., 86 (11), 2420–2422, 2001.
  • [10] Bud’ko S. L., Lapertot G., Petrovic C., Cunningham C. E., Anderson N., Canfield P. C., Boron isotope effect in superconducting MgB2, Phys. Rev. Lett., 86 (9), 1877–1880, 2001.
  • [11] Kortus J., Mazin I. I., Belashchenko K. D., Antropov V. P., Boyer L. L., Superconductivity of metallic boron in MgB2, Phys. Rev. Lett., 86 (20), 4656–4659, 2001.
  • [12] An J. M., Pickett W. E., Superconductivity of MgB2 covalent bonds driven metallic, Phys. Rev. Lett., 86 (19), 4366–4369, 2001. [13] Bugoslavsky Y., Perkins G. K., Qi X., Cohen L. F., Caplin A. D., Vortex dynamics in superconducting MgB2 and prospects for applications, Nature, 410 (6828), 563–565, 2001.
  • [14] Larbalestier D. C., Cooley L. D., Rikel M. O., Polyanskii A. A., Jiang J., Patnaik S., Cai X. Y., et al., Strongly Linked Current Flow in Polycrystalline Forms of the Superconductor MgB2, Nature, 410 (6825), 186–189, 2001.
  • [15] Slusky J. S., Rogado N., Regan K. A., Hayward M. A., Khalifah P., He T., Inumaru K., et al., Loss of superconductivity with the addition of Al to MgB2 and a structural transition in Mg1-xAlxB2, Nature, 410 (6826), 343–345, 2001.
  • [16] Monteverde M., Núñez-Regueiro M., Rogado N., Regan K. A., Hayward M. A., He T., Loureiro, S. M., and Cava, R. J., Pressure dependence of the superconducting transition temperature of magnesium diboride, Science (80-. ), 292 (5514), 75–77, 2001.
  • [17] Nishibori E., Takata M., Sakata M., Tanaka H., Muranaka T., Akimitsu J., Bonding nature in MgB2, J. Phys. Soc. Japan, 70 (8), 2252–2254, 2001.
  • [18] Takahashi T., Sato T., Souma S., Muranaka T., Akimitsu J., High-resolution photoemission study of MgB2, Phys. Rev. Lett., 86 (21), 4915–4917, 2001.
  • [19] Karapetrov G., Iavarone M., Kwok W. K., Crabtree G. W., Hinks D. G., Scanning tunneling spectroscopy in MgB2, Phys. Rev. Lett., 86 (19), 4374–4377, 2001.
  • [20] Osborn R., Goremychkin E. A., Kolesnikov A. I., Hinks D. G., Phonon density of states in MgB2, Phys. Rev. Lett., 87 (1), 17005, 2001.
  • [21] Collings E. W., Sumption M. D., Bhatia M., Susner M. A., Bohnenstiehl, S. D., Prospects for improving the intrinsic and extrinsic properties of magnesium diboride superconducting strands, Supercond. Sci. Technol., 21 (10), 103001, 2008.
  • [22] Prikhna T. A., Properties of MgB2 bulk, 45, 2009.
  • [23] Gao Z., Ma Y., Zhang X., Wang D., Yu Z., Yang H., Wen H., Mossang E., Enhancement of the critical current density and the irreversibility field in maleic anhydride doped MgB2 Based Tapes, J. Appl. Phys., 102 (1), 13914, 2007.
  • [24] Ghorbani S. R., Farshidnia G., Wang X. L., Dou S. X., Flux pinning mechanism in SiC and nano-C doped MgB2 : Evidence for transformation from δTc to δℓ pinning, Supercond. Sci. Technol., 27 (12), 125003, 2014.
  • [25] Kováč P., Hušek I., Melišek T., Grivel J. C., Pachla W., Štrbík V., Diduszko R., et al., The role of MgO content in ex situ MgB2 wires, Supercond. Sci. Technol., 17 (10), L41, 2004.
  • [26] Susner M. A., Influences of crystalline anisotropy, doping, porosity, and connectivity on the critical current densities of superconducting magnesium diboride bulks, wires, and thin films, 2012.
  • [27] Kumakura H., Kitaguchi H., Matsumoto A., Hatakeyama, H., Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors, Appl. Phys. Lett., 84 (18), 3669–3671, 2004.
  • [28] Chen S. K., Lockman Z., Wei M., Glowacki B. A., MacManus-Driscoll, J. L., Improved current densities in MgB2 by liquid-assisted sintering, Appl. Phys. Lett., 86 (24), 242501, 2005.
  • [29] Maeda M., Zhao Y., Dou S. X., Nakayama Y., Kawakami T., Kobayashi H., Kubota Y., Fabrication of highly dense MgB2 bulk at ambient pressure, Supercond. Sci. Technol., 21 (3), 32004, 2008.
  • [30] Senkowicz B. J., Polyanskii A., Mungall R. J., Zhu Y., Giencke J. E., Voyles P. M., Eom C. B., et al., Understanding the route to high critical current density in mechanically alloyed Mg(B1− xCx )2, Supercond. Sci. Technol., 20 (7), 650, 2007. [31] Xu X., Kim J. H., Yeoh W. K., Zhang Y., Dou, S. X., Improved Jc of MgB2 superconductor by ball milling using different media, Supercond. Sci. Technol., 19 (11), L47, 2006.
  • [32] Choi E. M., Yurchenko V. V, Johansen T. H., Lee H.-S., Lee J. Y., Kang W. N., Lee S. I., Suppression of dendritic flux jumps in MgB2 films coated with a gold rim, Supercond. Sci. Technol., 22 (1), 15011, 2009.
  • [33] Moon S. H., Yun J. H., Lee H. N., Kye J. I., Kim H. G., Chung W., Oh B., High critical current densities in superconducting MgB2 thin films, Appl. Phys. Lett., 79 (15), 2429–2431, 2001.
  • [34] Karpinski J., Kazakov S. M., Jun J., Angst M., Puzniak R., Wisniewski A., Bordet, P., Single crystal growth of MgB2 and thermodynamics of Mg–B–N system at high pressure, Phys. C Supercond., 385 (1–2), 42–48, 2003.
  • [35] Grasso G., Malagoli A., Ferdeghini C., Roncallo S., Braccini V., Siri A. S., Cimberle M. R., Large transport critical currents in unsintered MgB2 superconducting tapes, Appl. Phys. Lett., 79 (2), 230–232, 2001.
  • [36] Schlachter S. I., Frank A., Ringsdorf B., Orschulko H., Obst B., Liu B., Goldacker W., Suitability of sheath materials for MgB2 powder-in-tube superconductors, Phys. C Supercond. its Appl., 445–448, 777–783, 2006.
  • [37] Soltanian S., Wang X. L., Li A. H., Collings E. W., Sumption M. D., Lee E., Liu H. K., Dou S. X., Fabrication and critical current density in 16-filament stainless steel/Fe/MgB2 square wire, Solid State Commun., 124 (1–2), 59–62, 2002.
  • [38] Flükiger R., Suo H. L., Musolino N., Beneduce C., Toulemonde P., Lezza P., Superconducting properties of MgB2 tapes and wires, Phys. C Supercond., 385 (1–2), 286–305, 2003.
  • [39] Sumption M. D., Bhatia M., Rindfleisch M., Tomsic M., Collings E. W., Transport properties of multifilamentary, in situ route, Cu-stabilized MgB2 strands: One metre segments and the Jc (B, T) dependence of short samples, Supercond. Sci. Technol., 19 (2), 155, 2006.
  • [40] Martínez E., Angurel L. A., Navarro R., Study of Ag and Cu/MgB2 powder-in-tube composite wires fabricated by in situ reaction at low temperatures, Supercond. Sci. Technol., 15 (7), 1043, 2002.
  • [41] Bellingeri E., Malagoli A., Modica M., Braccini V., Siri A. S., Grasso G., Neutron scattering studies of superconducting MgB2 tapes,” Supercond. Sci. Technol., 16 (2), 276, 2003.
  • [42] Canfield P. C., Finnemore D. K., Bud’ko S. L., Ostenson J. E., Lapertot G., Cunningham C. E., Petrovic C., Superconductivity in dense MgB2 wires, Phys. Rev. Lett., 86 (11), 2423–2426, 2001.
  • [43] Jin S., Mavoori H., Bower C., van Dover, R. B., High critical currents in iron-clad superconducting MgB2 wires, Nature, 411 (6837), pp. 563–565, 2001.
  • [44] Suo H., Beneduce C., Dhallé M., Musolino N., Genoud J.-Y., Flükiger R., Large transport critical currents in dense Fe- and Ni-Clad MgB2 superconducting tapes, Appl. Phys. Lett., 79 (19), 3116–3118, 2001.
  • [45] Takano Y., Takeya H., Fujii H., Kumakura H., Hatano T., Togano K., Kito H., Ihara H., Superconducting properties of MgB2 bulk materials prepared by high-pressure sintering, Appl. Phys. Lett., 78 (19), 2914–2916, 2001.
  • [46] Kambara M., Babu N. H., Sadki E. S., Cooper J. R., Minami H., Cardwell D. A., Campbell A. M., Inoue I. H., High intergranular critical currents in metallic MgB2 superconductor, Supercond. Sci. Technol., 14 (4), L5, 2001.
  • [47] Grasso G., Malagoli A., Ferdeghini C., Roncallo S., Braccini V., Siri A. S., Cimberle M. R., Large transport critical currents in unsintered MgB2 superconducting tapes, Appl. Phys. Lett., 79 (2), 230–232, 2001.
  • [48] Kumakura H., Matsumoto A., Fujii H., Togano K., high transport critical current density obtained for powder-in-tube-processed MgB2 tapes and wires using stainless steel and Cu-Ni tubes, Appl. Phys. Lett., 79 (15), 2435–2437, 2001.
  • [49] Soltanian S., Wang X. L., Kusevic I., Babic E., Li A. H., Qin M. J., Horvat J., et al., High-transport critical current density above 30 K in pure Fe-clad MgB2 tape, Phys. C Supercond. its Appl., 361 (2), 84–90, 2001.
  • [50] Kim J. H., Dou S. X., Wang J. L., Shi D. Q., Xu X., Hossain M. S. A., Yeoh W. K., Choi S., Kiyoshi T., The Effects of sintering temperature on superconductivity in MgB2 /Fe wires, Supercond. Sci. Technol., 20 (5), 448, 2007.
  • [51] Hon W. M., Ng D. H. L., Relationships between microstructure and superconducting behaviors of MgB2, J. Appl. Phys., 99 (8), 08M502, 2006.
  • [52] Shi Q., Liu Y., Gao Z., Zhao Q., Formation of MgO whiskers on the surface of bulk MgB2 superconductors during in situ sintering, J. Mater. Sci., 43 (4), 1438–1443, 2008.
  • [53] Soltanian S., Wang X., Horvat J., Qin M., Liu H., Munroe P. R., Dou, S. X., Effect of grain size and doping level of SiC on the superconductivity and critical current density in MgB2 superconductor, IEEE Trans. Appl. Supercond., 13 (2), 3273–3276, 2003.
  • [54] Perner O., Eckert J., Häßler W., Fischer C., Müller K.-H., Fuchs G., Holzapfel B., Schultz, L., Microstructure and impurity dependence in mechanically alloyed nanocrystalline MgB2 superconductors, Supercond. Sci. Technol., 17 (10), 1148, 2004.
  • [55] Jiang C. H., Hatakeyama H., Kumakura H., Effect of nanometer MgO addition on the in situ {PIT} processed MgB2/Fe tapes, Phys. C Supercond., 423 (1–2), 45–50, 2005.
  • [56] Singh D. K., Tiwari B., Jha R., Kishan H., Awana V. P. S., Role of MgO impurity on the superconducting properties of MgB2, Phys. C Supercond., 505, 104–108, 2014.
  • [57] Cui C., Liu D., Shen Y., Sun J., Meng F., Wang R., Liu S., et al., Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics, Acta Mater., 52 (20), 5757–5760, 2004.
  • [58] Cheng F., Liu Y., Ma Z., Shahriar Al Hossain M., Somer M., Improved superconducting properties in the Mg11B2 low activation superconductor prepared by low-temperature sintering, Sci. Rep., 6, 25498, 2016.
  • [59] Fujii H., Ishitoya A., Itoh S., Ozawa K., Kitaguchi H., Effect of additions of Ca compounds to the filling powder on the reduction of MgO and the critical current density properties of ex situ processed MgB2 tapes, J. Alloys Compd., 664, pp. 650–656, 2016.
  • [60] Cimberle M. R., Novak M., Manfrinetti P., Palenzona A., Magnetic characterization of sintered MgB2 samples: effect of substitution or ‘doping’ with Li, Al and Si, Supercond. Sci. Technol., 15(1), 43, 2002.
  • [61] Profeta G., Continenza A., Massidda S., Phonon and electron-phonon renormalization in Al-doped MgB2, Phys. Rev. B, 68 (14), p. 144508, 2003.
  • [62] Mudgel M., Awana V. P. S., Lal R., Kishan H., Chandra L. S. S., Ganesan V., Narlikar A. V, Bhalla G. L., Anomalous thermoelectric power of the Mg1-x AlxB2 system with x=0.0–1.0, J. Phys. Condens. Matter, 20 (9), 95205, 2008.
  • [63] Berenov A., Serquis A., Liao X. Z., Zhu Y. T., Peterson D. E., Bugoslavsky Y., Yates K. A., et al., Enhancement of critical current density in low level Al-ddoped MgB2, Supercond. Sci. Technol., 17 (10), 1093, 2004. [64] Mudgel M., Chandra L. S. S., Ganesan V., Bhalla G. L., Kishan H., Awana V. P. S., Enhanced critical parameters of nano-carbon doped MgB2 superconductor, 2009.
  • [65] Zhao Y., Feng Y., Shen T. M., Li G., Yang Y., Cheng C. H., Cooperative doping effects of Ti and C on critical current density and irreversibility field of MgB2, J. Appl. Phys., 100 (12), 123902, 2006.
  • [66] Bateni A., Erdem E., Repp S., Weber S., Somer M., Al-doped MgB2 materials studied using electron paramagnetic resonance and raman spectroscopy, Appl. Phys. Lett., 108 (20), 202601, 2016.
  • [67] Zhao Y. G., Zhang X. P., Qiao P. T., Zhang H. T., Jia S. L., Zhu B. S. C. M. H., Han Z. H., et al., Effect of Li doping on structure and superconducting transition temperature of Mg1-xLixB2, 5, 2001.
  • [68] Kazakov S. M., Angst M., Karpinski J., Fita I. M., Puzniak, R., Substitution effect of Zn and Cu in MgB2 on Tc and structure, Solid State Commun., 119 (1), 1–5, 2001.
  • [69] Jemima Balaselvi S., Gayathri N., Bharathi A., Sastry V., Hariharan Y., Peculiarities in the carbon substitution of MgB2, Phys. C Supercond., 407 (1–2), 31–38, 2004.
  • [70] Gurevich A., Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B, 67 (18), 184515, 2003.
  • [71] Braccini V., Gurevich A., Giencke J. E., Jewell M. C., Eom C. B., Larbalestier D. C., Pogrebnyakov A., et al., High-field superconductivity in alloyed MgB2 thin films, Phys. Rev. B, 71(1), 12504, 2005.
  • [72] Ma Y., Zhang X., Nishijima G., Watanabe K., Awaji S., Bai X., Significantly enhanced critical current densities in MgB2 tapes made by a scaleable nanocarbon addition route, Appl. Phys. Lett., 88 (7), 72502, 2006.
  • [73] Zhang X., Ma Y., Gao Z., Yu Z., Nishijima G., Watanabe K., The effect of different nanoscale material doping on the critical current properties of in situ processed MgB2 tapes, Supercond. Sci. Technol., 19 (6), 479, 2006.
  • [74] Birajdar B., Peranio N., Eibl O., Quantitative electron microscopy and spectroscopy of MgB2 wires and tapes, Supercond. Sci. Technol., 21 (7), 73001, 2008.
  • [75] Mizutani S., Yamamoto A., Shimoyama J., Ogino H., Kishio K., Self-sintering-assisted high intergranular connectivity in ball-milled ex situ MgB2 bulks, Supercond. Sci. Technol., 27 (11), 114001, 2014.
There are 72 citations in total.

Details

Subjects Engineering
Journal Section Review Article
Authors

Mehran Rafieazad

Özge Balcı

Selçuk Acar This is me

Mehmet Somer

Publication Date September 25, 2017
Acceptance Date September 6, 2017
Published in Issue Year 2017 Volume: 2 Issue: 2

Cite

APA Rafieazad, M., Balcı, Ö., Acar, S., Somer, M. (2017). Review on magnesium diboride (MgB2) as excellent superconductor: Effects of the production techniques on the superconducting properties. Journal of Boron, 2(2), 87-96.

© 2016 All Rights Reserved
TENMAK Boron Research Institute