Review
BibTex RIS Cite

Boron in arid zone agriculture: Israeli case studies

Year 2017, Volume: 2 Issue: 3, 128 - 141, 30.12.2017

Abstract

Relatively high levels of boron (B)
can be found in soils and irrigation water used for agriculture in semi-arid
and arid regions. Furthermore, climatic conditions and resulting high levels of
plant transpiration in dry regions intensify B uptake and accumulation in
plants and increase the probability of B toxicity. The focus of this review is
on B interactions with soils and plants in dry regions. A basic introduction to
B in soils and solutions and to B in the soil-water-plant continuum is presented
to provide the reader with sufficient background to understand issues of B in
arid and semi-arid agriculture. Crops in arid areas are prone to exposure to
stress-causing factors from excess B that occurs simultaneously with general
salinity stress. In some cases in arid zone agriculture excess B is a result of
native soil-born B, in other cases it is a result of B introduced with
irrigation water. Both native and introduced B can have long-term consequences
on crop growth and agricultural management. The nature of excess B-salinity
interactions is also reviewed. Case studies representing two scenarios
regarding excess B in arid agriculture are presented. In the first, naturally
occurring B in vineyards in the Jordan Valley led to toxicity, even after years
of leaching and irrigation with low-B water. In the second, saline water with
high B concentration historically utilized in the western Negev for irrigation
of cotton had serious repercussions on subsequent peanut crops. Crop and water
management options appropriate to anticipated conditions of high B in arid
agriculture are presented and discussed. 

References

  • [1] Goldberg S., Reaction of boron with soil, Plant Soil., 193, 35-48 1997.
  • [2] Keren R., Bingham F. T., Boron in water, soils and plant, In: Advances in Soil Science, (R. Stuart, ed), Springer-Verlag, New York, 1, 229-276,1985.
  • [3] Cartwright B., Zarcinas B. A., Spouncer L. R., Boron toxicity in South Australian barley crops, Aus. J. Agric. Res. 37, 351–359, 1986. [4] Banuelos G. S., Cardon G. E., Phene C. J., Wu L., Akohoue S., Zambrzuski S., Soil boron and selenium removal by three plant species, Plant Soil 148, 253-263, 1993.
  • [5] Yermiyahu U., Zilberman J., Ben-Gal A., Keren R., Bioavailability and toxicity of residual boron originating from saline irrigation water, World Congress of Soil Science, Philadelphia, USA, July 10-15, 2006.
  • [6] Torun B. M., Kalayci L., Ozturk A., Torun M. A., Cakmak I., Differences in shoot boron concentrations, leaf symptoms, and yield of Turkish barley cultivars grown on boron-toxic soil in field, J. Plant Nutr., 26,1735-1747, 2002.
  • [7] Ferreyra R. E., Aljaro A. U., Ruiz R. S., Rojas L. P., Oster J. D., Behavior of 42 crop species grown in saline soils with high boron concentrations, Agric. Water Manag., 34, 111-124, 1997.
  • [8] Bastías E. I., González-Moro M. B., González-Murua C., Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available, Plant Soil., 267,73-8, 2004.
  • [9] Tsadilas C. D., Soil contamination with boron due to irrigation with treated municipal waste water, In Boron in Soils and Plants. Eds R. W. Bell and B. Rerkasem, Kluwer Academic Publishers, Dordrecht, 265-270. 1997.
  • [10] Gupta U. C., James Y. W., Cambell C. A., Leyshon A. J., Nicholaichuk W., Boron toxicity and deficiency: A review, Can. J. Soil Sci., 65, 381-409, 1985.
  • [11] Nable R. O., Banuelos G. S., Paull J. G., Boron toxicity, Plant Soil., 198, 181-198, 1997.
  • [12] Stangoulis J. C. R., Reid R. J., Boron toxicity in plant and animals, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown and R.W. Bell, eds), Kluwer Academic Publishers, New York, USA, 227– 241, 2002.
  • [13] Yau S. K., Ryan J., Boron toxicity tolerance in crops: A viable alternative to soil amelioration, Crop Sci., 48, 854-865, 2008.
  • [14] Reid R., Can we really increase yields by making crop plants tolerant to boron toxicity?, Plant Sci., 178 (1), 9-11, 2010.
  • [15] Power P., Woods G. W., The chemistry of boron and its speciation in plants, Plant Soil., 198, 1-13, 1997.
  • [16] Hunt C. D., Boron-binding-biomolecules: A key to understanding the beneficial physiologic effects of dietary born from prokaryotes to humans, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wemmer, P.H. Brown, M. Thellier, and R.W. Bell, eds) Kluwer Academic, New York, USA, pp. 21–36. 2002.
  • [17] Morgan V., Geochemistry, In: Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry, Chemistry, vol. Part A: Boron-Oxygen Compounds, Longman, New York, 1980.
  • [18] EPA, Health and environmental effects document for boron and boron compounds, U.S. Environmental Protection Agency, Washington, D.C. EPA 6008-91015, 1991.
  • [19] Bassett R. L., The geochemistry of boron in thermal water, Ph.D. thesis, Stanford University, Stanford Calif., 1976.
  • [20] Elrashidi M. A., O'Connor G.A., Boron sorption and desorption in soils, Soil Sci. Soc. Am. J., 46, 27-31, 1982.
  • [21] Keren R., Mezuman U., Boron adsorption by clay minerals using a phenomenological equation, Clays Clay Miner., 29, 198-203, 1981.
  • [22] Couch E. L., Grim R.E., Boron fixation by illites, Clays Clay Miner., 16, 249-256, 1968.
  • [23] Sims J. R., Bingham E. T., Retention of boron by layer silicates, sesquioxides, and soil materials: II. Sesquioxides, Soil Sci. Soc. Am. Proc., 32, 364-369, 1968.
  • [24] Goldberg S., Glaubing R. A., Boron adsorption on aluminium and iron oxide minerals, Soil Sci. Soc. Am. J. 49:1374-1379, 1985.
  • [25] Rhoades J. D., Ingvalson R. D., Hatcher J. T., Adsorption of boron by ferromagnesian minerals and magnesium hydroxide, Soil Sci. Soc. Am. Proc., 34, 938-941, 1970.
  • [26] Gu B., Lowe L. E., Studies on the adsorption of boron on humic acids, Can. J. Soil Sci., 70, 305-311, 1990.
  • [27] Lemarchand E., Schott J., Gaillardet J., Boron isotopic fractionation related to boron sorption on humic and the atructure of surface complexes formed, Geochimica et Cosmochimica Acta, 69, 3519-3533, 2005.
  • [28] Yermiyahu U., Keren R., Chen Y., Boron sorption on compost organic matter, Soil Sci. Soc. Am. J., 52, 1309-1313, 1988.
  • [29] Sartaj M., Fernandes L., Adsorption of boron from landfill leachate by peat and the effect of environmental factors, J. Environ. Eng. Sci., 4, 19-28, 2005. [30] Garat A., Meyer B., A study of different manures and their relationship with boron, Agrochimica, 27, 531 438, 1983.
  • [31] Hue N.V., Hirunburana N., Fox R.L., Boron status of Hawaiian soils as measured by B sorption and plant uptake, Commun. Soil Sci. Plant Anal., 19, 517 528, 1988.
  • [32] Mascarenhas H. A. A., Miranda M. A. C. D., Bataglia O. C., Pereira J.C.V.N.A., Tanaka R.T., Boron deficiency in soybeans, Bragantia 47, 325 332, 1988.
  • [33] Liu Z., Zhu Q., Tang L., Regularities of content and distribution of boron in soils, Acta Pedologica Sinica, 26, 353 361, 1989.
  • [34] Valk G. G. M. van der, Bruin P. N. A., Nutrition of tulips on fresh soil, Boron application limits early losses, Bloembollencultuur, 100, 44 45, 1989.
  • [35] Berger K. C., Pratt P.F., Advances in secondary and micro-nutrient fertilization, In: Fertilizer technology and used (M.H. McVickar G.L. Bridger, and L.B. Nelson, eds.), Soil Sci. Soc. Am. ASA, Madison, WI, pp. 281-340, 1963.
  • [36] Yermiyahu U., Keren R., Chen Y., Boron sorption by soil in the presence of composted organic matter, Soil Sci. Soc. Am. J., 59, 405-409, 1995.
  • [37] Yermiyahu U., Keren R., Chen Y., Effect of compost organic matter on boron uptake by plants, Soil Sci. Soc. Am. J., 65, 1436-1441, 2001.
  • [38] Blagojevic S., Zarkovic B., Influence of long term fertilization on the content of available iron and microelements in a calcareous chernozem soil, Zbornik Radova Poljoprivrednog Fakulteta, Univerzitet u Beogradu, 35, 25 34, 1990.
  • [39] Pakrashi A. C., Haldar M., Effect of moisture regime and organic matter application on the changes in hws B an acid soil of terai region of North Bengal, Environ. Ecology., 10, 292 296, 1992.
  • [40] Goldberg S., Corwin D. L., Shouse P. J., Suarez D.L., Prediction of boron adsorption by field samples of diverse textures, Soil Sci. Soc. Am. J., 69, 1379-1388, 2005.
  • [41] Mezuman U., Keren R., Boron adsorption by soils using a phenomenological adsorption equation, Soil Sci. Soc. Am. J., 45, 722–726, 1981.
  • [42] Communar G., Keren R., Rate-limited boron transport in soils: Effect of soil texture and solution pH, Soil Sci. Soc. Am. J., 70, 882-892, 2006.
  • [43] Communar G., Keren R., Equilibrium and nonequilibrium transport of boron in soil, Soil Sci. Soc. Am. J., 69, 311-317, 2005.
  • [44] Shani U., Dudley L. M., Hanks R. J., Model of boron movement in soils, Soil Sci. Soc. Am. J., 56, 1365-1370, 1992.
  • [45] Goldberg S., Lesch S. M., Suarez D.L., Predicting boron adsorption by soils using chemical parameters in the constant capacity model, Soil Sci. Soc. Am. J., 64, 1356-1363, 2000.
  • [46] Vaughan P. J., Shouse P. J., Goldberg S., Suarez D. L., Ayars J.E., Boron transport within an agricultural field: Uniform flow versus mobile-immobile water model simulations, Soil Sci., 169, 401-412, 2004.
  • [47] Shouse P.J., Goldberg S., Skaggs T.H., Soppe W.O., Ayars J.E., Effect of shallow groundwater management on the spatial and temporal variability of boron and salinity in an irrigation field, Vadose Zone J., 5, 377-390, 2006.
  • [48] Communar G., Keren R., Effect of transient irrigation on boron transport in soils, Soil Sci. Soc. Am. J., 71, 306-313, 2007.
  • [49] Ben-Gal A., Shani U., Effect of excess boron on tomatoes under water stress, Plant Soil, 256, 179-186, 2003.
  • [50] Tripler E., Medjool date palm tissue culture under combined excess of boron and salinity stress, MS thesis, Hebrew University of Jerusalem, Rechovot, Israel, (Hebrew), 2004.
  • [51] Tripler E., Ben-Gal A., Shani U., Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix Dactylifera L., cv. Medjool), Plant Soil., 297, 147-155, 2007.
  • [52] Dell B., Huang L., Physiological response of plants to low boron, Plant Soil, 193, 103-120, 1997.
  • [53] Parr A.J., Loughman B.C., Boron and membrane function in plants, (D.A. Robb and W.S. Pierpoint, eds), Academic Press, New York, pp 87-107, 1983.
  • [54] Lukaszewski K. M., Blevins D.G., Root growth inhibition in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism, Plant Physiol., 112, 1135-1140, 1996.
  • [55] Marschner H., Mineral Nutrition of Higher Plants., Academic Press, SAN Diego, USA, pp 379-396, 1995.
  • [56] Hu H., Brown P.H., Absorption of boron by plant roots, Plant Soil., 193, 49-58, 1997.
  • [57] Biela A., Grote K., Otto B., Hoth S., Hedrich R., Kaldenhoff R., The Nicotiana tabacum plasma membrane aquaporins in NtAQP1 is mercury-insensitive and permeable for glycerol, Plant J., 18, 565-570, 1999.
  • [58] Gerbeau P., Güclü J., Ripoche P., Maurel C., Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solution, Plant J. 18, 577-587, 1999.
  • [59] Dordas C., Chrispeels M. J., Brown P.H., Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots, Plant Physiol., 124, 1349-1361, 2000.
  • [60] Bastías E. I., Fernández-García N., Carvajal M., Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity, Plant Biol., 6, 415-421, 2004.
  • [61] Reid R. J., Understanding the boron transport network in plants, Plant Soil., 385, 1-13, 2014.
  • [62] Brown P. H., Shelp B. J., Boron mobility in plants, Plant Soil., 193, 85-101, 1997.
  • [63] Miwa K., Fujiwara T., Boron transport in plants: Co-ordinated regulation of transporters, Annals of Botany, 105 (7), 1103-1108, 2010.
  • [64] Reid R. J., Hayes J. E., Posti A., Stangoulis J. C. R., Graham R.D., A critical analysis of the causes of boron toxicity in plants, Plant, Cell Envir., 27, 1405-1414, 2004.
  • [65] Brown P.H., Hu H., Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species, Ann. Bot., 77, 497-505, 1996.
  • [66] Reid R. J., Boron toxicity and tolerance in crop plants, In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions, Springer, New York, pp 333–346, 2013.
  • [67] Eaton F. M., Blair G.Y., Accumulation of boron by reciprocally grafted plants, Plant Physiol., 10, 411-424, 1935.
  • [68] Nable R.O., Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism, Plant Soil., 112, 45-57, 1988.
  • [69] Ben-Gal A., The contribution of foliar exposure to boron toxicity, J. Plant Nutr., In press, 2007.
  • [70] Maldonado J. M., Navarro-Gochicoa M. T., Role of boron in vascular plants and response mechanisms to boron stresses, Plant Stress, 4 (2), 115-122 2010.
  • [71] Loomis W. D., Durst R. W., Chemistry and biology of boron, Biofactors 3 (4), 229-239, 1992.
  • [72] Wimmer M. A., Mühling K. H., Läuchli A., Brown P. H., Goldbach H. E., Boron toxicity: The importance of soluble boron, pp. 241– 253, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown and R.W. Bell, eds), Kluwer Academic Publishers, New York, USA, 2002.
  • [73] Gupta U. C., Relationship of total and hot-water soluble boron, and fixation of added boron, to properties of Podzol soils, Soil Sci. Soc. Am. Proc., 32, 45–48, 1968.
  • [74] Biggar J. W., Fireman M., Boron adsorption and release by soils, Soil Sci. Soc. Amer. Proc., 24, 115-120, 1960.
  • [75] Fleming G. A., Essential micronutrients, I: Boron and molybdenum. pp. 155–197, In: Applied soil trace elements (B.E. Davis, ed.), John Wiley and Sons, New York, USA, 1980.
  • [76] Yau S. K., Interactions of boron-toxicity, drought, and genotypes on barley root growth, yield, and other agronomic characters Aust. J. Agric. Res. 53, 347-54, 2002.
  • [77] Shani U., Hanks R. J., Model of integrated effects of boron, inert salt, and water flow on crop yield, Agronomy J., 85, 713-717, 1993.
  • [78] Hamurcu M., Demiral T., Hakki E. E., Turkmen Ö., Gezgin S., Bell R. W., Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought, Zemdirbyste-Agriculture, 102 (2), 209-216, 2015.
  • [79] Marcar N. E., Guo J., Crawford D.F., Response of Eucalyptus camaldulensis Dehnh., E. globulus Labill. ssp. globulus and E. grandis W. Hill to excess boron and sodium chloride, Plant Soil, 208, 251–257, 1999.
  • [80] Wimmer M. A., Muhling K.H., Läuchli A., Brown P.H., Goldbach H.E., The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves, Plant, Cell Environ., 26, 1267-1274, 2003.
  • [81] Picchioni G. A., Karaca H., Boyse L. G., McCaslin B. D., Herrera E. A., Salinity, boron, and irrigated pecan productivity along New Mexico's Rio Grande Basin, J. Environ. Qual., 29, 955-963, 2000.
  • [82] Nicholaichuk W., Leyshon A. J., Jame Y. W., Campbell C. A., Boron and salinity survey of irrigation projects and the boron adsorption characteristics of some Saskatchewan soils, Can. J. of Soil Sci, 68, 77-90, 1988.
  • [83] Feigin A., Ravina I., Shalhevet J., Irrigation with Treated Sewage Effluent, Springer Verlag, New York, 1991.
  • [84] Keren R., O'Connor G. A., Effect of exchangeable ions and ionic strength on boron adsorption by montmorillonite and illite, Clays Clay Miner., 30, 341-346, 1982. [85] Kemp P. H., The Chemistry of borates (Part 1), Borax Consolidated Ltd., London, 90 pp., 1956.
  • [86] Bernstein L., Effects of salinity and sodicity on plant growth, Ann. Rev. Phytopath., 13, 295-312, 1975.
  • [87] Munns R., Termaat A., Whole-plant responses to salinity, Aust. J. Plant Physiol., 13,143-160, 1986.
  • [88] Bingham F. T., Strong J. E., Rhoades J.D., Keren R. , Effect of salinity and varying boron concentration on boron uptake and growth of wheat.,Plant Soil, 97, 345-351, 1987.
  • [89] Mikkelsen R. L., Haghnia G. H., Page A. L., Bingham F.T., The influence of selenium, salinity, and boron on alfalfa tissue composition and yield, J. Environ. Qual., 17, 85-88, 1988.
  • [90] Grattan S.R., Shannon M.C., Grieve C.M., Poss J.A., Suarez D., Leland F., Interaction effects of salinity and boron on the performance and water use Eucalyptus, Acta Hort., 449, 607-613, 1997.
  • [91] Holloway R. E., Alston M., The effects of salt and boron on growth of wheat, Aust. J. Agric. Res, 43, 987-1001, 1992.
  • [92] Grieve C. M., Poss J. A., Wheat response to interactive effects of boron and salinity, J. Plant Nutr, 23, 1217-1226, 2000.
  • [93] Alpaslan M., Gunes A., Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants, Plant Soil, 236, 123-128, 2001.
  • [94] Ben-Gal A., Shani U., Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress, Plant Soil., 247, 211-221, 2002.
  • [95] Yadav H. D., Yadav O. P., Dhankar O. P., Oswal M. C., Effect of chloride salinity and boron on germination, growth, and mineral composition of chickpea (Cicer arietinum L.), Annals of Arid Zone., 28, 63-67, 1989.
  • [96] Yermiyahu U., Ben-Gal A., Sarig P., Zippilevitch E., Boron toxicity in grapevine (Vitis vinifera L.) in conjunction with salinity and rootstock effects, J. of Hortic. Sci. and Biotech., 82, 547-554, 2007.
  • [97] Yermiyahu U., Ben-Gal A., Keren R., Reid R. J., Combined effect of salinity and excess boron on plant growth and yield, Plant Soil., 304, 73-87, 2008.
  • [98] Masood S., Wimmer M. A., Witzel K., Zörb C., Mühling K.H., Interactive effects of high boron and NaCl stresses on subcellular localization of chloride and boron in wheat leaves, J. Agro. Crop Sci., 198, 227-235, 2012.
  • [99] Wimmer M. A., Goldbach H. E., Boron‐and‐salt interactions in wheat are affected by boron supply, J. plant nutria and soil sci., 175 (2), 171-179, 2012.
  • [100] Bastía E., Alcaraz-López C., Bonilla I., Martínez-Ballesta M. C., Bolaños L., Carvajal M., Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium, J. Plant Physiol., 167 (1), 54-60, 2010.
  • [101] del Carmen Rodríguez-Hernández M., Moreno D.A., Carvajal M., Ballesta M. D. C. M., Interactive effects of boron and NaCl stress on water and nutrient transport in two broccoli cultivar,. Functional Plant Biol., 40 (7), 739-748, 2013.
  • [102] Grieve C. M., Poss J. A., Grattan S. R., Suarez D. L., Smith T. T., The combined effects of salinity and excess boron on mineral ion relations in broccoli, Sci. Hort., 125, 178–187, 2010.
  • [103] Smith T. E, Grattan S. R., Grieve C. M., Poss J. A. Suarez D. L. Salinity’s influence on boron toxicity in broccoli, I: Impacts on yield, biomass distribution, and water use, Agric. Water Mgmt., 97, 777-782, 2010
  • [104] Smith T. E., Grattan S. R., Grieve C. M., Poss J. A., Suarez D. L., Salinity’s influence on boron toxicity in broccoli, II: Impacts on boron uptake, uptake mechanisms and tissue ion relations, Agric. Water Mgmt., 97, 783–791, 2010.
  • [105] Smith T. E., Grattan S. R., Grieve C. M., Poss J. A., Läuchli A. E., Suarez D. L., pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.), Plant soil, 370 (1-2), 541-554, 2013.
  • [106] Dan J., Gerson R., Koyumdjisky H., Yaalon D., Aridic Soils of Israel; Properties, Genesis and Management, Special Publication No. 190 Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, 1981.
  • [107] Yermiyahu U., Ben-Gal A., Sarig P., Boron toxicity in grapevines, Hort Sci., 41,1698-1703, 2006.
  • [108] Maas E. V., Crop salt tolerance, pp. 262-304, In: Agricultural Salinity Assessment and Management, (Tanji, ed.) ASCE Manuals and Reports on Engineering No 71, ASCE, New York, 1990.
Year 2017, Volume: 2 Issue: 3, 128 - 141, 30.12.2017

Abstract

References

  • [1] Goldberg S., Reaction of boron with soil, Plant Soil., 193, 35-48 1997.
  • [2] Keren R., Bingham F. T., Boron in water, soils and plant, In: Advances in Soil Science, (R. Stuart, ed), Springer-Verlag, New York, 1, 229-276,1985.
  • [3] Cartwright B., Zarcinas B. A., Spouncer L. R., Boron toxicity in South Australian barley crops, Aus. J. Agric. Res. 37, 351–359, 1986. [4] Banuelos G. S., Cardon G. E., Phene C. J., Wu L., Akohoue S., Zambrzuski S., Soil boron and selenium removal by three plant species, Plant Soil 148, 253-263, 1993.
  • [5] Yermiyahu U., Zilberman J., Ben-Gal A., Keren R., Bioavailability and toxicity of residual boron originating from saline irrigation water, World Congress of Soil Science, Philadelphia, USA, July 10-15, 2006.
  • [6] Torun B. M., Kalayci L., Ozturk A., Torun M. A., Cakmak I., Differences in shoot boron concentrations, leaf symptoms, and yield of Turkish barley cultivars grown on boron-toxic soil in field, J. Plant Nutr., 26,1735-1747, 2002.
  • [7] Ferreyra R. E., Aljaro A. U., Ruiz R. S., Rojas L. P., Oster J. D., Behavior of 42 crop species grown in saline soils with high boron concentrations, Agric. Water Manag., 34, 111-124, 1997.
  • [8] Bastías E. I., González-Moro M. B., González-Murua C., Zea mays L. amylacea from the Lluta Valley (Arica-Chile) tolerates salinity stress when high levels of boron are available, Plant Soil., 267,73-8, 2004.
  • [9] Tsadilas C. D., Soil contamination with boron due to irrigation with treated municipal waste water, In Boron in Soils and Plants. Eds R. W. Bell and B. Rerkasem, Kluwer Academic Publishers, Dordrecht, 265-270. 1997.
  • [10] Gupta U. C., James Y. W., Cambell C. A., Leyshon A. J., Nicholaichuk W., Boron toxicity and deficiency: A review, Can. J. Soil Sci., 65, 381-409, 1985.
  • [11] Nable R. O., Banuelos G. S., Paull J. G., Boron toxicity, Plant Soil., 198, 181-198, 1997.
  • [12] Stangoulis J. C. R., Reid R. J., Boron toxicity in plant and animals, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown and R.W. Bell, eds), Kluwer Academic Publishers, New York, USA, 227– 241, 2002.
  • [13] Yau S. K., Ryan J., Boron toxicity tolerance in crops: A viable alternative to soil amelioration, Crop Sci., 48, 854-865, 2008.
  • [14] Reid R., Can we really increase yields by making crop plants tolerant to boron toxicity?, Plant Sci., 178 (1), 9-11, 2010.
  • [15] Power P., Woods G. W., The chemistry of boron and its speciation in plants, Plant Soil., 198, 1-13, 1997.
  • [16] Hunt C. D., Boron-binding-biomolecules: A key to understanding the beneficial physiologic effects of dietary born from prokaryotes to humans, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wemmer, P.H. Brown, M. Thellier, and R.W. Bell, eds) Kluwer Academic, New York, USA, pp. 21–36. 2002.
  • [17] Morgan V., Geochemistry, In: Supplement to Mellor's Comprehensive Treatise on Inorganic and Theoretical Chemistry, Chemistry, vol. Part A: Boron-Oxygen Compounds, Longman, New York, 1980.
  • [18] EPA, Health and environmental effects document for boron and boron compounds, U.S. Environmental Protection Agency, Washington, D.C. EPA 6008-91015, 1991.
  • [19] Bassett R. L., The geochemistry of boron in thermal water, Ph.D. thesis, Stanford University, Stanford Calif., 1976.
  • [20] Elrashidi M. A., O'Connor G.A., Boron sorption and desorption in soils, Soil Sci. Soc. Am. J., 46, 27-31, 1982.
  • [21] Keren R., Mezuman U., Boron adsorption by clay minerals using a phenomenological equation, Clays Clay Miner., 29, 198-203, 1981.
  • [22] Couch E. L., Grim R.E., Boron fixation by illites, Clays Clay Miner., 16, 249-256, 1968.
  • [23] Sims J. R., Bingham E. T., Retention of boron by layer silicates, sesquioxides, and soil materials: II. Sesquioxides, Soil Sci. Soc. Am. Proc., 32, 364-369, 1968.
  • [24] Goldberg S., Glaubing R. A., Boron adsorption on aluminium and iron oxide minerals, Soil Sci. Soc. Am. J. 49:1374-1379, 1985.
  • [25] Rhoades J. D., Ingvalson R. D., Hatcher J. T., Adsorption of boron by ferromagnesian minerals and magnesium hydroxide, Soil Sci. Soc. Am. Proc., 34, 938-941, 1970.
  • [26] Gu B., Lowe L. E., Studies on the adsorption of boron on humic acids, Can. J. Soil Sci., 70, 305-311, 1990.
  • [27] Lemarchand E., Schott J., Gaillardet J., Boron isotopic fractionation related to boron sorption on humic and the atructure of surface complexes formed, Geochimica et Cosmochimica Acta, 69, 3519-3533, 2005.
  • [28] Yermiyahu U., Keren R., Chen Y., Boron sorption on compost organic matter, Soil Sci. Soc. Am. J., 52, 1309-1313, 1988.
  • [29] Sartaj M., Fernandes L., Adsorption of boron from landfill leachate by peat and the effect of environmental factors, J. Environ. Eng. Sci., 4, 19-28, 2005. [30] Garat A., Meyer B., A study of different manures and their relationship with boron, Agrochimica, 27, 531 438, 1983.
  • [31] Hue N.V., Hirunburana N., Fox R.L., Boron status of Hawaiian soils as measured by B sorption and plant uptake, Commun. Soil Sci. Plant Anal., 19, 517 528, 1988.
  • [32] Mascarenhas H. A. A., Miranda M. A. C. D., Bataglia O. C., Pereira J.C.V.N.A., Tanaka R.T., Boron deficiency in soybeans, Bragantia 47, 325 332, 1988.
  • [33] Liu Z., Zhu Q., Tang L., Regularities of content and distribution of boron in soils, Acta Pedologica Sinica, 26, 353 361, 1989.
  • [34] Valk G. G. M. van der, Bruin P. N. A., Nutrition of tulips on fresh soil, Boron application limits early losses, Bloembollencultuur, 100, 44 45, 1989.
  • [35] Berger K. C., Pratt P.F., Advances in secondary and micro-nutrient fertilization, In: Fertilizer technology and used (M.H. McVickar G.L. Bridger, and L.B. Nelson, eds.), Soil Sci. Soc. Am. ASA, Madison, WI, pp. 281-340, 1963.
  • [36] Yermiyahu U., Keren R., Chen Y., Boron sorption by soil in the presence of composted organic matter, Soil Sci. Soc. Am. J., 59, 405-409, 1995.
  • [37] Yermiyahu U., Keren R., Chen Y., Effect of compost organic matter on boron uptake by plants, Soil Sci. Soc. Am. J., 65, 1436-1441, 2001.
  • [38] Blagojevic S., Zarkovic B., Influence of long term fertilization on the content of available iron and microelements in a calcareous chernozem soil, Zbornik Radova Poljoprivrednog Fakulteta, Univerzitet u Beogradu, 35, 25 34, 1990.
  • [39] Pakrashi A. C., Haldar M., Effect of moisture regime and organic matter application on the changes in hws B an acid soil of terai region of North Bengal, Environ. Ecology., 10, 292 296, 1992.
  • [40] Goldberg S., Corwin D. L., Shouse P. J., Suarez D.L., Prediction of boron adsorption by field samples of diverse textures, Soil Sci. Soc. Am. J., 69, 1379-1388, 2005.
  • [41] Mezuman U., Keren R., Boron adsorption by soils using a phenomenological adsorption equation, Soil Sci. Soc. Am. J., 45, 722–726, 1981.
  • [42] Communar G., Keren R., Rate-limited boron transport in soils: Effect of soil texture and solution pH, Soil Sci. Soc. Am. J., 70, 882-892, 2006.
  • [43] Communar G., Keren R., Equilibrium and nonequilibrium transport of boron in soil, Soil Sci. Soc. Am. J., 69, 311-317, 2005.
  • [44] Shani U., Dudley L. M., Hanks R. J., Model of boron movement in soils, Soil Sci. Soc. Am. J., 56, 1365-1370, 1992.
  • [45] Goldberg S., Lesch S. M., Suarez D.L., Predicting boron adsorption by soils using chemical parameters in the constant capacity model, Soil Sci. Soc. Am. J., 64, 1356-1363, 2000.
  • [46] Vaughan P. J., Shouse P. J., Goldberg S., Suarez D. L., Ayars J.E., Boron transport within an agricultural field: Uniform flow versus mobile-immobile water model simulations, Soil Sci., 169, 401-412, 2004.
  • [47] Shouse P.J., Goldberg S., Skaggs T.H., Soppe W.O., Ayars J.E., Effect of shallow groundwater management on the spatial and temporal variability of boron and salinity in an irrigation field, Vadose Zone J., 5, 377-390, 2006.
  • [48] Communar G., Keren R., Effect of transient irrigation on boron transport in soils, Soil Sci. Soc. Am. J., 71, 306-313, 2007.
  • [49] Ben-Gal A., Shani U., Effect of excess boron on tomatoes under water stress, Plant Soil, 256, 179-186, 2003.
  • [50] Tripler E., Medjool date palm tissue culture under combined excess of boron and salinity stress, MS thesis, Hebrew University of Jerusalem, Rechovot, Israel, (Hebrew), 2004.
  • [51] Tripler E., Ben-Gal A., Shani U., Consequence of salinity and excess boron on growth, evapotranspiration and ion uptake in date palm (Phoenix Dactylifera L., cv. Medjool), Plant Soil., 297, 147-155, 2007.
  • [52] Dell B., Huang L., Physiological response of plants to low boron, Plant Soil, 193, 103-120, 1997.
  • [53] Parr A.J., Loughman B.C., Boron and membrane function in plants, (D.A. Robb and W.S. Pierpoint, eds), Academic Press, New York, pp 87-107, 1983.
  • [54] Lukaszewski K. M., Blevins D.G., Root growth inhibition in boron-deficient or aluminium-stressed squash may be a result of impaired ascorbate metabolism, Plant Physiol., 112, 1135-1140, 1996.
  • [55] Marschner H., Mineral Nutrition of Higher Plants., Academic Press, SAN Diego, USA, pp 379-396, 1995.
  • [56] Hu H., Brown P.H., Absorption of boron by plant roots, Plant Soil., 193, 49-58, 1997.
  • [57] Biela A., Grote K., Otto B., Hoth S., Hedrich R., Kaldenhoff R., The Nicotiana tabacum plasma membrane aquaporins in NtAQP1 is mercury-insensitive and permeable for glycerol, Plant J., 18, 565-570, 1999.
  • [58] Gerbeau P., Güclü J., Ripoche P., Maurel C., Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solution, Plant J. 18, 577-587, 1999.
  • [59] Dordas C., Chrispeels M. J., Brown P.H., Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots, Plant Physiol., 124, 1349-1361, 2000.
  • [60] Bastías E. I., Fernández-García N., Carvajal M., Aquaporin functionality in roots of Zea mays in relation to the interactive effects of boron and salinity, Plant Biol., 6, 415-421, 2004.
  • [61] Reid R. J., Understanding the boron transport network in plants, Plant Soil., 385, 1-13, 2014.
  • [62] Brown P. H., Shelp B. J., Boron mobility in plants, Plant Soil., 193, 85-101, 1997.
  • [63] Miwa K., Fujiwara T., Boron transport in plants: Co-ordinated regulation of transporters, Annals of Botany, 105 (7), 1103-1108, 2010.
  • [64] Reid R. J., Hayes J. E., Posti A., Stangoulis J. C. R., Graham R.D., A critical analysis of the causes of boron toxicity in plants, Plant, Cell Envir., 27, 1405-1414, 2004.
  • [65] Brown P.H., Hu H., Phloem mobility of boron is species dependent: Evidence for phloem mobility in sorbitol-rich species, Ann. Bot., 77, 497-505, 1996.
  • [66] Reid R. J., Boron toxicity and tolerance in crop plants, In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions, Springer, New York, pp 333–346, 2013.
  • [67] Eaton F. M., Blair G.Y., Accumulation of boron by reciprocally grafted plants, Plant Physiol., 10, 411-424, 1935.
  • [68] Nable R.O., Resistance to boron toxicity amongst several barley and wheat cultivars: A preliminary examination of the resistance mechanism, Plant Soil., 112, 45-57, 1988.
  • [69] Ben-Gal A., The contribution of foliar exposure to boron toxicity, J. Plant Nutr., In press, 2007.
  • [70] Maldonado J. M., Navarro-Gochicoa M. T., Role of boron in vascular plants and response mechanisms to boron stresses, Plant Stress, 4 (2), 115-122 2010.
  • [71] Loomis W. D., Durst R. W., Chemistry and biology of boron, Biofactors 3 (4), 229-239, 1992.
  • [72] Wimmer M. A., Mühling K. H., Läuchli A., Brown P. H., Goldbach H. E., Boron toxicity: The importance of soluble boron, pp. 241– 253, In: Boron in Plant and Animal Nutrition (H.E. Goldbach, B. Rerkasem, M.A. Wimmer, P.H. Brown and R.W. Bell, eds), Kluwer Academic Publishers, New York, USA, 2002.
  • [73] Gupta U. C., Relationship of total and hot-water soluble boron, and fixation of added boron, to properties of Podzol soils, Soil Sci. Soc. Am. Proc., 32, 45–48, 1968.
  • [74] Biggar J. W., Fireman M., Boron adsorption and release by soils, Soil Sci. Soc. Amer. Proc., 24, 115-120, 1960.
  • [75] Fleming G. A., Essential micronutrients, I: Boron and molybdenum. pp. 155–197, In: Applied soil trace elements (B.E. Davis, ed.), John Wiley and Sons, New York, USA, 1980.
  • [76] Yau S. K., Interactions of boron-toxicity, drought, and genotypes on barley root growth, yield, and other agronomic characters Aust. J. Agric. Res. 53, 347-54, 2002.
  • [77] Shani U., Hanks R. J., Model of integrated effects of boron, inert salt, and water flow on crop yield, Agronomy J., 85, 713-717, 1993.
  • [78] Hamurcu M., Demiral T., Hakki E. E., Turkmen Ö., Gezgin S., Bell R. W., Oxidative stress responses in watermelon (Citrullus lanatus) as influenced by boron toxicity and drought, Zemdirbyste-Agriculture, 102 (2), 209-216, 2015.
  • [79] Marcar N. E., Guo J., Crawford D.F., Response of Eucalyptus camaldulensis Dehnh., E. globulus Labill. ssp. globulus and E. grandis W. Hill to excess boron and sodium chloride, Plant Soil, 208, 251–257, 1999.
  • [80] Wimmer M. A., Muhling K.H., Läuchli A., Brown P.H., Goldbach H.E., The interaction between salinity and boron toxicity affects the subcellular distribution of ions and proteins in wheat leaves, Plant, Cell Environ., 26, 1267-1274, 2003.
  • [81] Picchioni G. A., Karaca H., Boyse L. G., McCaslin B. D., Herrera E. A., Salinity, boron, and irrigated pecan productivity along New Mexico's Rio Grande Basin, J. Environ. Qual., 29, 955-963, 2000.
  • [82] Nicholaichuk W., Leyshon A. J., Jame Y. W., Campbell C. A., Boron and salinity survey of irrigation projects and the boron adsorption characteristics of some Saskatchewan soils, Can. J. of Soil Sci, 68, 77-90, 1988.
  • [83] Feigin A., Ravina I., Shalhevet J., Irrigation with Treated Sewage Effluent, Springer Verlag, New York, 1991.
  • [84] Keren R., O'Connor G. A., Effect of exchangeable ions and ionic strength on boron adsorption by montmorillonite and illite, Clays Clay Miner., 30, 341-346, 1982. [85] Kemp P. H., The Chemistry of borates (Part 1), Borax Consolidated Ltd., London, 90 pp., 1956.
  • [86] Bernstein L., Effects of salinity and sodicity on plant growth, Ann. Rev. Phytopath., 13, 295-312, 1975.
  • [87] Munns R., Termaat A., Whole-plant responses to salinity, Aust. J. Plant Physiol., 13,143-160, 1986.
  • [88] Bingham F. T., Strong J. E., Rhoades J.D., Keren R. , Effect of salinity and varying boron concentration on boron uptake and growth of wheat.,Plant Soil, 97, 345-351, 1987.
  • [89] Mikkelsen R. L., Haghnia G. H., Page A. L., Bingham F.T., The influence of selenium, salinity, and boron on alfalfa tissue composition and yield, J. Environ. Qual., 17, 85-88, 1988.
  • [90] Grattan S.R., Shannon M.C., Grieve C.M., Poss J.A., Suarez D., Leland F., Interaction effects of salinity and boron on the performance and water use Eucalyptus, Acta Hort., 449, 607-613, 1997.
  • [91] Holloway R. E., Alston M., The effects of salt and boron on growth of wheat, Aust. J. Agric. Res, 43, 987-1001, 1992.
  • [92] Grieve C. M., Poss J. A., Wheat response to interactive effects of boron and salinity, J. Plant Nutr, 23, 1217-1226, 2000.
  • [93] Alpaslan M., Gunes A., Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants, Plant Soil, 236, 123-128, 2001.
  • [94] Ben-Gal A., Shani U., Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress, Plant Soil., 247, 211-221, 2002.
  • [95] Yadav H. D., Yadav O. P., Dhankar O. P., Oswal M. C., Effect of chloride salinity and boron on germination, growth, and mineral composition of chickpea (Cicer arietinum L.), Annals of Arid Zone., 28, 63-67, 1989.
  • [96] Yermiyahu U., Ben-Gal A., Sarig P., Zippilevitch E., Boron toxicity in grapevine (Vitis vinifera L.) in conjunction with salinity and rootstock effects, J. of Hortic. Sci. and Biotech., 82, 547-554, 2007.
  • [97] Yermiyahu U., Ben-Gal A., Keren R., Reid R. J., Combined effect of salinity and excess boron on plant growth and yield, Plant Soil., 304, 73-87, 2008.
  • [98] Masood S., Wimmer M. A., Witzel K., Zörb C., Mühling K.H., Interactive effects of high boron and NaCl stresses on subcellular localization of chloride and boron in wheat leaves, J. Agro. Crop Sci., 198, 227-235, 2012.
  • [99] Wimmer M. A., Goldbach H. E., Boron‐and‐salt interactions in wheat are affected by boron supply, J. plant nutria and soil sci., 175 (2), 171-179, 2012.
  • [100] Bastía E., Alcaraz-López C., Bonilla I., Martínez-Ballesta M. C., Bolaños L., Carvajal M., Interactions between salinity and boron toxicity in tomato plants involve apoplastic calcium, J. Plant Physiol., 167 (1), 54-60, 2010.
  • [101] del Carmen Rodríguez-Hernández M., Moreno D.A., Carvajal M., Ballesta M. D. C. M., Interactive effects of boron and NaCl stress on water and nutrient transport in two broccoli cultivar,. Functional Plant Biol., 40 (7), 739-748, 2013.
  • [102] Grieve C. M., Poss J. A., Grattan S. R., Suarez D. L., Smith T. T., The combined effects of salinity and excess boron on mineral ion relations in broccoli, Sci. Hort., 125, 178–187, 2010.
  • [103] Smith T. E, Grattan S. R., Grieve C. M., Poss J. A. Suarez D. L. Salinity’s influence on boron toxicity in broccoli, I: Impacts on yield, biomass distribution, and water use, Agric. Water Mgmt., 97, 777-782, 2010
  • [104] Smith T. E., Grattan S. R., Grieve C. M., Poss J. A., Suarez D. L., Salinity’s influence on boron toxicity in broccoli, II: Impacts on boron uptake, uptake mechanisms and tissue ion relations, Agric. Water Mgmt., 97, 783–791, 2010.
  • [105] Smith T. E., Grattan S. R., Grieve C. M., Poss J. A., Läuchli A. E., Suarez D. L., pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.), Plant soil, 370 (1-2), 541-554, 2013.
  • [106] Dan J., Gerson R., Koyumdjisky H., Yaalon D., Aridic Soils of Israel; Properties, Genesis and Management, Special Publication No. 190 Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, 1981.
  • [107] Yermiyahu U., Ben-Gal A., Sarig P., Boron toxicity in grapevines, Hort Sci., 41,1698-1703, 2006.
  • [108] Maas E. V., Crop salt tolerance, pp. 262-304, In: Agricultural Salinity Assessment and Management, (Tanji, ed.) ASCE Manuals and Reports on Engineering No 71, ASCE, New York, 1990.
There are 105 citations in total.

Details

Journal Section Review Article
Authors

Uri Yermiyahu This is me 0000-0001-8326-7365

Alon Ben-gal This is me 0000-0003-4105-7807

Publication Date December 30, 2017
Acceptance Date October 31, 2017
Published in Issue Year 2017 Volume: 2 Issue: 3

Cite

APA Yermiyahu, U., & Ben-gal, A. (2017). Boron in arid zone agriculture: Israeli case studies. Journal of Boron, 2(3), 128-141.