Review
BibTex RIS Cite

Historical and recent aspects of boron in human and animal health

Year 2017, Volume: 2 Issue: 3, 153 - 160, 30.12.2017

Abstract

Evidence that boron is a beneficial
bioactive trace element is substantial. The evidence has come from numerous
laboratories that have use a variety of experimental models, including humans.
In nutritional amounts, boron promotes bone health and brain function, modulates
the immune or inflammatory response, and influences the response to oxidative
stress. Boron apparently has diverse effects through influencing a cell
signaling system or the formation and/or activity of an entity involved in many
biochemical processes. Based on findings from both animal and human
experiments, and intake of boron near 1.0 mg/day would be a reasonable
suggestion for an adequate intake that would assure the benefits provided by
boron.  



Increased intakes of boron through
consuming fruits, vegetables, nuts, and pulses should be recognized as a
reasonable dietary recommendation. 

References

  • [1] Hunt C. D., Dietary boron: Evidence for essentiality and homeostatic control in humans and animals, Advances in Plant and Animal Boron Nutrition, Springer, Dordrecht, The Netherlands, pp. 251-267, 2007.
  • [2] Fort D. J., Rogers R. L., McLaughlin D. W., Sellers C. M., Schlekat C. L., Impact of boron deficiency on Xenopus laevis, A summary of biological effects and potential biochemical roles, Biol. Trace Elem. Res., 90, 117-142, 2002.
  • [3] Rowe R. I., Eckhert C. D., Boron is required for zebrafish embryogenesis, J. Exp. Biol., 12, 221-233, 1999.
  • [4] Hunt C. D., Nielsen F. H., Interaction between boron and cholecalciferol in the chick, Trace Elements Metabolism in Man and Animals, TENA-4, Australian Academy of Science, Canberra, Australia, pp. 597-600, 1981.
  • [5] Hunt C. D., Herbel J. L., Idso J. P., Dietary boron modifies the effects of vitamin D3 nutriture on indices of energy substrate utilization and mineral metabolism in the chick, J. Bone Miner. Res., 9, 171-181, 1994.
  • [6] Armstrong T. A., Spears J. W., Crenshaw T. D., Nielsen F. H., Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites, J. Nutr., 139, 2575-2581, 2000.
  • [7] Nielsen F. H., Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats, BioFactors, 20, 161-171, 2004.
  • [8] Gorustovich A. A., Steimetz T., Nielsen F. H., Guglielmotti M. B., Histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet, Anatomical Record (Hoboken), 291, 441-447, 2008.
  • [9] Gorustovich A. A., Steimetz T., Nielsen F. H., Guglielmotti M. B., A histomorphometric study of alveolar bone modeling and remodeling in mice fed a boron-deficient diet, Archives of Oral Biology, 53,677-682, 2008.
  • [10] Sağlam M., Hatipoğlu M., Köseoğlu S., Esen H. H., Kelebek S., Boric acid inhibits alveolar bone loss in rats by affecting RANKL and osteoprotegerin expression, Journal of Periodontal Research, 49, 472-479, 2014.
  • [11] Balci Yuce H., Toker H., Goze F., The histopathological and morphometric investigation of the effects of systemically administered boric acid on alveolar bone loss in ligature-induced periodontitis in diabetic rats, Acta Odontologica Scandinavica 72, 729-736, 2014. [12] Hakki S. S., Malkoc S., Dundar N., Kayis S.A., Hakki E. E., Hamurcu M., Baspinar N., Basoglu A., Nielsen F. H., Götz W., Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral compostion and alveolar bone mineral density in rabbits fed a high-energy diet, J. Trace Elem. Med. Biol., 29, 208-215, 2015.
  • [13] Taşh P. N., Doğan A., Demirci S., Şahin F., Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro, Biol. Trace Elem. Res., 153, 419-427, 2013.
  • [14] Ying X., Cheng S., Wang W., Lin Z., Chen Q., Zhang W., Kou D., Shen Y., Cheng X., Rompis F.A., Peng L., Lu C.Z., Effect of boron on osteogenic differentiation of human bone marrow stromal cells, Biol. Trace Elem. Res., 144, 306-315, 2011.
  • [15] Majafabadi B. M., Abnosi M. H., Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells, Cell Journal (Yakhteh), 18, 62-73, 2016.
  • [16] Hakki S. S., Bozkurt B. S., Hakki E. E., Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1), J. Trace Elem. Med. Biol., 24, 243-250, 2010.
  • [17] Wu C., Miron R., Sculean A., Kaskel S., Doert T., Schulze R., Zhang Y., Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds, Biomater., 32, 7068-7078, 2011.
  • [18] Gorustovich A. A., López J. M. P., Guglielmotti M. B., Cabrini R. L., Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow, Biomed. Mater., 1, 100-105, 2006.
  • [19] Xie Z., Liu X., Jia W., Zhang C., Huang W., Wang S., Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin, J. Controlled Release, 139, 118-126, 2009.
  • [20] Doğan A., Demirci S., Bayir Y., Halici Z., Karakus E., Aydin A., Cadirci E., Albayrak A., Demirci E., Karaman A., Ayan A.K., Gundoglu C., Şahin F., Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering, Mater. Sci. Eng., C, 44, 246-253, 2014.
  • [21] Haro Durand L. A., Góngora A., Porto López J. M., Boccaccini A. R., Zago M. P., Baldi A., Gorustovich A., In vitro endothelial cell response t ionic dissolution products from boron-doped bioactive glass in the SiO2-CaO-P2O5-Na2O system, J. Mater. Chem. B, 2, 7620-7630, 2014. [22] Haro Durand L. A., Vargas G. E.., Romero N. M., Vera-Mesones R., Porto- López J. M. Boccaccini A. R., Zago M. P., Baldi A., Gorustovich A., Angiogenic effects of ionic dissolution products released from a boron-doped 4SS5 bioactive glass, J. Mater. Chem. B, 3, 1142-1148, 2015.
  • [23] Uysal T., Ustdal A., Sonmez M. F., Ozturk F., Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, Angle Orthodontist, 79, 984-990, 2009.
  • [24] Gölge U. H., Kaymaz B., Arpaci R., Kömürcü E., Göksel F., Güven M., Güzel Y., Cevizci S., Effects of boric acid on fracture healing: An experimental study, Biol. Trace Elem. Res., 167, 264-271, 2015.
  • [25] Cheng J., Peng K., Jin E., Zhang Y., Liu Y., Zhang N., Song H., Liu H., Tang Z., Effect of additional boron on tibias of African ostrich chicks, Biol. Trace Elem. Res, 144, 538, 549, 2011.
  • [26] Scorei R. I., Rotaru P., Calcium fructoborate – potential anti-inflammatory agent, Biol. Trace Elem. Res., 143, 1223-1238, 2011.
  • [27] Fracp R. L. T., Rennie G. C., Newnham R. E., Boron and arthritis: the results of a double-blind study, J. Nutr. Med., 1, 127-132, 1990.
  • [28] Miljkovic D., Scorei R. I., Cimpoiaşu V. M., Scorei I. D., Calcium fructoborate: Plant-based dietary boron for human nutrition, Journal of Dietary Supplements, 6, 211-226, 2009.
  • [29] Hunt C. D., Idso J. P., Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress, J. Trace Elem. Exp. Med., 12, 221-233, 1999.
  • [30] Hunt C. D., Dietary boron: An overview of the evidence for its role in immune function, J. Trace Elem. Exp. Med., 16, 291-306, 2003.
  • [31] Armstrong T. A., Spears J. W., Lloyd K. E., Inflammatory response, growth, and thyroid hormone concentrations are affected by long-term boron supplementation in gilts, J. Anim. Sci., 79, 1549-1556, 2001.
  • [32] Armstrong T. A., Spears J. W., Effect of boron supplementation of pig diets on the production of tumor necrosis factor-α and interferon-γ, J. Anim. Sci., 81, 2552-2561, 2003.
  • [33] Cao J., Jiang L., Zhang X., Yao X., Geng C., Xue X., Zhong L., Boric acid inhibits LPS-induced TNF-α formation through a thiol-dependent mechanism in THP-1 cells, J. Trace Elem. Med. Biol., 22, 189-195, 2008.
  • [34] Scorei R. I., Ciofrangeanu C., Ion R., Cimpean A., Galateanu B., Mitran V., Iordachescu D., In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages, Biol. Trace Elem. Res., 135, 334-344, 2010.
  • [35] Turkez H., Geyikoğlu F., Dirican E. Tatar A., In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes, Cytotechnology, 64, 607-612, 2012.
  • [36] Üstündağ A., Behm C., Föllmann W., Duydu Y., Degen G., Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells, Arch. Toxicol., 88. 1281-1289, 2014.
  • [37] Türkez H., Arsian M. E., Ōzdemir Ō., Chikha O., Ameliorative effect of boric acid against nicotine-induced cytotoxicity on cultured human primary alveolar epithelial cells, BORON, 1, 104-109, 2016.
  • [38] Hu Q., Li S., Qiao E., Tang Z., Jin E., Jin G., Gu Y., Effects of boron on structure and antioxidative activities of spleen in rats, Biol. Trace Elem. Res., 58, 73-80, 2014.
  • [39] Sogut I., Oglakci A., Kartkaya K., Ol, K. K., Sogut M. S., Kanbak G., Inal M. E., Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome, Experimental and Therapeutic Medicine, 9, 1023-1027, 2015.
  • [40] Kucukkurt I., Ince S., Demirel H.H., Turkmen R., Akbel E., Celik Y., The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats, J. Biochem. Mol. Toxicol., 29, 564-571, 2015.
  • [41] Bhasker T. V., Gowda N. K. S., Mondal S., Krishnamoorthy P., Pal D.T., Mor A., Bhat S. K., Pattanaik A. K., Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats, J. Trace Elem. Med. Biol., 36, 73-79, 2016.
  • [42] Scorei R., Mitrut P., Petrisor I., Scorei I., A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis, Biol. Trace Elem. Res., 144, 253-263, 2011.
  • [43] Mahmood N. M. A., Barawi O. R., Hussain S. A., Relationship between serum concentrations of boron and inflammatory markers, disease duration, and severity of patients with knee osteoarthritis in Sulaimani city, National Journal of Physiology, Pharmacy, and Pharmacology, 6 (online first), DOI: 10.5455/njppp.2015.5.0809201576, 5 p., 2015. [44] Al-Rawi Z. S., Gorial F.I., Al-Shammary W. A., Muhsin F., Al-Naaimi A. S., Kareem S., Serum boron concentration in rheumatoid arthritis: Correlation with disease activity, functional class, and rheumatoid factor, J. Exp. Integr. Med., 3, 9-15, 2013.
  • [45] Militaru C., Donoiu I., Craciun A., Scorei I. D., Bulearca A. M., Scorei R. I., Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: Effects of lipid profiles, inflammation markers, and quality of life, Nutr., 29, 178-183, 2013.
  • [46] Rogoveanu O.-C., Mofoşanu G. D., Bejenaru C., Bejenaru L.E., Croitoru O., Neamţu J., Pietrzkowski Z., Reyes-Izquierdo T., Biţă A, Scorei I. D., Scorei R. I., Effects of calcium fructoborate on levels of C-reactive protein, total cholesterol, low-density lipoprotein, triglycerides, IL-1β, I L-6, and MCP-1: A double-blind, placebo-controlled clinical study, Biol. Trace Elem. Res., 163, 124-131, 2015.
  • [47] Scorei R. I., Popa R., Sugar-borate esters – potential chemical agents in prostate cancer prevention, Anti-Cancer Agents in Medicinal Chemistry, 13, 901-909, 2013.
  • [48] Cui Y, Winton M. L., Zhang Z. F., Rainey C., Marshall J., De Kemion J. B., Eckhert C. D., Dietary boron intake and prostate cancer risk, Oncology Reports, 11, 887-892, 2004.
  • [49] Barranco W. T., Eckhert C. C., Boric acid inhibits human prostate cancer cell proliferation, Cancer Letters, 216, 21-26, 2004.
  • [50] Korkmaz M., Avci C.B., Gunduz C., Aygunes D., Erbaykent-Tepedelen B., Disodium pentaborate decahydrate (DPD) induced apoptosis by deceasing hTERT enzyme activity and disrupting F-actin organization of prostate cancer cells, Tumor Biology, 35, 1531-1538, 2014.
  • [51] Kobylewski S. E., Henderson K. A., Yamada K. E., Eckhert C. D., Activation of the EIF2α/ATF4 and ATF6 pathways in DU-145 cells by boric acid at the concentration reported in men at the US mean boron intake, Biol. Trace Elem. Res., DOI 10.1007/s12011-016-0824-y (Epub ahead of print).
  • [52] Gallardo-Williams M. T., Chapin R. E., King P. E. Moser G. J., Goldsworthy T. L., Morrison J. P., Maronpot R. R., Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice, Toxicologic Patholoty, 32, 73-78. 2004.
  • [53] Korkmaz M., Uzgören E., Bakirdere S., Aydin F. Ataman O. Y., Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells, Environ. Toxicol. Chem. 22, 17-25, 2007.
  • [54] Mahabir S., Spitz M. R., Barrera S. L., Dong Y. Q., Eastham C., Forman M. R., Dietary boron and hormone replacement therapy as risk factors for lung cancer in women, American Journal of Epidemiology, 167, 1070-1080, 2008.
  • [55] Scorei R., Ciubar R., Ciofrangeanu C. M., Mitran V., Cimpean A., Iordachescu D., Comparative effects of boric acid and calcium fructoborate on breast cancer cells, Biol. Trace Elem. Res., 122, 197-205, 2008.
  • [56] Penland J. G., Quantitative analysis of EEG effects following experimental marginal magnesium and boron deprivation, Magnesium Res., 8, 341-358, 1995.
  • [57] Penland J. G., The importance of boron nutrition for brain and psychological function, Biol. Trace Elem. Res., 66, 299-317, 1998.
  • [58] Penland J. G., Eberhardt M. J., Effects of dietary boron and magnesium on brain function of mature male and female Long-Evans rats, J. Trace Elem. Exp. Med., 6, 53-64, 1993.
  • [59] Eckhert C. D. , Rowe R. I., Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish, J. Trace Elem. Exp. Med., 12, 213-219, 1999.
  • [60] Nielsen F. H., Penland J. G., Boron deprivation alters rat behavior and brain mineral composition differently when fish oil instead of safflower oil is the fat source, Nutritional Neuroscience, 9, 105-112, 2006.
  • [61] Hunt C. D., Regulation of enzymatic activity, One possible role of dietary boron in higher animals and humans, Biol. Trace Elem. Res., 66, 205-225, 1998.
  • [62] Ralston N. V., Hunt C. D., Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis, Biochimica et Biophysica Acta, 1527, 20-30, 2001.
  • [63] Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelezer I., Bassier B. L., Hughson P. M., Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545-549, 2002.
  • [64] Nielsen F. H., Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats, J. Trace Elem. Exp. Med. Biol., 23, 204-213, 2009.
  • [65] Henderson K., Stella S. L., Jr., Kobylewski S., Eckhert C. D., Receptor activated Ca2+ release is inhibited by boric acid in prostate cancer cells, PLoS one, 4, e6009, 2009.
  • [66] Henderson K. A., Kobylewski S. E., Yamada K. E., Eckhert C. D., Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells, Biometals, 28, 133-141, 2015.
  • [67] Wimmer M. A., Lochnit G., Bassil E., Mühling K. H, Goldbach H. E., Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatograpy, Plant & Cell Physiology, , 50, 1292-11304, 2009.
  • [68] Park M., Li Q., Shcheynikov N., Zeng W., Muallem S., NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation, Molecular Cell, 16, 331-341, 2004.
  • [69] Bai Y., Hunt C. D., Dietary boron enhances efficacy of cholecalciferol in broiler chicks, J. Trace Elem. Exp. Med., 9, 117-132, 1996.
  • [70] Nielsen F. H., Penland J. G., Boron supplementation of peri-menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune response, J. Trace Elem. Exp. Med., 12, 251-261, 1999.
  • [71] Fort D. J., Boron deficiency disables Xenopus laevis oocyte maturation events, Biol. Trace Elem. Res., 85, 157-169, 2002.
  • [72] Sheng M. H. C., Taper L. J. Veit H., Thomas E. A., Ritchey S. J., Lau K. H. W., Dietary boron supplementation enhanced the action of estrogen, but not that of parathyroid hormone, to improve trabecular bone quality in ovariectomized rats, Biol. Trace Elem. Res., 82, 109-123, 2001.
  • [73] Sheng M. H. C. Taper L. J., Veit H., Thomas E. A., Ritchey S. J., Lau K. H. W., Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in overiectomized rats, Biol. Trace Elem. Res., 81, 29-45, 2001.
  • [74] Nielsen F. H., Gallagher S. K., Johnson L. K., Nielsen E. J., Boron enhances and mimics some effects of estrogen therapy in postmenopausal women, J. Trace Elem. Exp. Med., 5, 237-246, 1992.
  • [75] Wang Y., Zhao Y., Chen X., Experimental study on the estrogen-like effect of boric acid, Biol. Trace Elem. Res., 121, 160-170, 2008.
  • [76] Bakken N.A., Hunt C. D., Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status, J. Nutr., 133, 3577-3583, 2003.
  • [77] Thompson J. A., Oliveira R. A., Djukovic A., Ubeda C., Xavier K. B., Manipulation of the quorum-sensing signal AI-2 affects the antibiotic-treated gut microbiota, Cell Reports, 10, 1861-1871, 2015.
  • [78] Nielsen F. H., Evidence for the nutritional essentiality of boron, J. Trace Elem. Exp. Med., 9, 215-229, 1996.
  • [79] Hunt C. D., Boron homeostasis in the cholecalciferol-deficient chick, Proceedings of the North Dakota Academy of Sciences, 42, 60, 1988.
  • [80] World Health Organization, Trace Elements in Human Nutrition and Health, Chap. 13: Boron, World Health Organization, Geneva, 1996.
  • [81] Food and Nutrition Board, Institute of Medicine, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, Chap. 13, Arsenic, boron, nickel, silicon, and vanadium, National Academy Press, Washington, D. C., 2001.
  • [82] World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria 204 – Boron, World Health Organization, Geneva, 1998.
  • [83] European Food Safety Authority, Opinion of the scientific panel on dietetic products, nutrition, and allergies on a request from the commission related to the tolerable upper intake level of boron (sodium borate and boric acid), European Food Safety Authority Journal, 80, 1-22, 2004.
  • [84] Hunt C. D., Meacham S. L., Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: Concentrations in common Western foods and estimated daily intakes by infants, toddlers; and male and female adolescents, adults, and seniors in the United States, Journal of the American Dietetic Association, 101, 1058-160, 2001.
  • [85] Choi M. K., Jun Y. S., Analysis of boron content in frequently consumed foods in Korea, Biol. Trace Elem. Res., 126, 13-26, 2008.
Year 2017, Volume: 2 Issue: 3, 153 - 160, 30.12.2017

Abstract

References

  • [1] Hunt C. D., Dietary boron: Evidence for essentiality and homeostatic control in humans and animals, Advances in Plant and Animal Boron Nutrition, Springer, Dordrecht, The Netherlands, pp. 251-267, 2007.
  • [2] Fort D. J., Rogers R. L., McLaughlin D. W., Sellers C. M., Schlekat C. L., Impact of boron deficiency on Xenopus laevis, A summary of biological effects and potential biochemical roles, Biol. Trace Elem. Res., 90, 117-142, 2002.
  • [3] Rowe R. I., Eckhert C. D., Boron is required for zebrafish embryogenesis, J. Exp. Biol., 12, 221-233, 1999.
  • [4] Hunt C. D., Nielsen F. H., Interaction between boron and cholecalciferol in the chick, Trace Elements Metabolism in Man and Animals, TENA-4, Australian Academy of Science, Canberra, Australia, pp. 597-600, 1981.
  • [5] Hunt C. D., Herbel J. L., Idso J. P., Dietary boron modifies the effects of vitamin D3 nutriture on indices of energy substrate utilization and mineral metabolism in the chick, J. Bone Miner. Res., 9, 171-181, 1994.
  • [6] Armstrong T. A., Spears J. W., Crenshaw T. D., Nielsen F. H., Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites, J. Nutr., 139, 2575-2581, 2000.
  • [7] Nielsen F. H., Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats, BioFactors, 20, 161-171, 2004.
  • [8] Gorustovich A. A., Steimetz T., Nielsen F. H., Guglielmotti M. B., Histomorphometric study of alveolar bone healing in rats fed a boron-deficient diet, Anatomical Record (Hoboken), 291, 441-447, 2008.
  • [9] Gorustovich A. A., Steimetz T., Nielsen F. H., Guglielmotti M. B., A histomorphometric study of alveolar bone modeling and remodeling in mice fed a boron-deficient diet, Archives of Oral Biology, 53,677-682, 2008.
  • [10] Sağlam M., Hatipoğlu M., Köseoğlu S., Esen H. H., Kelebek S., Boric acid inhibits alveolar bone loss in rats by affecting RANKL and osteoprotegerin expression, Journal of Periodontal Research, 49, 472-479, 2014.
  • [11] Balci Yuce H., Toker H., Goze F., The histopathological and morphometric investigation of the effects of systemically administered boric acid on alveolar bone loss in ligature-induced periodontitis in diabetic rats, Acta Odontologica Scandinavica 72, 729-736, 2014. [12] Hakki S. S., Malkoc S., Dundar N., Kayis S.A., Hakki E. E., Hamurcu M., Baspinar N., Basoglu A., Nielsen F. H., Götz W., Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral compostion and alveolar bone mineral density in rabbits fed a high-energy diet, J. Trace Elem. Med. Biol., 29, 208-215, 2015.
  • [13] Taşh P. N., Doğan A., Demirci S., Şahin F., Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro, Biol. Trace Elem. Res., 153, 419-427, 2013.
  • [14] Ying X., Cheng S., Wang W., Lin Z., Chen Q., Zhang W., Kou D., Shen Y., Cheng X., Rompis F.A., Peng L., Lu C.Z., Effect of boron on osteogenic differentiation of human bone marrow stromal cells, Biol. Trace Elem. Res., 144, 306-315, 2011.
  • [15] Majafabadi B. M., Abnosi M. H., Boron induces early matrix mineralization via calcium deposition and elevation of alkaline phosphatase activity in differentiated rat bone marrow mesenchymal stem cells, Cell Journal (Yakhteh), 18, 62-73, 2016.
  • [16] Hakki S. S., Bozkurt B. S., Hakki E. E., Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1), J. Trace Elem. Med. Biol., 24, 243-250, 2010.
  • [17] Wu C., Miron R., Sculean A., Kaskel S., Doert T., Schulze R., Zhang Y., Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds, Biomater., 32, 7068-7078, 2011.
  • [18] Gorustovich A. A., López J. M. P., Guglielmotti M. B., Cabrini R. L., Biological performance of boron-modified bioactive glass particles implanted in rat tibia bone marrow, Biomed. Mater., 1, 100-105, 2006.
  • [19] Xie Z., Liu X., Jia W., Zhang C., Huang W., Wang S., Treatment of osteomyelitis and repair of bone defect by degradable bioactive borate glass releasing vancomycin, J. Controlled Release, 139, 118-126, 2009.
  • [20] Doğan A., Demirci S., Bayir Y., Halici Z., Karakus E., Aydin A., Cadirci E., Albayrak A., Demirci E., Karaman A., Ayan A.K., Gundoglu C., Şahin F., Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering, Mater. Sci. Eng., C, 44, 246-253, 2014.
  • [21] Haro Durand L. A., Góngora A., Porto López J. M., Boccaccini A. R., Zago M. P., Baldi A., Gorustovich A., In vitro endothelial cell response t ionic dissolution products from boron-doped bioactive glass in the SiO2-CaO-P2O5-Na2O system, J. Mater. Chem. B, 2, 7620-7630, 2014. [22] Haro Durand L. A., Vargas G. E.., Romero N. M., Vera-Mesones R., Porto- López J. M. Boccaccini A. R., Zago M. P., Baldi A., Gorustovich A., Angiogenic effects of ionic dissolution products released from a boron-doped 4SS5 bioactive glass, J. Mater. Chem. B, 3, 1142-1148, 2015.
  • [23] Uysal T., Ustdal A., Sonmez M. F., Ozturk F., Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits, Angle Orthodontist, 79, 984-990, 2009.
  • [24] Gölge U. H., Kaymaz B., Arpaci R., Kömürcü E., Göksel F., Güven M., Güzel Y., Cevizci S., Effects of boric acid on fracture healing: An experimental study, Biol. Trace Elem. Res., 167, 264-271, 2015.
  • [25] Cheng J., Peng K., Jin E., Zhang Y., Liu Y., Zhang N., Song H., Liu H., Tang Z., Effect of additional boron on tibias of African ostrich chicks, Biol. Trace Elem. Res, 144, 538, 549, 2011.
  • [26] Scorei R. I., Rotaru P., Calcium fructoborate – potential anti-inflammatory agent, Biol. Trace Elem. Res., 143, 1223-1238, 2011.
  • [27] Fracp R. L. T., Rennie G. C., Newnham R. E., Boron and arthritis: the results of a double-blind study, J. Nutr. Med., 1, 127-132, 1990.
  • [28] Miljkovic D., Scorei R. I., Cimpoiaşu V. M., Scorei I. D., Calcium fructoborate: Plant-based dietary boron for human nutrition, Journal of Dietary Supplements, 6, 211-226, 2009.
  • [29] Hunt C. D., Idso J. P., Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress, J. Trace Elem. Exp. Med., 12, 221-233, 1999.
  • [30] Hunt C. D., Dietary boron: An overview of the evidence for its role in immune function, J. Trace Elem. Exp. Med., 16, 291-306, 2003.
  • [31] Armstrong T. A., Spears J. W., Lloyd K. E., Inflammatory response, growth, and thyroid hormone concentrations are affected by long-term boron supplementation in gilts, J. Anim. Sci., 79, 1549-1556, 2001.
  • [32] Armstrong T. A., Spears J. W., Effect of boron supplementation of pig diets on the production of tumor necrosis factor-α and interferon-γ, J. Anim. Sci., 81, 2552-2561, 2003.
  • [33] Cao J., Jiang L., Zhang X., Yao X., Geng C., Xue X., Zhong L., Boric acid inhibits LPS-induced TNF-α formation through a thiol-dependent mechanism in THP-1 cells, J. Trace Elem. Med. Biol., 22, 189-195, 2008.
  • [34] Scorei R. I., Ciofrangeanu C., Ion R., Cimpean A., Galateanu B., Mitran V., Iordachescu D., In vitro effects of calcium fructoborate upon production of inflammatory mediators by LPS-stimulated RAW 264.7 macrophages, Biol. Trace Elem. Res., 135, 334-344, 2010.
  • [35] Turkez H., Geyikoğlu F., Dirican E. Tatar A., In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes, Cytotechnology, 64, 607-612, 2012.
  • [36] Üstündağ A., Behm C., Föllmann W., Duydu Y., Degen G., Protective effect of boric acid on lead- and cadmium-induced genotoxicity in V79 cells, Arch. Toxicol., 88. 1281-1289, 2014.
  • [37] Türkez H., Arsian M. E., Ōzdemir Ō., Chikha O., Ameliorative effect of boric acid against nicotine-induced cytotoxicity on cultured human primary alveolar epithelial cells, BORON, 1, 104-109, 2016.
  • [38] Hu Q., Li S., Qiao E., Tang Z., Jin E., Jin G., Gu Y., Effects of boron on structure and antioxidative activities of spleen in rats, Biol. Trace Elem. Res., 58, 73-80, 2014.
  • [39] Sogut I., Oglakci A., Kartkaya K., Ol, K. K., Sogut M. S., Kanbak G., Inal M. E., Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome, Experimental and Therapeutic Medicine, 9, 1023-1027, 2015.
  • [40] Kucukkurt I., Ince S., Demirel H.H., Turkmen R., Akbel E., Celik Y., The effects of boron on arsenic-induced lipid peroxidation and antioxidant status in male and female rats, J. Biochem. Mol. Toxicol., 29, 564-571, 2015.
  • [41] Bhasker T. V., Gowda N. K. S., Mondal S., Krishnamoorthy P., Pal D.T., Mor A., Bhat S. K., Pattanaik A. K., Boron influences immune and antioxidant responses by modulating hepatic superoxide dismutase activity under calcium deficit abiotic stress in Wistar rats, J. Trace Elem. Med. Biol., 36, 73-79, 2016.
  • [42] Scorei R., Mitrut P., Petrisor I., Scorei I., A double-blind, placebo-controlled pilot study to evaluate the effect of calcium fructoborate on systemic inflammation and dyslipidemia markers for middle-aged people with primary osteoarthritis, Biol. Trace Elem. Res., 144, 253-263, 2011.
  • [43] Mahmood N. M. A., Barawi O. R., Hussain S. A., Relationship between serum concentrations of boron and inflammatory markers, disease duration, and severity of patients with knee osteoarthritis in Sulaimani city, National Journal of Physiology, Pharmacy, and Pharmacology, 6 (online first), DOI: 10.5455/njppp.2015.5.0809201576, 5 p., 2015. [44] Al-Rawi Z. S., Gorial F.I., Al-Shammary W. A., Muhsin F., Al-Naaimi A. S., Kareem S., Serum boron concentration in rheumatoid arthritis: Correlation with disease activity, functional class, and rheumatoid factor, J. Exp. Integr. Med., 3, 9-15, 2013.
  • [45] Militaru C., Donoiu I., Craciun A., Scorei I. D., Bulearca A. M., Scorei R. I., Oral resveratrol and calcium fructoborate supplementation in subjects with stable angina pectoris: Effects of lipid profiles, inflammation markers, and quality of life, Nutr., 29, 178-183, 2013.
  • [46] Rogoveanu O.-C., Mofoşanu G. D., Bejenaru C., Bejenaru L.E., Croitoru O., Neamţu J., Pietrzkowski Z., Reyes-Izquierdo T., Biţă A, Scorei I. D., Scorei R. I., Effects of calcium fructoborate on levels of C-reactive protein, total cholesterol, low-density lipoprotein, triglycerides, IL-1β, I L-6, and MCP-1: A double-blind, placebo-controlled clinical study, Biol. Trace Elem. Res., 163, 124-131, 2015.
  • [47] Scorei R. I., Popa R., Sugar-borate esters – potential chemical agents in prostate cancer prevention, Anti-Cancer Agents in Medicinal Chemistry, 13, 901-909, 2013.
  • [48] Cui Y, Winton M. L., Zhang Z. F., Rainey C., Marshall J., De Kemion J. B., Eckhert C. D., Dietary boron intake and prostate cancer risk, Oncology Reports, 11, 887-892, 2004.
  • [49] Barranco W. T., Eckhert C. C., Boric acid inhibits human prostate cancer cell proliferation, Cancer Letters, 216, 21-26, 2004.
  • [50] Korkmaz M., Avci C.B., Gunduz C., Aygunes D., Erbaykent-Tepedelen B., Disodium pentaborate decahydrate (DPD) induced apoptosis by deceasing hTERT enzyme activity and disrupting F-actin organization of prostate cancer cells, Tumor Biology, 35, 1531-1538, 2014.
  • [51] Kobylewski S. E., Henderson K. A., Yamada K. E., Eckhert C. D., Activation of the EIF2α/ATF4 and ATF6 pathways in DU-145 cells by boric acid at the concentration reported in men at the US mean boron intake, Biol. Trace Elem. Res., DOI 10.1007/s12011-016-0824-y (Epub ahead of print).
  • [52] Gallardo-Williams M. T., Chapin R. E., King P. E. Moser G. J., Goldsworthy T. L., Morrison J. P., Maronpot R. R., Boron supplementation inhibits the growth and local expression of IGF-1 in human prostate adenocarcinoma (LNCaP) tumors in nude mice, Toxicologic Patholoty, 32, 73-78. 2004.
  • [53] Korkmaz M., Uzgören E., Bakirdere S., Aydin F. Ataman O. Y., Effects of dietary boron on cervical cytopathology and on micronucleus frequency in exfoliated buccal cells, Environ. Toxicol. Chem. 22, 17-25, 2007.
  • [54] Mahabir S., Spitz M. R., Barrera S. L., Dong Y. Q., Eastham C., Forman M. R., Dietary boron and hormone replacement therapy as risk factors for lung cancer in women, American Journal of Epidemiology, 167, 1070-1080, 2008.
  • [55] Scorei R., Ciubar R., Ciofrangeanu C. M., Mitran V., Cimpean A., Iordachescu D., Comparative effects of boric acid and calcium fructoborate on breast cancer cells, Biol. Trace Elem. Res., 122, 197-205, 2008.
  • [56] Penland J. G., Quantitative analysis of EEG effects following experimental marginal magnesium and boron deprivation, Magnesium Res., 8, 341-358, 1995.
  • [57] Penland J. G., The importance of boron nutrition for brain and psychological function, Biol. Trace Elem. Res., 66, 299-317, 1998.
  • [58] Penland J. G., Eberhardt M. J., Effects of dietary boron and magnesium on brain function of mature male and female Long-Evans rats, J. Trace Elem. Exp. Med., 6, 53-64, 1993.
  • [59] Eckhert C. D. , Rowe R. I., Embryonic dysplasia and adult retinal dystrophy in boron-deficient zebrafish, J. Trace Elem. Exp. Med., 12, 213-219, 1999.
  • [60] Nielsen F. H., Penland J. G., Boron deprivation alters rat behavior and brain mineral composition differently when fish oil instead of safflower oil is the fat source, Nutritional Neuroscience, 9, 105-112, 2006.
  • [61] Hunt C. D., Regulation of enzymatic activity, One possible role of dietary boron in higher animals and humans, Biol. Trace Elem. Res., 66, 205-225, 1998.
  • [62] Ralston N. V., Hunt C. D., Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis, Biochimica et Biophysica Acta, 1527, 20-30, 2001.
  • [63] Chen X., Schauder S., Potier N., Van Dorsselaer A., Pelezer I., Bassier B. L., Hughson P. M., Structural identification of a bacterial quorum-sensing signal containing boron, Nature, 415, 545-549, 2002.
  • [64] Nielsen F. H., Boron deprivation decreases liver S-adenosylmethionine and spermidine and increases plasma homocysteine and cysteine in rats, J. Trace Elem. Exp. Med. Biol., 23, 204-213, 2009.
  • [65] Henderson K., Stella S. L., Jr., Kobylewski S., Eckhert C. D., Receptor activated Ca2+ release is inhibited by boric acid in prostate cancer cells, PLoS one, 4, e6009, 2009.
  • [66] Henderson K. A., Kobylewski S. E., Yamada K. E., Eckhert C. D., Boric acid induces cytoplasmic stress granule formation, eIF2α phosphorylation, and ATF4 in prostate DU-145 cells, Biometals, 28, 133-141, 2015.
  • [67] Wimmer M. A., Lochnit G., Bassil E., Mühling K. H, Goldbach H. E., Membrane-associated, boron-interacting proteins isolated by boronate affinity chromatograpy, Plant & Cell Physiology, , 50, 1292-11304, 2009.
  • [68] Park M., Li Q., Shcheynikov N., Zeng W., Muallem S., NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation, Molecular Cell, 16, 331-341, 2004.
  • [69] Bai Y., Hunt C. D., Dietary boron enhances efficacy of cholecalciferol in broiler chicks, J. Trace Elem. Exp. Med., 9, 117-132, 1996.
  • [70] Nielsen F. H., Penland J. G., Boron supplementation of peri-menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune response, J. Trace Elem. Exp. Med., 12, 251-261, 1999.
  • [71] Fort D. J., Boron deficiency disables Xenopus laevis oocyte maturation events, Biol. Trace Elem. Res., 85, 157-169, 2002.
  • [72] Sheng M. H. C., Taper L. J. Veit H., Thomas E. A., Ritchey S. J., Lau K. H. W., Dietary boron supplementation enhanced the action of estrogen, but not that of parathyroid hormone, to improve trabecular bone quality in ovariectomized rats, Biol. Trace Elem. Res., 82, 109-123, 2001.
  • [73] Sheng M. H. C. Taper L. J., Veit H., Thomas E. A., Ritchey S. J., Lau K. H. W., Dietary boron supplementation enhances the effects of estrogen on bone mineral balance in overiectomized rats, Biol. Trace Elem. Res., 81, 29-45, 2001.
  • [74] Nielsen F. H., Gallagher S. K., Johnson L. K., Nielsen E. J., Boron enhances and mimics some effects of estrogen therapy in postmenopausal women, J. Trace Elem. Exp. Med., 5, 237-246, 1992.
  • [75] Wang Y., Zhao Y., Chen X., Experimental study on the estrogen-like effect of boric acid, Biol. Trace Elem. Res., 121, 160-170, 2008.
  • [76] Bakken N.A., Hunt C. D., Dietary boron decreases peak pancreatic in situ insulin release in chicks and plasma insulin concentrations in rats regardless of vitamin D or magnesium status, J. Nutr., 133, 3577-3583, 2003.
  • [77] Thompson J. A., Oliveira R. A., Djukovic A., Ubeda C., Xavier K. B., Manipulation of the quorum-sensing signal AI-2 affects the antibiotic-treated gut microbiota, Cell Reports, 10, 1861-1871, 2015.
  • [78] Nielsen F. H., Evidence for the nutritional essentiality of boron, J. Trace Elem. Exp. Med., 9, 215-229, 1996.
  • [79] Hunt C. D., Boron homeostasis in the cholecalciferol-deficient chick, Proceedings of the North Dakota Academy of Sciences, 42, 60, 1988.
  • [80] World Health Organization, Trace Elements in Human Nutrition and Health, Chap. 13: Boron, World Health Organization, Geneva, 1996.
  • [81] Food and Nutrition Board, Institute of Medicine, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, Chap. 13, Arsenic, boron, nickel, silicon, and vanadium, National Academy Press, Washington, D. C., 2001.
  • [82] World Health Organization, International Programme on Chemical Safety, Environmental Health Criteria 204 – Boron, World Health Organization, Geneva, 1998.
  • [83] European Food Safety Authority, Opinion of the scientific panel on dietetic products, nutrition, and allergies on a request from the commission related to the tolerable upper intake level of boron (sodium borate and boric acid), European Food Safety Authority Journal, 80, 1-22, 2004.
  • [84] Hunt C. D., Meacham S. L., Aluminum, boron, calcium, copper, iron, magnesium, manganese, molybdenum, phosphorus, potassium, sodium, and zinc: Concentrations in common Western foods and estimated daily intakes by infants, toddlers; and male and female adolescents, adults, and seniors in the United States, Journal of the American Dietetic Association, 101, 1058-160, 2001.
  • [85] Choi M. K., Jun Y. S., Analysis of boron content in frequently consumed foods in Korea, Biol. Trace Elem. Res., 126, 13-26, 2008.
There are 82 citations in total.

Details

Journal Section Review Articles
Authors

Forrest Harold Nielsen This is me 0000-0001-9557-4792

Publication Date December 30, 2017
Acceptance Date December 21, 2017
Published in Issue Year 2017 Volume: 2 Issue: 3

Cite

APA Nielsen, F. H. (2017). Historical and recent aspects of boron in human and animal health. Journal of Boron, 2(3), 153-160.