Research Article
BibTex RIS Cite

Synthesis of Fe-Fe2B catalysts via solvothermal route for hydrogen generation by hydrolysis of NaBH4

Year 2018, Volume: 3 Issue: 1, 51 - 62, 26.03.2018
https://doi.org/10.30728/boron.348291

Abstract




In this study, iron sulfate
heptahydrate (FeSO4.7H2O) and sodium borohydride (NaBH4)
were used to synthesize Fe-Fe2B nanocrystals
via the solvothermal route. Synthesis of Fe-Fe2B nanocrystals was
carried out under Argon (Ar) gas atmosphere with aqueous solutions of FeSO4.7H2O
and NaBH4 at various concentrations and reaction time. The phases
and microstructures of nanocrystals thus formed were characterized by X-Ray
diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). Surface
areas of
nanocrystals were measured by a surface area and pore-size analyzer using
nitrogen adsorption-desorption method together with Brunauer-Emmett-Teller
(BET) equation. The vacuum dried nanoparticles were calcined under both Ar and
air at 500 ºC. Nano-cylindrical structures Fe-Fe2B were observed
while calcinating under Ar atmosphere; whereas more irregular shaped particles
were obtained by calcination under air. The surface areas of nanocylinders were
determined as 12 m2/g, 5.5 m2/g and 16.5 m2/g,
for vacuum dried, Ar-calcined and O2-calcined products respectively.
The catalytic effect of those nanocrystals for hydrogen generation were studied
by determining reaction rates in aqueous alkaline solutions of NaBH4.
Their catalytic activities were investigated by varying the amount of
catalysts, and the concentrations of NaBH4 and NaOH. The effect of
temperature on the catalytic activity was also studied by varying the temperatures
from 25-70 °C. It was noticed that the catalytic activity of vacuum dried
nanocrystals was the highest, and it decreased with the increase in NaOH
concentration.
With 0.01 g of Fe-Fe2B
catalyst in 1 % w/w NaBH4 concentration at 25 °C, the hydrogen
production rate was 570 mL of
H2.g-1.m-1,
which reached to 1230 at 50 °C and
2700 mL at 70 °C. 




References

  • [1] Yalaz, N., Kocakuşak, S., Kalafatoğlu, E., İnorganik bor bileşikleri kaynak araştırması metal borürler, TÜBİTAK Marmara Bilimsel ve Endüstriyel Araştırma Enstitüsü, Kocaeli, 1-84 1988.
  • [2] Telle, R., Boride and Carbide Ceramics, Materials Science and Technology, 11, Swain, M., VCH Publishers Inc., New York, 185-229, 1994.
  • [3] Lundstrom, T., "Structure, defects and properties of some refractory borides", Pure&Applied Chem., 57(10), 1384, 1985.
  • [4] Schwetz, K. A., Lipp, A., Boron carbide, boron nitride, and metal borides, Ullmann's Encyclopedia of Industrial Chemistry, A4, Campbell, F. T., Pfefferkorn, R., Wiley-VCH, Weinheim, 303-306, 1985.
  • [5] Habashi, F., Handbook of Extractive Metallurgy, Wiley-VCH, NewYork, 4, 1997.
  • [6] Gadakary S., Khanra A. K., Veerabau R., Production of nanocrystalline TiB2 powder through self-propagating high temperature synthesis (SHS) of TiO2-H3BO3-Mg mixture, Advances in Applied Ceramics Structural, Functional and Bioceramics, Adv. Appl. Ceram., 113 (7) ,419-426, 2014.
  • [7] Wei Y., Liu Z., Ran S., Xi A., Yi T. F., Ji Y., Synthesis and properties of Fe-B powders by molten salt method, J. Mater. Res., 32 (4), 28, 883-889, 2017.
  • [8] Yin H., Tang D., Mao X., Xiao W., Wang D., Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries, J. Mater. Chem. A, 3, 15184-15189, 2015.
  • [9] Babar S., Kumar N., Zhang P., Abelson J. R., Dunbar A. C., Daly S. R., Girolami G. S., Growth Inhibitor To Homogenize Nucleation and Obtain Smooth HfB2 Thin Films by Chemical Vapor Deposition, Chem. Mater., 25, 662-667, 2013.
  • [10] Qiu H. Y., Guo W. M., Zou J, Zhang G. J., ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: The effects of carbon source and reaction atmosphere, Powder Technol., 217, 462-466, 2012.
  • [11] Liu Y., Geng R., Cui Y., Peng S., Chang X., Han K., Yu M., A novel liquid hybrid precursor method via sol-gel for the preparation of ZrB2 films, Mater. Des., 128, 80-85, 2017.
  • [12] Cao Y., Zhang H., Li F., Lu L., Zhang S., Preparation and characterization of ultrafine ZrB2-SiC composite powders by a combined sol-gel and microwave boro/carbothermal reduction method, Ceram. Int., 41, 7823-7829, 2015.
  • [13] Kudaka K., Iizumi K., Sasaki T., Okada S., Mechanochemical synthesis of MoB2 and Mo2B5, J. Alloys Compd., 315, 104-107, 2001.
  • [14] Kelly J. P., Kanakala R., Graeve O. A., A Solvothermal Approach for the Preparation of Nanostructured Carbide and Boride Ultra-High-Temperature Ceramics, J. Am. Ceram. Soc., 93 (10) 3035-3038, 2010.
  • [15] Xiaochen S., Min D., Ming G., Bin Z., Weiping D., Solvent effects in the synthesis of CoB catalysts on hydrogen generation from hydrolysis of sodium borohydride, Chin. J. Catal., 34, 979-985, 2013.
  • [16] Gu Y., Qian Y., Chen L., Zhou F., A mild solvothermal route to nanocrystalline titanium diboride, J. Alloys Compd., 352, 325-327, 2003.
  • [17] Krishnan P, Advani S. G., Prasad A. K., Cobalt oxides as Co2B catalyst precursors for the hydrolysis of sodium borohydride solutions to generate hydrogen for PEM fuel cells, Int. J. Hydrogen Energy, 33, 7095-7102, 2008.
  • [18] Wells S., Charles S. W., Morup S., Linderotht S., Wonterghem J. V., Larsent J, Madsent M. B., A study of Fe-B and Fe-CeB alloy particles produced by reduction with borohydride, J. Phys.: Condens. Matter, 1, 8199-8208, 1989.
  • [19] Gupta S., Patel N., Fernandes R., Kothari D.C., Miotello A., Mesoporous Co-B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 38, 14685-14692 2013.
  • [20] Walter J. C., Zurawski A., Montgomery D., Thornburg M., Revankar S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, J. Power Sources, 179, 335-339, 2008.
  • [21] Vernekar A.A., Bugde S. T., Tilve S., Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydride solution using recyclable Co-Co2B and Ni-Ni3B nanocomposites, Int. J. Hydrogen Energy, 37, 327-334, 2012.
  • [22] Manna J., Roy B., Vashistha M., Sharma P., Effect of Co+2/BH-4 ratio in the synthesis of Co-B catalysts on sodium borohydride hydrolysis, Int. J. Hydrogen Energy, 39, 406-413, 2014.
  • [23] Hua D., Hanxi Y., Xinping A., Chuansin C., Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst, Int. J. Hydrogen Energy, 28, 1095 - 1100, 2003.
  • [24] Baydaroglu F, Ozdemir E, Hasimoglu A., An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4, Int. J. Hydrogen Energy, 39, 1516-1522, 2014.
  • [25] Aydin M., Hasimoglu A., Ozdemir O.K., Kinetic properties of Cobalt-Titanium-Boride (Co-Ti-B) catalysts for sodium borohydride hydrolysis reaction, Int. J. Hydrogen Energy 41, 239-248, 2016.
  • [26] Edla R., Gupta S., Patel N., Bazzanella N., Fernandes R., Kothari D.C., Miotello A., Enhanced H2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition, Appl. Catal., A, 515, 1-9, 2016.
  • [27] Loghmani M. H., Shojaei A. F., Khakzad M., Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants, Energy, 126 ,830-840, 2017.
  • [28] Wei Y., Meng W., Wang Y., Gao Y., Qi K., Zhang K., Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co-Ni-B catalysts, Int. J. Hydrogen Energy, 42, 6072-6079, 2017.
  • [29] Kojima Y., Suzuki K. I, Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H., Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide, Int. J. Hydrogen Energy, 27, 1029 - 1034, 2002.
  • [30] Wang Y. P., Wang Y. J., Ren Q. L., Li L., Jiao L. F., Song D.W., Liu G., Han Y., Yuan H. T., Ultrafine Amorphous Co-Fe-B Catalysts for the Hydrolysis of NaBH4 Solution to Generate Hydrogen for PEMFC, Fuel Cells, 10 (1) 132-138, 2010.
  • [31] Liang Z., Li Q., Li F., Zhao S., Xia X., Hydrogen generation from hydrolysis of NaBH4 based on high stable NiB/NiFe2O4 catalyst, Int. J. Hydrogen Energy, 42, 3971-3980, 2017.
  • [32] Özsaçmacı G., Çakanyıldırım Ç., Gürü M., Co-Mn/TiO2 catalyst to enhance the NaBH4 decomposition, Boron 1 (1), 1 - 5, 2016.
  • [33] Şimşek T., Bariş M., Synthesis of Co2B nanostructures and their catalytic properties for hydrogen generation , Boron 2 (1), 28 - 36, 2017.
  • [34] Kojima Y., Kawai Y., Kimbara M., Nakanishi H., Matsumoto S., Hydrogen generation by hydrolysis reaction of lithium Borohydride, Int. J. Hydrogen Energy, 29, 1213 - 1217, 2004.
  • [35] Kojima Y., Suzuki K. I., Kawai Y., Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2, J. Power Sources, 155, 325-328, 2006.
  • [36] Xu D., Wang H., Guo Q., Ji S., Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4, Fuel Process. Technol., 92, 1606-1610 2011.
  • [37] Sahin Ö., Dolas H., Özdemir M., The effect of various factors on the hydrogen generation by hydrolysis reaction of potassium borohydride, Int. J. Hydrogen Energy, 32, 2330 - 2336, 2007.
  • [38] Cao N., Luo W., Cheng G., One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 38, 11964-11972, 2013.
  • [39] Durap F., Zahmakıran M., Ozkar S., Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime, Int. J. Hydrogen Energy 34, 7223-7230, 2009.
  • [40] Wang C., Tuninetti J., Wang Z., Zhang C., Ciganda R., Salmon L., Moya S., Ruiz J., Astruc D., Hydrolysis of Ammonia-Borane over Ni/ZIF‑8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release, J. Am. Chem. Soc., 139, 11610−11615, 2017.
  • [41] Mori K., Miyawaki K., Yamashita H., Ru and Ru−Ni Nanoparticles on TiO2 Support as Extremely Active Catalysts for Hydrogen Production from Ammonia−Borane, ACS Catal., 6, 3128−3135, 2016.
  • [42] Qiu F., Li L., Liu G., Wang Y., Wang Y., An C., Xu Y., Xu C., Wang Y., Jiao L., Yuan H., In situ synthesized Fe-Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 38, 3241-3249, 2013. [43] Krishnan P., Hsueh K. L., Yim S. D., Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells, Appl. Catal., B, 77, 206-214, 2007.
  • [44] Patel N., Miotello A., Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals, Int. J. Hydrogen Energy, 40, 1429-1464, 2015.
  • [45] Demirci U. B., Akdim O., Andrieux J., Hannauer J., Chamoun R., Miele P., Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell, Fuel Cells, 10 (3), 335-350, 2010.
  • [46] Gupta S., Patel N., Miotello A., Kothari D.C., Cobalt-Boride: An efficient and robust electrocatalyst for Hydrogen Evolution Reaction, J. Power Sources, 279, 620-625, 2015.
  • [47] Jiang K., Xu K., Zou S., Cai W. B., B‑Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid−Formate Solutions, J. Am. Chem. Soc., 136, 4861−4864, 2014.
  • [48] Rakap M., The highest catalytic activity in the hydrolysis of ammonia borane by poly (N-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation, Appl. Catal., B, 163, 129-134, 2015.
  • [49] Akbayrak S., Kaya M., Volkan M., Özkar S., Palladium(0) nanoparticles supported on silica-coated cobalt ferrite:A highly active, magnetically isolable and reusable catalyst forhydrolytic dehydrogenation of ammonia borane, Appl. Catal., B,147, 387- 393, 2014.
  • [50] Tonbul Y., Akbayrak S., Ozkar S., Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 41, 11154-11162, 2016.
  • [51] Clémençon D., Petit J.F., Demirci U.B., Xu Q., Miele P., Nickel- and platinum-containing core@shell catalysts for hydrogen generation of aqueous hydrazine borane, J. Power Sources, 260, 77-81, 2014.
  • [52] Wu C., Zhang H., Yi B., Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells, Catal. Today, 93-95, 477-483, 2004.
  • [53] Semaško M., Tamašiūnaitė L. T., Stalnionienė I., Žielienė A., Vaičiūnienė J., Stanynienė B. S., Selskis A., Norkus E., Hydrogen Generation via Sodium Borohydride Hydrolysis Using Graphene Supported Platinum-Ruthenium-Cobalt Catalysts Prepared nu Microwave-Assisted Synthesis, ECS Trans., 68 (3), 37-44, 2015.
  • [54] Brack P Dann S. E., Wijayantha K. G., Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions, Energy Sci. Eng., 3 (3),174-188, 2015.
  • [55] Cao N., Su J., Luo W., Cheng G, Graphene supported Ru@Co core-shell nanoparticles as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane, Catal. Commun., 43, 47-51, 2014.
  • [56] Cao N., Hu K., Luo W., Cheng G., RuCu nanoparticles supported on graphene: A highly efficient catalyst for hydrolysis of ammonia borane, J. Alloys Compd., 590, 241-246, 2014.
  • [57] Liang H., Chen G., Desinan S., Rosei R., Rosei F., Ma D., In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy, 37, 17921-17927, 2012.
  • [58] Cao N., Liu T., Su J., Wu X., Luo W., Cheng G., Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes, NewJ.Chem., 38, 4032, 2014.
  • [59] Chowdhury A.D., Agnihotri N., De A., Hydrolysis of sodium borohydride using Ru-Co-Pedot nanocomposites as catalyst, Chem. Eng. J., 264, 531-537, 2015.
  • [60] Mustapić M., Pajić D., Novosel N., Babić E., Zadro K., Cindrić M., Horvat J., Skoko Ž., Bijelić M., Shcherbakov A., Synthesis, Structural Characterization and Magnetic Properties of Iron Boride Nanoparticles with or without Silicon Dioxide Coating, Croat. Chem. Acta, 83 (3), 275-282, 2010.
  • [61] Dai H.B., Gao L.L., Liang Y., Kang X.D., Wang P., Promoted hydrogen generation from ammonia borane aqueous solution using cobalt-molybdenum-boron/nickel foam catalyst, J. Power Sources, 195, 307-312, 2010. [62] Wu C., Wu F., Bai Y., Yi B., Zhang H., Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution, Mater. Lett., 59, 1748-1751, 2005.
  • [63] Glavee G. N., Klabunde K. J., Sorensen C. M., Hadjipanayis G. C., Chemistry of Borohydride Reduction of Iron(I1) and Iron(II1) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders, Inorg. Chem., 34, 28-35, 1995.
  • [64] Patel N., Fernandes R., Miotello A., Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: A kinetic study, J. Power Sources, 188, 411-420, 2009.
  • [65] Sahiner N., Ozay O., Inger E., Aktas N., Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles, J. Power Sources, 196, 10105- 10111, 2011.
  • [66] Amendola S.C. Sharp-Goldman S.L., Janjua M.S., Spencer N.C., Kelly M.T., Petillo P.J., A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru Catalyst, Int. J. Hydrogen Energy, 25, 969-75, 2000.
  • [67] Liang Y., Dai H.B., Ma L.P., Wang P., Cheng H.M., Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst, Int. J. Hydrogen Energy, 35, 3023-3028, 2010.
Year 2018, Volume: 3 Issue: 1, 51 - 62, 26.03.2018
https://doi.org/10.30728/boron.348291

Abstract

References

  • [1] Yalaz, N., Kocakuşak, S., Kalafatoğlu, E., İnorganik bor bileşikleri kaynak araştırması metal borürler, TÜBİTAK Marmara Bilimsel ve Endüstriyel Araştırma Enstitüsü, Kocaeli, 1-84 1988.
  • [2] Telle, R., Boride and Carbide Ceramics, Materials Science and Technology, 11, Swain, M., VCH Publishers Inc., New York, 185-229, 1994.
  • [3] Lundstrom, T., "Structure, defects and properties of some refractory borides", Pure&Applied Chem., 57(10), 1384, 1985.
  • [4] Schwetz, K. A., Lipp, A., Boron carbide, boron nitride, and metal borides, Ullmann's Encyclopedia of Industrial Chemistry, A4, Campbell, F. T., Pfefferkorn, R., Wiley-VCH, Weinheim, 303-306, 1985.
  • [5] Habashi, F., Handbook of Extractive Metallurgy, Wiley-VCH, NewYork, 4, 1997.
  • [6] Gadakary S., Khanra A. K., Veerabau R., Production of nanocrystalline TiB2 powder through self-propagating high temperature synthesis (SHS) of TiO2-H3BO3-Mg mixture, Advances in Applied Ceramics Structural, Functional and Bioceramics, Adv. Appl. Ceram., 113 (7) ,419-426, 2014.
  • [7] Wei Y., Liu Z., Ran S., Xi A., Yi T. F., Ji Y., Synthesis and properties of Fe-B powders by molten salt method, J. Mater. Res., 32 (4), 28, 883-889, 2017.
  • [8] Yin H., Tang D., Mao X., Xiao W., Wang D., Electrolytic calcium hexaboride for high capacity anode of aqueous primary batteries, J. Mater. Chem. A, 3, 15184-15189, 2015.
  • [9] Babar S., Kumar N., Zhang P., Abelson J. R., Dunbar A. C., Daly S. R., Girolami G. S., Growth Inhibitor To Homogenize Nucleation and Obtain Smooth HfB2 Thin Films by Chemical Vapor Deposition, Chem. Mater., 25, 662-667, 2013.
  • [10] Qiu H. Y., Guo W. M., Zou J, Zhang G. J., ZrB2 powders prepared by boro/carbothermal reduction of ZrO2: The effects of carbon source and reaction atmosphere, Powder Technol., 217, 462-466, 2012.
  • [11] Liu Y., Geng R., Cui Y., Peng S., Chang X., Han K., Yu M., A novel liquid hybrid precursor method via sol-gel for the preparation of ZrB2 films, Mater. Des., 128, 80-85, 2017.
  • [12] Cao Y., Zhang H., Li F., Lu L., Zhang S., Preparation and characterization of ultrafine ZrB2-SiC composite powders by a combined sol-gel and microwave boro/carbothermal reduction method, Ceram. Int., 41, 7823-7829, 2015.
  • [13] Kudaka K., Iizumi K., Sasaki T., Okada S., Mechanochemical synthesis of MoB2 and Mo2B5, J. Alloys Compd., 315, 104-107, 2001.
  • [14] Kelly J. P., Kanakala R., Graeve O. A., A Solvothermal Approach for the Preparation of Nanostructured Carbide and Boride Ultra-High-Temperature Ceramics, J. Am. Ceram. Soc., 93 (10) 3035-3038, 2010.
  • [15] Xiaochen S., Min D., Ming G., Bin Z., Weiping D., Solvent effects in the synthesis of CoB catalysts on hydrogen generation from hydrolysis of sodium borohydride, Chin. J. Catal., 34, 979-985, 2013.
  • [16] Gu Y., Qian Y., Chen L., Zhou F., A mild solvothermal route to nanocrystalline titanium diboride, J. Alloys Compd., 352, 325-327, 2003.
  • [17] Krishnan P, Advani S. G., Prasad A. K., Cobalt oxides as Co2B catalyst precursors for the hydrolysis of sodium borohydride solutions to generate hydrogen for PEM fuel cells, Int. J. Hydrogen Energy, 33, 7095-7102, 2008.
  • [18] Wells S., Charles S. W., Morup S., Linderotht S., Wonterghem J. V., Larsent J, Madsent M. B., A study of Fe-B and Fe-CeB alloy particles produced by reduction with borohydride, J. Phys.: Condens. Matter, 1, 8199-8208, 1989.
  • [19] Gupta S., Patel N., Fernandes R., Kothari D.C., Miotello A., Mesoporous Co-B nanocatalyst for efficient hydrogen production by hydrolysis of sodium borohydride, Int. J. Hydrogen Energy, 38, 14685-14692 2013.
  • [20] Walter J. C., Zurawski A., Montgomery D., Thornburg M., Revankar S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, J. Power Sources, 179, 335-339, 2008.
  • [21] Vernekar A.A., Bugde S. T., Tilve S., Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydride solution using recyclable Co-Co2B and Ni-Ni3B nanocomposites, Int. J. Hydrogen Energy, 37, 327-334, 2012.
  • [22] Manna J., Roy B., Vashistha M., Sharma P., Effect of Co+2/BH-4 ratio in the synthesis of Co-B catalysts on sodium borohydride hydrolysis, Int. J. Hydrogen Energy, 39, 406-413, 2014.
  • [23] Hua D., Hanxi Y., Xinping A., Chuansin C., Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst, Int. J. Hydrogen Energy, 28, 1095 - 1100, 2003.
  • [24] Baydaroglu F, Ozdemir E, Hasimoglu A., An effective synthesis route for improving the catalytic activity of carbon-supported Co-B catalyst for hydrogen generation through hydrolysis of NaBH4, Int. J. Hydrogen Energy, 39, 1516-1522, 2014.
  • [25] Aydin M., Hasimoglu A., Ozdemir O.K., Kinetic properties of Cobalt-Titanium-Boride (Co-Ti-B) catalysts for sodium borohydride hydrolysis reaction, Int. J. Hydrogen Energy 41, 239-248, 2016.
  • [26] Edla R., Gupta S., Patel N., Bazzanella N., Fernandes R., Kothari D.C., Miotello A., Enhanced H2 production from hydrolysis of sodium borohydride using Co3O4 nanoparticles assembled coatings prepared by pulsed laser deposition, Appl. Catal., A, 515, 1-9, 2016.
  • [27] Loghmani M. H., Shojaei A. F., Khakzad M., Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu-Fe-B nano powders: Effect of polymers and surfactants, Energy, 126 ,830-840, 2017.
  • [28] Wei Y., Meng W., Wang Y., Gao Y., Qi K., Zhang K., Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co-Ni-B catalysts, Int. J. Hydrogen Energy, 42, 6072-6079, 2017.
  • [29] Kojima Y., Suzuki K. I, Fukumoto K., Sasaki M., Yamamoto T., Kawai Y., Hayashi H., Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide, Int. J. Hydrogen Energy, 27, 1029 - 1034, 2002.
  • [30] Wang Y. P., Wang Y. J., Ren Q. L., Li L., Jiao L. F., Song D.W., Liu G., Han Y., Yuan H. T., Ultrafine Amorphous Co-Fe-B Catalysts for the Hydrolysis of NaBH4 Solution to Generate Hydrogen for PEMFC, Fuel Cells, 10 (1) 132-138, 2010.
  • [31] Liang Z., Li Q., Li F., Zhao S., Xia X., Hydrogen generation from hydrolysis of NaBH4 based on high stable NiB/NiFe2O4 catalyst, Int. J. Hydrogen Energy, 42, 3971-3980, 2017.
  • [32] Özsaçmacı G., Çakanyıldırım Ç., Gürü M., Co-Mn/TiO2 catalyst to enhance the NaBH4 decomposition, Boron 1 (1), 1 - 5, 2016.
  • [33] Şimşek T., Bariş M., Synthesis of Co2B nanostructures and their catalytic properties for hydrogen generation , Boron 2 (1), 28 - 36, 2017.
  • [34] Kojima Y., Kawai Y., Kimbara M., Nakanishi H., Matsumoto S., Hydrogen generation by hydrolysis reaction of lithium Borohydride, Int. J. Hydrogen Energy, 29, 1213 - 1217, 2004.
  • [35] Kojima Y., Suzuki K. I., Kawai Y., Hydrogen generation from lithium borohydride solution over nano-sized platinum dispersed on LiCoO2, J. Power Sources, 155, 325-328, 2006.
  • [36] Xu D., Wang H., Guo Q., Ji S., Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4, Fuel Process. Technol., 92, 1606-1610 2011.
  • [37] Sahin Ö., Dolas H., Özdemir M., The effect of various factors on the hydrogen generation by hydrolysis reaction of potassium borohydride, Int. J. Hydrogen Energy, 32, 2330 - 2336, 2007.
  • [38] Cao N., Luo W., Cheng G., One-step synthesis of graphene supported Ru nanoparticles as efficient catalysts for hydrolytic dehydrogenation of ammonia borane, Int. J. Hydrogen Energy, 38, 11964-11972, 2013.
  • [39] Durap F., Zahmakıran M., Ozkar S., Water soluble laurate-stabilized ruthenium(0) nanoclusters catalyst for hydrogen generation from the hydrolysis of ammonia-borane: High activity and long lifetime, Int. J. Hydrogen Energy 34, 7223-7230, 2009.
  • [40] Wang C., Tuninetti J., Wang Z., Zhang C., Ciganda R., Salmon L., Moya S., Ruiz J., Astruc D., Hydrolysis of Ammonia-Borane over Ni/ZIF‑8 Nanocatalyst: High Efficiency, Mechanism, and Controlled Hydrogen Release, J. Am. Chem. Soc., 139, 11610−11615, 2017.
  • [41] Mori K., Miyawaki K., Yamashita H., Ru and Ru−Ni Nanoparticles on TiO2 Support as Extremely Active Catalysts for Hydrogen Production from Ammonia−Borane, ACS Catal., 6, 3128−3135, 2016.
  • [42] Qiu F., Li L., Liu G., Wang Y., Wang Y., An C., Xu Y., Xu C., Wang Y., Jiao L., Yuan H., In situ synthesized Fe-Co/C nano-alloys as catalysts for the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 38, 3241-3249, 2013. [43] Krishnan P., Hsueh K. L., Yim S. D., Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells, Appl. Catal., B, 77, 206-214, 2007.
  • [44] Patel N., Miotello A., Progress in Co-B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals, Int. J. Hydrogen Energy, 40, 1429-1464, 2015.
  • [45] Demirci U. B., Akdim O., Andrieux J., Hannauer J., Chamoun R., Miele P., Sodium Borohydride Hydrolysis as Hydrogen Generator: Issues, State of the Art and Applicability Upstream from a Fuel Cell, Fuel Cells, 10 (3), 335-350, 2010.
  • [46] Gupta S., Patel N., Miotello A., Kothari D.C., Cobalt-Boride: An efficient and robust electrocatalyst for Hydrogen Evolution Reaction, J. Power Sources, 279, 620-625, 2015.
  • [47] Jiang K., Xu K., Zou S., Cai W. B., B‑Doped Pd Catalyst: Boosting Room-Temperature Hydrogen Production from Formic Acid−Formate Solutions, J. Am. Chem. Soc., 136, 4861−4864, 2014.
  • [48] Rakap M., The highest catalytic activity in the hydrolysis of ammonia borane by poly (N-vinyl-2-pyrrolidone)-protected palladium-rhodium nanoparticles for hydrogen generation, Appl. Catal., B, 163, 129-134, 2015.
  • [49] Akbayrak S., Kaya M., Volkan M., Özkar S., Palladium(0) nanoparticles supported on silica-coated cobalt ferrite:A highly active, magnetically isolable and reusable catalyst forhydrolytic dehydrogenation of ammonia borane, Appl. Catal., B,147, 387- 393, 2014.
  • [50] Tonbul Y., Akbayrak S., Ozkar S., Palladium(0) nanoparticles supported on ceria: Highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane, Int. J. Hydrogen Energy, 41, 11154-11162, 2016.
  • [51] Clémençon D., Petit J.F., Demirci U.B., Xu Q., Miele P., Nickel- and platinum-containing core@shell catalysts for hydrogen generation of aqueous hydrazine borane, J. Power Sources, 260, 77-81, 2014.
  • [52] Wu C., Zhang H., Yi B., Hydrogen generation from catalytic hydrolysis of sodium borohydride for proton exchange membrane fuel cells, Catal. Today, 93-95, 477-483, 2004.
  • [53] Semaško M., Tamašiūnaitė L. T., Stalnionienė I., Žielienė A., Vaičiūnienė J., Stanynienė B. S., Selskis A., Norkus E., Hydrogen Generation via Sodium Borohydride Hydrolysis Using Graphene Supported Platinum-Ruthenium-Cobalt Catalysts Prepared nu Microwave-Assisted Synthesis, ECS Trans., 68 (3), 37-44, 2015.
  • [54] Brack P Dann S. E., Wijayantha K. G., Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions, Energy Sci. Eng., 3 (3),174-188, 2015.
  • [55] Cao N., Su J., Luo W., Cheng G, Graphene supported Ru@Co core-shell nanoparticles as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane and methylamine borane, Catal. Commun., 43, 47-51, 2014.
  • [56] Cao N., Hu K., Luo W., Cheng G., RuCu nanoparticles supported on graphene: A highly efficient catalyst for hydrolysis of ammonia borane, J. Alloys Compd., 590, 241-246, 2014.
  • [57] Liang H., Chen G., Desinan S., Rosei R., Rosei F., Ma D., In situ facile synthesis of ruthenium nanocluster catalyst supported on carbon black for hydrogen generation from the hydrolysis of ammonia-borane, Int. J. Hydrogen Energy, 37, 17921-17927, 2012.
  • [58] Cao N., Liu T., Su J., Wu X., Luo W., Cheng G., Ruthenium supported on MIL-101 as an efficient catalyst for hydrogen generation from hydrolysis of amine boranes, NewJ.Chem., 38, 4032, 2014.
  • [59] Chowdhury A.D., Agnihotri N., De A., Hydrolysis of sodium borohydride using Ru-Co-Pedot nanocomposites as catalyst, Chem. Eng. J., 264, 531-537, 2015.
  • [60] Mustapić M., Pajić D., Novosel N., Babić E., Zadro K., Cindrić M., Horvat J., Skoko Ž., Bijelić M., Shcherbakov A., Synthesis, Structural Characterization and Magnetic Properties of Iron Boride Nanoparticles with or without Silicon Dioxide Coating, Croat. Chem. Acta, 83 (3), 275-282, 2010.
  • [61] Dai H.B., Gao L.L., Liang Y., Kang X.D., Wang P., Promoted hydrogen generation from ammonia borane aqueous solution using cobalt-molybdenum-boron/nickel foam catalyst, J. Power Sources, 195, 307-312, 2010. [62] Wu C., Wu F., Bai Y., Yi B., Zhang H., Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution, Mater. Lett., 59, 1748-1751, 2005.
  • [63] Glavee G. N., Klabunde K. J., Sorensen C. M., Hadjipanayis G. C., Chemistry of Borohydride Reduction of Iron(I1) and Iron(II1) Ions in Aqueous and Nonaqueous Media. Formation of Nanoscale Fe, FeB, and Fe2B Powders, Inorg. Chem., 34, 28-35, 1995.
  • [64] Patel N., Fernandes R., Miotello A., Hydrogen generation by hydrolysis of NaBH4 with efficient Co–P–B catalyst: A kinetic study, J. Power Sources, 188, 411-420, 2009.
  • [65] Sahiner N., Ozay O., Inger E., Aktas N., Controllable hydrogen generation by use smart hydrogel reactor containing Ru nano catalyst and magnetic iron nanoparticles, J. Power Sources, 196, 10105- 10111, 2011.
  • [66] Amendola S.C. Sharp-Goldman S.L., Janjua M.S., Spencer N.C., Kelly M.T., Petillo P.J., A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru Catalyst, Int. J. Hydrogen Energy, 25, 969-75, 2000.
  • [67] Liang Y., Dai H.B., Ma L.P., Wang P., Cheng H.M., Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst, Int. J. Hydrogen Energy, 35, 3023-3028, 2010.
There are 65 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Mustafa Barış 0000-0002-2119-0697

Tuncay Şimşek This is me 0000-0002-4683-0152

Hatice Taşkaya This is me

Arun K. Chattopadhyay This is me

Publication Date March 26, 2018
Acceptance Date January 26, 2018
Published in Issue Year 2018 Volume: 3 Issue: 1

Cite

APA Barış, M., Şimşek, T., Taşkaya, H., Chattopadhyay, A. K. (2018). Synthesis of Fe-Fe2B catalysts via solvothermal route for hydrogen generation by hydrolysis of NaBH4. Journal of Boron, 3(1), 51-62. https://doi.org/10.30728/boron.348291

© 2016 All Rights Reserved
TENMAK Boron Research Institute