Review
BibTex RIS Cite
Year 2019, Volume: 4 Issue: 1, 31 - 38, 16.03.2019
https://doi.org/10.30728/boron.459258

Abstract

References

  • [1] http://www.boren.gov.tr.
  • [2] Liv L., Nakiboglu N., Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode, Turk. J. Chem, 40, 412-421, 2016.
  • [3] İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik, Resmi Gazete, Resmi Gazete, Sayı: 25730, 2005.
  • [4] TS 266 (Turkish Standard), Sular - İnsani tüketim amaçlı sular (Water intended for human consumption), 2005.
  • [5] WHO World Health Organization (WHO), Guidelines for Drinking-water Quality, fourth edition, ISBN 978-92-4-154995-0, 2017.
  • [6] Council Directive 98/83/EC on the quality of water intended for human consumption, 1998.
  • [7] Kmiecik E., Tomaszewska B., Wator K., Bodzek M., Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations, Environ. Sci. Pollut. R., 23, 11658-11667, 2016.
  • [8] Peng G.L., He Q., Li H., Mmereki D., Lu Y., Zheng Y., Zhong Z., Lin J., Determination of boron in water samples by dispersive liquid-liquid microextraction based on the solidification of a floating organic drop coupled with a fluorimetric method, Analyst,141, 2313-2318, 2016.
  • [9] Naghii M.R. Samman S., The role of boron in nutrition and metabolism, Prog. Food. Nutr. Sci. 17(4), 331–349, 1993.
  • [10] Shao C., Matsuoka S., Miyazaki Y., Yoshimura K., Anion exchanger as a reaction/separation medium-absorptiometric determination of trace amounts of boron in waters by on-line complexation with chromotropic acid presorbed on the anion-exchange column, Analyst, 127, 1614, 2002.
  • [11] Sah R., Brown P., Boron determination - a review of analytical methods. Microchem. J., 56, 285–304, 1997.
  • [12] Kot F. S., Boron sources, speciation and its potential impact on health. Rev Environ. Biotehnol., 8, 3–28, 2009.
  • [13] Farhat A, Ahmad F, Arafat H (2013) Analytical techniques for boron quantification supporting desalination processes. A Rev. Desalination, 310:9–17
  • [14] Aggarwal S.K., You C.F., A review on the determination of isotope ratios of boron with mass spectrometry, Mass. Spectrom. Rev., 36, 499-519, 2017.
  • [15] TS EN ISO 11885, Su kalitesi - İndüktif olarak eşleşmiş plazma atomik emisyon spektrometresi (ICP-OES) ile seçilen elementlerin tayini (Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES)), 2013
  • [16] TS EN ISO 17294-2, Su kalitesi – İndüktif olarak eşleşmiş plazma kütle spektrometrinin (ICP-MS) uygulanması – Bölüm 2: Uranyum izotopları dahil seçilmiş elementlerin tayini (Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes), 2017.
  • [17] Altunay N., Gurkan R., Simultaneous determination of antimony and boron in beverage and dairy products by flame atomic absorption spectrometry after separation and pre-concentration by cloud-point extraction, Food. Addit. Contam. A., 33, 271-281, 2016.
  • [18] Strkalj A., Glavas Z., Application of spectrometric methods in the analysis of metallurgical samples, J. Chemists Chem. Eng. 65, 349-352, 2016.
  • [19] Palma P., Calderon R., Godoy M., Rubio M.A., Comparative study of two analytical methods to the determination of boron in leachate samples from sanitary landfills and groundwater for routine analysis and feasible on-site environmental monitoring, Int. J. Environ. Anal. Chem., 96, 627-635, 2016.
  • [20] Yamamoto Y., Shirasaki T., Yonetani A., Imai S., Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization, Anal. Sci, 31, 357-364, 2015.
  • [21] Devulder V., Gerdes A., Vanhaecke F., Degryse P., Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry, Spectrochim. Acta B, 105, 116-120, 2015.
  • [22] Muller C.C., Nunes T.S., Muller A.L.H., Dressler V.L., Flores E.M.M., Muller E.I., Determination of boron in silicon carbide by ICP-OES and ICP-MS after sample preparation using pyrohydrolysis, J. Brazil Chem. Soc., 26, 110-116, 2015.
  • [23] Michel A., Noireaux J., Tharaud M., Determination of boron concentration in geochemical reference materials extracted by pyrohydrolysis and measured by ICP-MS, Geostand. Geoanal. Res., 39, 489-495, 2015.
  • [24] He M.Y., Jin Z.D., Luo C.G., Deng L., Xiao J., Zhang F., Determination of boron isotope ratios in tooth enamel by inductively coupled plasma mass spectrometry (ICP-MS) after matrix separation by ion exchange chromatography, J. Brazil Chem. Soc., 26, 949-954, 2015.
  • [25] Saha A., Shah D., Deb S.B., Saxena M.K., Mishra V.G., Nagar B.K., Tomar B.S., Simultaneous quantification and isotope ratio measurement of boron in uranium-silicon-aluminium compounds by inductively coupled plasma orthogonal acceleration time of flight mass spectrometry (ICP-oa-TOFMS) after its separation by pyrohydrolysis, Microchem. J., 121, 56-64, 2015.
  • [26] Marschall H.R., Monteleone B.D., boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry, Geostand. Geoanal. Res., 39, 31-46, 2015.
  • [27] Roux P., Lemarchand D., Hughes H.J., Turpault M.P., A rapid method for determining boron concentration (ID-ICP-MS) and delta B-11 (MC-ICP-MS) in vegetation samples after microwave digestion and cation exchange chemical purification, Geostand. Geoanal. Res., 39, 453-466, 2015.
  • [28] Kaczmarek K., Horn I., Nehrke G., Bijma J., Simultaneous determination of delta B-11 and B/Ca ratio in marine biogenic carbonates at nanogram level, Chem. Geol., 392, 32-42, 2015.
  • [29] Hu G.Y., Li Y.H., Fan C.F., Hou K.J., Zhao Y., Zeng L.S., In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China, Ore Geol. Rev., 65, 1127-1141, 2015.
  • [30] Martin C., Ponzevera E., Harlow G., In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS, Chem. Geol., 412, 107-116, 2015. [31] Chevallier E., Chekri R., Zinck J., Guerin T., Noel L., Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation based on the accuracy profile, J. Food Compos. Anal., 41, 35-41, 2015.
  • [32] Ma Y.Q., Peng Z.K., Yang J, Xiao Y.K., Zhang Y.L., Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation, Talanta, 175, 250-255, 2017.
  • [33] Tanimizu M., Nagaishi K., Ishikawa T., A rapid and precise determination of boron isotope ratio in water and carbonate samples by multiple collector ICP-MS, Anal. Sci., 34, 667-674, 2018.
  • [34] Liu Y.H., Huang K.F., Lee D.C., Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS, J. Anal. Atom. Spectrom., 33, 846-855, 2018.
  • [35] Yang T., Bian X.P., Zhu B., Jiang S.Y., Yan X., Wei H.Z., Rapid determination of boron isotopic composition (delta B-11) in pore water by multi-collector inductively coupled plasma mass spectrometry, Anal. Methods-UK, 8, 1721-1727, 2016.
  • [36] Park T.C., Yoon H.W., Jo Y.J., Determination of boron in steel and iron using standard addition method, Korean J. Met. Mater., 53, 13-19, 2015.
  • [37] Muller C.C., Nunes T.S., Muller A.L.H., Dressler V.L., Flores E.M.M., Muller E.I., Determination of boron in silicon carbide by ICP-OES and ICP-MS after sample preparation using pyrohydrolysis, J. Brazil Chem. Soc., 26, 110-116, 2015.
  • [38] Hao Z.H., Yao J.Z., Tang R.L., Zhang X.M., Li W.G., Zhang Q., Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES), Spectrosc. Spect. Anal., 35, 527-533, 2015.
  • [39] Ozbek N., Akman S., Determination of boron in Turkish wines by microwave plasma atomic emission spectrometry, Food Sci. Technol., 61, 532-535, 2015.
  • [40] Thangavel S., Dash K., Dhavile S.M., Sahayam A.C., Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES), Talanta, 131, 505-509, 2015.
  • [41] Sreenivasulu V., Kumar N.S., Dharmendra V., Asif M., Balaram V., Zhengxu H., Zhen Z., Determination of boron, phosphorus, and molybdenum content in biosludge samples by microwave plasma atomic emission spectrometry (MP-AES), Appl. Sci.-Basel, 7, Art. No: 264, 2017.
  • [42] Ma Y.Q., Peng Z.K., Yang J., Xiao Y.K., Zhang Y.L., Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation, Talanta, 175, 250-255, 2017.
  • [43] Luo Y., Cong H.X., Cui R.R., Cao C.Q., Zhou W., Zhao Z.Q., Determination of boron concentration in uranium fuel samples by ICP-OES following a separation step by cation exchange resin, Nucl. Sci. Tech., 29, Art. No. 44, 2018.
  • [44] Bazhenov M.A., Tikhova V.D., Fadeeva V.P., Determination of boron in organic compounds by microwave plasma-atomic emission spectrometry, J. Anal. Chem., 71, 1089-1095, 2016.
  • [45] Michalke B., Biomonitoring of boron: Development and characterization of a simple, reliable and quality controlled biomonitoring method, J. Trace Elem. Med. Bio., 40, 24-29, 2017.
  • [46] Rietig A., Acker J., Development and validation of a new method for the precise and accurate determination of trace elements in silicon by ICP-OES in high silicon matrices, J. Anal. Atom. Spectrom., 32, 322-333, 2017.
  • [47] Peng Z.K., Li H.J., Chai X.L., Xiao Y.K., Zhang Y.L., Yang J., Ma Y.Q., Accurate determination of boron content and isotope in salt, Spectrosc. Spect. Anal., 37, 2564-2568, 2017.
  • [48] Gupta S.N.V.M.S., Nayak A.K., Misra U.B., Yarasi B.R., Babu C.P., Kalyanakrishnan G., A simple and rapid method for determination of boron in fast breeder reactor components, J Radioanal. Nucl. Chem., 313, 571-579, 2017.
  • [49] de Oliveira T.C., Rampazzo R.T., Ferrao M.F., Pozebon D., Method development and total uncertainty estimation for boron, sulfur and phosphorus determination in mineral fertilizer using ICP OES, J. Brazil Chem. Soc., 27, 2021-2033, 2016.
  • [50] Chen F.M., Ai Y., Yang H.Y., Boron detection and quantification based on the absorption spectra of pyridoxine and its boron complex, Environ. Chem., 14, 135-140, 2017.
  • [51] Floquet C.F.A., Lindvig T., Sieben V.J., MacKay B.A., Mostowfi F., Rapid determination of boron in oilfield water using a microfluidic instrument, Anal. Methods-Uk., 9, 1948-1955, 2017.
  • [52] Abad C., Florek S., Becker-Ross H., Huang M.D., Heinrich H.J., Recknagel S., Vogl J., Jakubowski N., Panne U., Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta B, 136,116-122, 2017.
  • [53] Gonzalez P., Sixto A., Knochen M., Multi-pumping flow system for the determination of boron in eye drops, drinking water and ocean water, Talanta, 166, 399-404, 2017.
  • [54] Floquet C.F.A., Sieben V.J., MacKay B.A., Mostowfi F., Determination of boron in produced water using the carminic acid assay, Talanta, 150, 240-252, 2016.
  • [55] Floquet C.F.A., Sieben V.J., MacKay B.A., Mostowfi F., Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument, Talanta, 154, 304-311, 2016.
  • [56] Liv L., Nakiboglu N., Voltammetric Determination of boron using poly xylenol orange-modified pencil graphite electrode, Anal. Lett., 51, 170-185, 2018.
  • [57] Kajiwara M., Ito Y.N., Miyazaki Y., Fujimori T., Takehara K., Yoshimura K., Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron, Phys. Chem. Chem. Phys., 17, 4578-4588, 2015.
  • [58] Raut V.V., Jeyakumar S., Shah D.J., Thakur U.K., Tomar B.S., Ramakumar K.L., Separation of boron from borated paraffin wax by pyrohydrolysis and alkali extraction methods and its determination using ion chromatography, Anal. Sci., 31, 219-223, 2015.
  • [59] Bita A., Mogosanu G.D., Bejenaru L.E., Oancea C.N., Bejenaru C., Croitoru O., Rau G., Neamtu J., Scorei I.D., Scorei I.R. et al., Simultaneous quantitation of boric acid and calcium fructoborate in dietary supplements by HPTLC-densitometry, Anal. Sci., 33, 743-746, 2017.
  • [60] Mishra V.G., Das M.K., Shah D.J., Jeyakumar S., Tomar B.S., Ramakumar K.L., Simultaneous determination of borate, chloride and molybdate in pyrohydrolysis distillates of plant and soil samples by ion chromatography, J. Chromatogr. A, 1532, 144-149, 2018.
  • [61] Li C., Hao Z., Zou Z., Zhou R., Li J.M., Guo L.B., Li X.Y., Lu Y.F., Zeng X.Y., Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence, Opt. Express, 24, 7850-7857, 2016.
  • [62] Stieghorst C., Hampel G., Karches B., Krenckel P., Kudejova P., Plonka C., Revay Z., Riepe S., Welter K., Wiehl N., Determination of boron and hydrogen in materials for multicrystalline solar cell production with prompt gamma activation analysis, J. Radioanal. Nucl. Ch., 317, 307-313, 2018.
  • [63] Bergaoui K., Reguigui N., Gary C.K., Brown C., Cremer J.T., Vainionpaa J.H., Piestrup M.A., Prompt gamma-ray neutron activation analysis of boron using deuterium-deuterium (D-D) neutron generator, J. Radioanal. Nucl. Ch., 303, 115-121, 2015.
  • [64] Guo L.B., Zhu Z.H., Li J.M., Tang Y., Tang S.S., Hao Z.Q., Li X.Y., Lu Y.F., Zeng X.Y., Determination of boron with molecular emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence, Opt. Express, 26, 2364-2642, 2018.
  • [65] Zhang Y., Xiao Y., Ma Y., Liu Z., Luo C., He M., Liu Y., Sample preparation for isotope determination of boron in clay sediments by three-step ion-exchange method, Chinese J. Anal. Chem., 44, 809-815, 2016
  • [66] Yanagisawa N., Tanaku Y., Nakai I., Development of an extraction method for the boron isotope ratio analysis of wood using the boron selective solid-phase extractant, Bunseki Kagaku, 66, 569-573, 2017.
  • [67] Alexovic M., Wieczorek M., Kozak J., Koscielniak P., Balogh I.S., Andruch V., An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron, Talanta, 133, 127-133, 2015.
  • [68] Kara D., Removal of Boron from Aqueous Solution by 2,3-Dihydroxybenzaldehyde Modified Silica Gel, Water Air Soil Poll., 226, 223, 2015.
  • [69] Amin A.S., Optimized solid phase extraction methodology for separation, and spectrophotometric determination of boron using Amberlite XAD-16 resin modified with 2-(2-benzothiazolylazo)-4-methoxyphenol, Rsc Adv., 5, 66975-66980, 2015.

A critical review on the determination of boron in various matrices

Year 2019, Volume: 4 Issue: 1, 31 - 38, 16.03.2019
https://doi.org/10.30728/boron.459258

Abstract

Boron is an element
with a wide range of uses. Boron, which is the main component in boron
minerals, is present as a minor component or even a trace component in other
sources. Depending on the increase in the boron usage areas, the boron
concentrations in environmental samples such as water, soil and air is also
increasing. Therefore, it is important to determine boron in such samples
accurately and precisely. In order to determine boron in various sample matrices,
various analytical methods have been developed and used. This review focuses on
the analytical methods for the determination of boron in various sample matrices.
This review covers approximately the last four years (2015 - August 2018),
offering a critical review of the boron determination by various techniques.

References

  • [1] http://www.boren.gov.tr.
  • [2] Liv L., Nakiboglu N., Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode, Turk. J. Chem, 40, 412-421, 2016.
  • [3] İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik, Resmi Gazete, Resmi Gazete, Sayı: 25730, 2005.
  • [4] TS 266 (Turkish Standard), Sular - İnsani tüketim amaçlı sular (Water intended for human consumption), 2005.
  • [5] WHO World Health Organization (WHO), Guidelines for Drinking-water Quality, fourth edition, ISBN 978-92-4-154995-0, 2017.
  • [6] Council Directive 98/83/EC on the quality of water intended for human consumption, 1998.
  • [7] Kmiecik E., Tomaszewska B., Wator K., Bodzek M., Selected problems with boron determination in water treatment processes. Part I: comparison of the reference methods for ICP-MS and ICP-OES determinations, Environ. Sci. Pollut. R., 23, 11658-11667, 2016.
  • [8] Peng G.L., He Q., Li H., Mmereki D., Lu Y., Zheng Y., Zhong Z., Lin J., Determination of boron in water samples by dispersive liquid-liquid microextraction based on the solidification of a floating organic drop coupled with a fluorimetric method, Analyst,141, 2313-2318, 2016.
  • [9] Naghii M.R. Samman S., The role of boron in nutrition and metabolism, Prog. Food. Nutr. Sci. 17(4), 331–349, 1993.
  • [10] Shao C., Matsuoka S., Miyazaki Y., Yoshimura K., Anion exchanger as a reaction/separation medium-absorptiometric determination of trace amounts of boron in waters by on-line complexation with chromotropic acid presorbed on the anion-exchange column, Analyst, 127, 1614, 2002.
  • [11] Sah R., Brown P., Boron determination - a review of analytical methods. Microchem. J., 56, 285–304, 1997.
  • [12] Kot F. S., Boron sources, speciation and its potential impact on health. Rev Environ. Biotehnol., 8, 3–28, 2009.
  • [13] Farhat A, Ahmad F, Arafat H (2013) Analytical techniques for boron quantification supporting desalination processes. A Rev. Desalination, 310:9–17
  • [14] Aggarwal S.K., You C.F., A review on the determination of isotope ratios of boron with mass spectrometry, Mass. Spectrom. Rev., 36, 499-519, 2017.
  • [15] TS EN ISO 11885, Su kalitesi - İndüktif olarak eşleşmiş plazma atomik emisyon spektrometresi (ICP-OES) ile seçilen elementlerin tayini (Water quality - Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES)), 2013
  • [16] TS EN ISO 17294-2, Su kalitesi – İndüktif olarak eşleşmiş plazma kütle spektrometrinin (ICP-MS) uygulanması – Bölüm 2: Uranyum izotopları dahil seçilmiş elementlerin tayini (Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes), 2017.
  • [17] Altunay N., Gurkan R., Simultaneous determination of antimony and boron in beverage and dairy products by flame atomic absorption spectrometry after separation and pre-concentration by cloud-point extraction, Food. Addit. Contam. A., 33, 271-281, 2016.
  • [18] Strkalj A., Glavas Z., Application of spectrometric methods in the analysis of metallurgical samples, J. Chemists Chem. Eng. 65, 349-352, 2016.
  • [19] Palma P., Calderon R., Godoy M., Rubio M.A., Comparative study of two analytical methods to the determination of boron in leachate samples from sanitary landfills and groundwater for routine analysis and feasible on-site environmental monitoring, Int. J. Environ. Anal. Chem., 96, 627-635, 2016.
  • [20] Yamamoto Y., Shirasaki T., Yonetani A., Imai S., Study of the roles of chemical modifiers in determining boron using graphite furnace atomic absorption spectrometry and optimization of the temperature profile during atomization, Anal. Sci, 31, 357-364, 2015.
  • [21] Devulder V., Gerdes A., Vanhaecke F., Degryse P., Validation of the determination of the B isotopic composition in Roman glasses with laser ablation multi-collector inductively coupled plasma-mass spectrometry, Spectrochim. Acta B, 105, 116-120, 2015.
  • [22] Muller C.C., Nunes T.S., Muller A.L.H., Dressler V.L., Flores E.M.M., Muller E.I., Determination of boron in silicon carbide by ICP-OES and ICP-MS after sample preparation using pyrohydrolysis, J. Brazil Chem. Soc., 26, 110-116, 2015.
  • [23] Michel A., Noireaux J., Tharaud M., Determination of boron concentration in geochemical reference materials extracted by pyrohydrolysis and measured by ICP-MS, Geostand. Geoanal. Res., 39, 489-495, 2015.
  • [24] He M.Y., Jin Z.D., Luo C.G., Deng L., Xiao J., Zhang F., Determination of boron isotope ratios in tooth enamel by inductively coupled plasma mass spectrometry (ICP-MS) after matrix separation by ion exchange chromatography, J. Brazil Chem. Soc., 26, 949-954, 2015.
  • [25] Saha A., Shah D., Deb S.B., Saxena M.K., Mishra V.G., Nagar B.K., Tomar B.S., Simultaneous quantification and isotope ratio measurement of boron in uranium-silicon-aluminium compounds by inductively coupled plasma orthogonal acceleration time of flight mass spectrometry (ICP-oa-TOFMS) after its separation by pyrohydrolysis, Microchem. J., 121, 56-64, 2015.
  • [26] Marschall H.R., Monteleone B.D., boron isotope analysis of silicate glass with very low boron concentrations by secondary ion mass spectrometry, Geostand. Geoanal. Res., 39, 31-46, 2015.
  • [27] Roux P., Lemarchand D., Hughes H.J., Turpault M.P., A rapid method for determining boron concentration (ID-ICP-MS) and delta B-11 (MC-ICP-MS) in vegetation samples after microwave digestion and cation exchange chemical purification, Geostand. Geoanal. Res., 39, 453-466, 2015.
  • [28] Kaczmarek K., Horn I., Nehrke G., Bijma J., Simultaneous determination of delta B-11 and B/Ca ratio in marine biogenic carbonates at nanogram level, Chem. Geol., 392, 32-42, 2015.
  • [29] Hu G.Y., Li Y.H., Fan C.F., Hou K.J., Zhao Y., Zeng L.S., In situ LA-MC-ICP-MS boron isotope and zircon U-Pb age determinations of Paleoproterozoic borate deposits in Liaoning Province, northeastern China, Ore Geol. Rev., 65, 1127-1141, 2015.
  • [30] Martin C., Ponzevera E., Harlow G., In situ lithium and boron isotope determinations in mica, pyroxene, and serpentine by LA-MC-ICP-MS, Chem. Geol., 412, 107-116, 2015. [31] Chevallier E., Chekri R., Zinck J., Guerin T., Noel L., Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: Method validation based on the accuracy profile, J. Food Compos. Anal., 41, 35-41, 2015.
  • [32] Ma Y.Q., Peng Z.K., Yang J, Xiao Y.K., Zhang Y.L., Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation, Talanta, 175, 250-255, 2017.
  • [33] Tanimizu M., Nagaishi K., Ishikawa T., A rapid and precise determination of boron isotope ratio in water and carbonate samples by multiple collector ICP-MS, Anal. Sci., 34, 667-674, 2018.
  • [34] Liu Y.H., Huang K.F., Lee D.C., Precise and accurate boron and lithium isotopic determinations for small sample-size geological materials by MC-ICP-MS, J. Anal. Atom. Spectrom., 33, 846-855, 2018.
  • [35] Yang T., Bian X.P., Zhu B., Jiang S.Y., Yan X., Wei H.Z., Rapid determination of boron isotopic composition (delta B-11) in pore water by multi-collector inductively coupled plasma mass spectrometry, Anal. Methods-UK, 8, 1721-1727, 2016.
  • [36] Park T.C., Yoon H.W., Jo Y.J., Determination of boron in steel and iron using standard addition method, Korean J. Met. Mater., 53, 13-19, 2015.
  • [37] Muller C.C., Nunes T.S., Muller A.L.H., Dressler V.L., Flores E.M.M., Muller E.I., Determination of boron in silicon carbide by ICP-OES and ICP-MS after sample preparation using pyrohydrolysis, J. Brazil Chem. Soc., 26, 110-116, 2015.
  • [38] Hao Z.H., Yao J.Z., Tang R.L., Zhang X.M., Li W.G., Zhang Q., Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES), Spectrosc. Spect. Anal., 35, 527-533, 2015.
  • [39] Ozbek N., Akman S., Determination of boron in Turkish wines by microwave plasma atomic emission spectrometry, Food Sci. Technol., 61, 532-535, 2015.
  • [40] Thangavel S., Dash K., Dhavile S.M., Sahayam A.C., Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES), Talanta, 131, 505-509, 2015.
  • [41] Sreenivasulu V., Kumar N.S., Dharmendra V., Asif M., Balaram V., Zhengxu H., Zhen Z., Determination of boron, phosphorus, and molybdenum content in biosludge samples by microwave plasma atomic emission spectrometry (MP-AES), Appl. Sci.-Basel, 7, Art. No: 264, 2017.
  • [42] Ma Y.Q., Peng Z.K., Yang J., Xiao Y.K., Zhang Y.L., Determination of boron content and isotopic composition in gypsum by inductively coupled plasma optical emission spectroscopy and positive thermal ionization mass spectrometry using phase transformation, Talanta, 175, 250-255, 2017.
  • [43] Luo Y., Cong H.X., Cui R.R., Cao C.Q., Zhou W., Zhao Z.Q., Determination of boron concentration in uranium fuel samples by ICP-OES following a separation step by cation exchange resin, Nucl. Sci. Tech., 29, Art. No. 44, 2018.
  • [44] Bazhenov M.A., Tikhova V.D., Fadeeva V.P., Determination of boron in organic compounds by microwave plasma-atomic emission spectrometry, J. Anal. Chem., 71, 1089-1095, 2016.
  • [45] Michalke B., Biomonitoring of boron: Development and characterization of a simple, reliable and quality controlled biomonitoring method, J. Trace Elem. Med. Bio., 40, 24-29, 2017.
  • [46] Rietig A., Acker J., Development and validation of a new method for the precise and accurate determination of trace elements in silicon by ICP-OES in high silicon matrices, J. Anal. Atom. Spectrom., 32, 322-333, 2017.
  • [47] Peng Z.K., Li H.J., Chai X.L., Xiao Y.K., Zhang Y.L., Yang J., Ma Y.Q., Accurate determination of boron content and isotope in salt, Spectrosc. Spect. Anal., 37, 2564-2568, 2017.
  • [48] Gupta S.N.V.M.S., Nayak A.K., Misra U.B., Yarasi B.R., Babu C.P., Kalyanakrishnan G., A simple and rapid method for determination of boron in fast breeder reactor components, J Radioanal. Nucl. Chem., 313, 571-579, 2017.
  • [49] de Oliveira T.C., Rampazzo R.T., Ferrao M.F., Pozebon D., Method development and total uncertainty estimation for boron, sulfur and phosphorus determination in mineral fertilizer using ICP OES, J. Brazil Chem. Soc., 27, 2021-2033, 2016.
  • [50] Chen F.M., Ai Y., Yang H.Y., Boron detection and quantification based on the absorption spectra of pyridoxine and its boron complex, Environ. Chem., 14, 135-140, 2017.
  • [51] Floquet C.F.A., Lindvig T., Sieben V.J., MacKay B.A., Mostowfi F., Rapid determination of boron in oilfield water using a microfluidic instrument, Anal. Methods-Uk., 9, 1948-1955, 2017.
  • [52] Abad C., Florek S., Becker-Ross H., Huang M.D., Heinrich H.J., Recknagel S., Vogl J., Jakubowski N., Panne U., Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta B, 136,116-122, 2017.
  • [53] Gonzalez P., Sixto A., Knochen M., Multi-pumping flow system for the determination of boron in eye drops, drinking water and ocean water, Talanta, 166, 399-404, 2017.
  • [54] Floquet C.F.A., Sieben V.J., MacKay B.A., Mostowfi F., Determination of boron in produced water using the carminic acid assay, Talanta, 150, 240-252, 2016.
  • [55] Floquet C.F.A., Sieben V.J., MacKay B.A., Mostowfi F., Determination of boron concentration in oilfield water with a microfluidic ion exchange resin instrument, Talanta, 154, 304-311, 2016.
  • [56] Liv L., Nakiboglu N., Voltammetric Determination of boron using poly xylenol orange-modified pencil graphite electrode, Anal. Lett., 51, 170-185, 2018.
  • [57] Kajiwara M., Ito Y.N., Miyazaki Y., Fujimori T., Takehara K., Yoshimura K., Voltammetric study of the boric acid-salicylaldehyde-H-acid ternary system and its application to the voltammetric determination of boron, Phys. Chem. Chem. Phys., 17, 4578-4588, 2015.
  • [58] Raut V.V., Jeyakumar S., Shah D.J., Thakur U.K., Tomar B.S., Ramakumar K.L., Separation of boron from borated paraffin wax by pyrohydrolysis and alkali extraction methods and its determination using ion chromatography, Anal. Sci., 31, 219-223, 2015.
  • [59] Bita A., Mogosanu G.D., Bejenaru L.E., Oancea C.N., Bejenaru C., Croitoru O., Rau G., Neamtu J., Scorei I.D., Scorei I.R. et al., Simultaneous quantitation of boric acid and calcium fructoborate in dietary supplements by HPTLC-densitometry, Anal. Sci., 33, 743-746, 2017.
  • [60] Mishra V.G., Das M.K., Shah D.J., Jeyakumar S., Tomar B.S., Ramakumar K.L., Simultaneous determination of borate, chloride and molybdate in pyrohydrolysis distillates of plant and soil samples by ion chromatography, J. Chromatogr. A, 1532, 144-149, 2018.
  • [61] Li C., Hao Z., Zou Z., Zhou R., Li J.M., Guo L.B., Li X.Y., Lu Y.F., Zeng X.Y., Determinations of trace boron in superalloys and steels using laser-induced breakdown spectroscopy assisted with laser-induced fluorescence, Opt. Express, 24, 7850-7857, 2016.
  • [62] Stieghorst C., Hampel G., Karches B., Krenckel P., Kudejova P., Plonka C., Revay Z., Riepe S., Welter K., Wiehl N., Determination of boron and hydrogen in materials for multicrystalline solar cell production with prompt gamma activation analysis, J. Radioanal. Nucl. Ch., 317, 307-313, 2018.
  • [63] Bergaoui K., Reguigui N., Gary C.K., Brown C., Cremer J.T., Vainionpaa J.H., Piestrup M.A., Prompt gamma-ray neutron activation analysis of boron using deuterium-deuterium (D-D) neutron generator, J. Radioanal. Nucl. Ch., 303, 115-121, 2015.
  • [64] Guo L.B., Zhu Z.H., Li J.M., Tang Y., Tang S.S., Hao Z.Q., Li X.Y., Lu Y.F., Zeng X.Y., Determination of boron with molecular emission using laser-induced breakdown spectroscopy combined with laser-induced radical fluorescence, Opt. Express, 26, 2364-2642, 2018.
  • [65] Zhang Y., Xiao Y., Ma Y., Liu Z., Luo C., He M., Liu Y., Sample preparation for isotope determination of boron in clay sediments by three-step ion-exchange method, Chinese J. Anal. Chem., 44, 809-815, 2016
  • [66] Yanagisawa N., Tanaku Y., Nakai I., Development of an extraction method for the boron isotope ratio analysis of wood using the boron selective solid-phase extractant, Bunseki Kagaku, 66, 569-573, 2017.
  • [67] Alexovic M., Wieczorek M., Kozak J., Koscielniak P., Balogh I.S., Andruch V., An automatic, vigorous-injection assisted dispersive liquid-liquid microextraction technique for stopped-flow spectrophotometric detection of boron, Talanta, 133, 127-133, 2015.
  • [68] Kara D., Removal of Boron from Aqueous Solution by 2,3-Dihydroxybenzaldehyde Modified Silica Gel, Water Air Soil Poll., 226, 223, 2015.
  • [69] Amin A.S., Optimized solid phase extraction methodology for separation, and spectrophotometric determination of boron using Amberlite XAD-16 resin modified with 2-(2-benzothiazolylazo)-4-methoxyphenol, Rsc Adv., 5, 66975-66980, 2015.
There are 68 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Article
Authors

Argun Türker

Ali Rehber Türker 0000-0001-7442-105X

Publication Date March 16, 2019
Acceptance Date January 11, 2019
Published in Issue Year 2019 Volume: 4 Issue: 1

Cite

APA Türker, A., & Türker, A. R. (2019). A critical review on the determination of boron in various matrices. Journal of Boron, 4(1), 31-38. https://doi.org/10.30728/boron.459258