Research Article
BibTex RIS Cite

Synthesis and characterization of trimethoxy boroxine

Year 2019, Volume: 4 Issue: 3, 148 - 152, 30.09.2019
https://doi.org/10.30728/boron.600813

Abstract

References

  • [1] Coulson C. A., Dingle T. W., The B–O bond lengths in boron–oxygen compounds, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 24, 153–155, 1968.
  • [2] Welch M. B., United States patent, Geothermics, 14, 595–599, 1985.
  • [3] Delpierre S., Willocq B., De Winter J., Dubois P., Gerbaux P., Raquez J. M., dynamic ıminoboronate-based boroxine chemistry for the design of ambient humidity-sensitive self-healing polymers, Chem. A Eur. J. 23, 6730–6735, 2017.
  • [4] Kalemos A., The nature of the chemical bond in borazine (B3N3H6), boroxine (B3O3H3), carborazine (B2N2C2H6), and related species, Int. J. Quantum Chem., 118, e25650 2018.
  • [5] Fisher H. D., Lehmann W. J., Shapiro I., Trifluoroboroxine: Preparatıon, infrared spectrum and structure 1., J. Phys. Chem., 65, 1166–1168, 1961.
  • [6] Farber M., Heat of formation and entropy of the trimer of boron oxyfluoride, J. Chem. Phys. 36, 661–664, 1962.
  • [7] Latimer B., Devlin J. P., Vibrational spectra of fluorine and chlorine derivatives of boroxine—II, Spectrochim, Acta Part A Mol. Spectrosc., 23, 81–88, 1967.
  • [8] Seyferth D., Gmelin Handbuch der Anorganischen Chemie, Erganzungsband zur 8. Auflage, Vol. 13, Borverbindungen, Teil 1, Binare B-N Verbindungen, B-N-C Heterocyclen, Polymere B-N Verbindungen, J. Organomet. Chem., 1974.
  • [9] Köster R., Organoboron Chemistry. VonH. Steinberg. Band 1: Boron-Oxygen and Boron-Sulfur Compounds. Interscience Publishers, A Division of John Wiley & Sons, Inc., New York-London-Sidney 1964. 1. Aufl., XXXII, 950 S., zahlr. Tab., geb. £ 12.8.0. Angew. Chemie 77, 108–108, 1965.
  • [10] Wilcox N. J., Kwochka W. R., Phenyl Replacement Reactions : Solvent Effects on Reactions of Boroxines with Primary Amines, 2015.
  • [11] Lappert M. F., 568. Cyclic organic boron compounds. Part I. Preparation, characterisation, and stability of esters of metaboric acid, J. Chem. Soc., 2790 1958.
  • [12] Boroxine Derivatives as flame retardant, WO 2006/089937 A1, 2006.
  • [13] Commerford J. D. Chamberlain D. L., Shepherd J. W., Trimethoxy boroxine—An Extinguishing Agent for Metal Fires, Adv. Chem., 23,158–162, 1959.

Synthesis and characterization of trimethoxy boroxine

Year 2019, Volume: 4 Issue: 3, 148 - 152, 30.09.2019
https://doi.org/10.30728/boron.600813

Abstract

Trimethoxy boroxine is used in fire
extinguishing tubes because of its smoke suppressant properties and it is also
used as an auxiliary catalyst in olefin polymerization, in lithium ion cells as
an electrolyte additive, in welding and soldering works, in protective coating
production and in hardening of epoxide resins. It has become a desirable
material because of its superior properties and it has gained importance how to
synthesize it cheaper and easier. In this study,  trimethoxy boroxine was synthesized from the
reactions of boric acid and trimethyl borate. In the first step, boric acid
reacted with methanol in order to obtain trimethyl borate as a precursor. The
best reaction yield was obtain by using 1:2 ratio of boric acid and trimethyl
borate in cyclohexane. Trimethoxy boroxine was synthesized from boric acid and
trimethyl borate in azeotropic distillation set-up containing Dean-Stark
apparatus. It was characterized by H-NMR and FT-IR.

References

  • [1] Coulson C. A., Dingle T. W., The B–O bond lengths in boron–oxygen compounds, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem., 24, 153–155, 1968.
  • [2] Welch M. B., United States patent, Geothermics, 14, 595–599, 1985.
  • [3] Delpierre S., Willocq B., De Winter J., Dubois P., Gerbaux P., Raquez J. M., dynamic ıminoboronate-based boroxine chemistry for the design of ambient humidity-sensitive self-healing polymers, Chem. A Eur. J. 23, 6730–6735, 2017.
  • [4] Kalemos A., The nature of the chemical bond in borazine (B3N3H6), boroxine (B3O3H3), carborazine (B2N2C2H6), and related species, Int. J. Quantum Chem., 118, e25650 2018.
  • [5] Fisher H. D., Lehmann W. J., Shapiro I., Trifluoroboroxine: Preparatıon, infrared spectrum and structure 1., J. Phys. Chem., 65, 1166–1168, 1961.
  • [6] Farber M., Heat of formation and entropy of the trimer of boron oxyfluoride, J. Chem. Phys. 36, 661–664, 1962.
  • [7] Latimer B., Devlin J. P., Vibrational spectra of fluorine and chlorine derivatives of boroxine—II, Spectrochim, Acta Part A Mol. Spectrosc., 23, 81–88, 1967.
  • [8] Seyferth D., Gmelin Handbuch der Anorganischen Chemie, Erganzungsband zur 8. Auflage, Vol. 13, Borverbindungen, Teil 1, Binare B-N Verbindungen, B-N-C Heterocyclen, Polymere B-N Verbindungen, J. Organomet. Chem., 1974.
  • [9] Köster R., Organoboron Chemistry. VonH. Steinberg. Band 1: Boron-Oxygen and Boron-Sulfur Compounds. Interscience Publishers, A Division of John Wiley & Sons, Inc., New York-London-Sidney 1964. 1. Aufl., XXXII, 950 S., zahlr. Tab., geb. £ 12.8.0. Angew. Chemie 77, 108–108, 1965.
  • [10] Wilcox N. J., Kwochka W. R., Phenyl Replacement Reactions : Solvent Effects on Reactions of Boroxines with Primary Amines, 2015.
  • [11] Lappert M. F., 568. Cyclic organic boron compounds. Part I. Preparation, characterisation, and stability of esters of metaboric acid, J. Chem. Soc., 2790 1958.
  • [12] Boroxine Derivatives as flame retardant, WO 2006/089937 A1, 2006.
  • [13] Commerford J. D. Chamberlain D. L., Shepherd J. W., Trimethoxy boroxine—An Extinguishing Agent for Metal Fires, Adv. Chem., 23,158–162, 1959.
There are 13 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Sedat Sürdem 0000-0001-8220-7934

Publication Date September 30, 2019
Acceptance Date September 19, 2019
Published in Issue Year 2019 Volume: 4 Issue: 3

Cite

APA Sürdem, S. (2019). Synthesis and characterization of trimethoxy boroxine. Journal of Boron, 4(3), 148-152. https://doi.org/10.30728/boron.600813