Research Article
BibTex RIS Cite
Year 2019, Volume: 4 Issue: 4, 180 - 186, 31.12.2019
https://doi.org/10.30728/boron.466719

Abstract

References

  • [1] Ciaravino V., Plattner J., Chanda S., An assessment of the genetic toxicology of novel boron-containing therapeutic agents, Environ. Mol. Mutagen., 54, 338−346, 2013.
  • [2] Bhomia J., Sharma J., Lakhne R., Sharma R., Gupta R. S., Sharma R. A., Singh Y., Syntheses, silylation, characterization, and antimicrobial and antifertility activities of organoboron derivatives of some bioactive monofunctional bidentate semicarbazones, Appl. Organometal Chem., 32 (1), 2018.
  • [3] McKinney D. C., Zhou F., Eyermann C. J., Ferguson A. D., Prince D. B., Breen J., Giacobbe R. A., et al. 4,5-Disubstituted 6-aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles are broad-spectrum serine β-lactamase inhibitors, ACS Infect. Dis., 1, 310−316, 2015.
  • [4] Reddy E. R., Trivedi R., Giribabu L., Sridhar B., Kumar K. P., Srinivasa M., Sarma A. V. S., Carbohydrate-based ferrocenyl boronate esters: Synthesis, characterization, crystal structures, and antibacterial activity, Eur. J. Inorg. Chem., 2013 (30), 5311−5319, 2013.
  • [5] Wang K., Cui J., Xie L., Qian X., Design, synthesis, and evaluation of unsymmetrical difluoro-boron complexes with imidazoline as potential fungicides, Heteroat. Chem., 20 (7), 418−424, 2009.
  • [6] Campbell-Verduyn L. S., Bowes E. G., Li H., Vallee A. M., Vogels C. M., Decken A., Gray C. A., et al. Heterocyclic aminoboron compounds as antituberculosis agents, Heteroat. Chem., 25 (2), 100−106, 2014.
  • [7] Ross J. E., Scangarella-Oman N., Jones R. N., Determination of disk diffusion and MIC quality control guidelines for GSK2251052: A novel boron-containing antibacterial, Diagn. Microbiol. Infec. Dis., 75, 437−439, 2013.
  • [8] Li X., Zhang Y. K., Plattner J. J., Mao W., Alley M. R. K., Xia Y., Hernandez V., et al. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone, Bioorg. Med. Chem. Lett., 23, 963−966, 2013.
  • [9] Li X., Zhang Y. K., Liu Y., Ding C. Z., Li Q., Zhou Y., Plattner J. J., et al. Synthesis and evaluation of novel alpha-amino cyclic boronates as inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett., 20 (12), 3550−3556, 2010.
  • [10] Akama T., Baker S. J., Zhang Y. K., Hernandez V., Zhou H., Sanders V., Freund Y., et al. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis, Bioorg. Med. Chem. Lett., 19, 2129−2132, 2009.
  • [11] Baker S. J., Akama T., Zhang Y. K., Sauro V., Pandit C., Singh R., Kully M., et al. Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity for the potential treatment of cutaneous diseases, Bioorg. Med. Chem. Lett., 16, 5963−5967, 2006.
  • [12] Hicks J. W., Kyle C. B., Vogels C. M., Wheaton S. L., Baerlocher F. J., Decken A., Westcott S. A., Synthesis, characterization, and antifungal activity of boron-containing thiosemicarbazones, Chemistry&Biodiversity, 5, 2415−2422, 2008.
  • [13] Bhomia J., Sharma J., Lakhne R., Sharma R., Gupta R. S., Sharma R. A., Singh Y., Syntheses, silylation, characterization, and antimicrobial and antifertility activities of organoboron derivatives of some bioactive monofunctional bidentate semicarbazones, Applied Organometallic Chemistry, 32 (1), e3983, 2018.
  • [14] Trivedi R., Reddy E. R., Kumar Ch. K., Sridhar B., Kumar K. P., Rao M. S., Efficient synthesis, structural characterization and anti-microbial activity of chiral aryl boronate esters of 1,2-O-isopropylidene-α-D-xylofuranose, Bioorg. Med. Chem. Lett., 21, 3890−3893, 2011.
  • [15] Neuvonen K., Fulop F., Neuvonen H., Koch A., Kleinpeter E., Pihlaja K., Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines as explained by resonance polarization concept, J. Org. Chem., 70 (26), 10670−10678, 2005.
  • [16] Perjesi P., Linnanto J., Kolehmainen E., Osz E., Virtanen E., E-2-benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones, J. Mol. Struct., 740, 81−89, 2005.
  • [17] Marinkovic A. D., Jovanovic B. Z., Todorovic N., Juranic I. O., Linear free energy relationships of the 1H and 13C NMR chemical shifts in 3-cyano-4-(substituted phenyl)-6-phenyl-2(1H)pyridones, J. Mol. Struct., 920 (1), 90−96, 2009.
  • [18] Hansch C., Leo A., Taft R. W., A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 91, 165−195, 1991.
  • [19] Agirbas A., The use of digital fabrication as a sketching tool in the architectural design process, Real Time-Proceedings of the 33rd eCAADe Conference, Vienna-Austria, 16−18 September, 2015.
  • [20] Agirbas A., Ardaman E., Simulation as an avant-garde form exploration tool: A case study with nCloth, DCA-European Conference Proceedings, İstanbul-Turkey, 11−14 May, 2016.
  • [21] Pir M., Agirbas H., Budak F., Ilter M., Synthesis, characterization, antimicrobial activity, and QSAR studies on substituted oxadiazaboroles, Med. Chem. Res., 25 (9), 1794−1812, 2016. [22] Ditchfield R., Self-consistent perturbation theory of diamagnetism. A gauge-invariant LCAO method for NMR chemical shifts, Mol. Phys., 27 (4), 789−807, 1974. [23] Dodds J. L., McWeeny R., Sadlej A. J., Self-consistent perturbation theory: Generalization for perturbation-dependent non-orthogonal basis set, Mol. Phys., 41 (6), 1419, 1980.
  • [24] McWeeny R., Perturbation theory for the Fock-Dirac density matrix, Phys. Rev., 126, 1028, 1962.
  • [25] Wolinski K., Hilton J. F., Pulay P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 112, 8251−8260, 1990.
  • [26] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., et al. Gaussian 03, Revision B.05, Gaussian, Inc., Wallingford CT, 2004.
  • [27] Sheldrick G. M., A short history of SHELX, Acta Cryst., A64 (1), 112−122, 2008.
  • [28] Farrugia L. J., WINGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr., 32, 837−838, 1999.
  • [29] Mercury, version 3.0; CCDC, available online via ccdc.cam.ac.uk/products/mercury, 2016.
  • [30] Spek A. L., PLATON-a multipurpose crystallographic tool. Utrecht University, Utrecht, 2005.
  • [31] Bromilow J., Brownlee R. T. C., Craik D. J., Fiske P. R., Rowe J. E., Sadek M., Carbon-13 substituent chemical shifts in the side-chain carbons of aromatic systems: The importance of π-polarization in determining chemical shifts, J. Chem. Soc. Perkin Trans. 2 (5), 753, 1981.
  • [32] Reynolds W. F., Polar substituent effects, Prog. Phys. Org. Chem., 14, 165−203, 1983.
  • [33] Hamer G. K., Peat I. R., Reynold W. F., Investigations of substituent effects by nuclear magnetic resonance spectroscopy and all-valance electron molecular orbital calculations. 1,4-substituted styrenes, Can. J. Chem., 51 (6), 897-914, 1973.
  • [34] Neuvonen K., Fülöp F., Neuvonen H., Simeonov M., Pihlaja K., Correlation analysis of the 13C chemical shifts of substituted benzaldehyde 2‐aminobenzoylhydrazones. Study of the propagation of substituent effects along a heteroatomic chain, J. Phys. Org. Chem., 10 (1), 55−66, 1997.
  • [35] Neuvonen K., Fülöp F., Neuvonen H., Pihlaja K., A correlation analysis of C=N 13C chemical shifts. The use of substituted benzaldehyde (2-hydroxycyclohexyl)hydrazones as probes, J. Org. Chem., 59 (20), 5895−5900, 1994.

Crystal structure, 1H and 13C NMR spectral studies of 1,2,4,5-oxadiazaborole derivatives

Year 2019, Volume: 4 Issue: 4, 180 - 186, 31.12.2019
https://doi.org/10.30728/boron.466719

Abstract

Substituent
effects on 1H and 13C NMR chemical shifts of
5-substituted phenyl-3-phenyl-4,5-dihydro-1,2,4,5-oxadiazaboroles (1a-r) were studied respectively.
Single and duel substituent parameters were used for the correlation analysis
of substituent-induced chemical shifts with σ, F and R constants. The
calculations have shown the polar and resonance substituent effects on N-H proton
and C=N carbon atoms. The ρ value was found positive for compounds
(1a-r), which means that the substituent effect is normal. Additionally,
crystal structure of compound (1i)
was also studied. Density functional theory (DFT) calculations were carried out
to calculate the theoretical chemical shifts, bond distances and bond angles. 

References

  • [1] Ciaravino V., Plattner J., Chanda S., An assessment of the genetic toxicology of novel boron-containing therapeutic agents, Environ. Mol. Mutagen., 54, 338−346, 2013.
  • [2] Bhomia J., Sharma J., Lakhne R., Sharma R., Gupta R. S., Sharma R. A., Singh Y., Syntheses, silylation, characterization, and antimicrobial and antifertility activities of organoboron derivatives of some bioactive monofunctional bidentate semicarbazones, Appl. Organometal Chem., 32 (1), 2018.
  • [3] McKinney D. C., Zhou F., Eyermann C. J., Ferguson A. D., Prince D. B., Breen J., Giacobbe R. A., et al. 4,5-Disubstituted 6-aryloxy-1,3-dihydrobenzo[c][1,2]oxaboroles are broad-spectrum serine β-lactamase inhibitors, ACS Infect. Dis., 1, 310−316, 2015.
  • [4] Reddy E. R., Trivedi R., Giribabu L., Sridhar B., Kumar K. P., Srinivasa M., Sarma A. V. S., Carbohydrate-based ferrocenyl boronate esters: Synthesis, characterization, crystal structures, and antibacterial activity, Eur. J. Inorg. Chem., 2013 (30), 5311−5319, 2013.
  • [5] Wang K., Cui J., Xie L., Qian X., Design, synthesis, and evaluation of unsymmetrical difluoro-boron complexes with imidazoline as potential fungicides, Heteroat. Chem., 20 (7), 418−424, 2009.
  • [6] Campbell-Verduyn L. S., Bowes E. G., Li H., Vallee A. M., Vogels C. M., Decken A., Gray C. A., et al. Heterocyclic aminoboron compounds as antituberculosis agents, Heteroat. Chem., 25 (2), 100−106, 2014.
  • [7] Ross J. E., Scangarella-Oman N., Jones R. N., Determination of disk diffusion and MIC quality control guidelines for GSK2251052: A novel boron-containing antibacterial, Diagn. Microbiol. Infec. Dis., 75, 437−439, 2013.
  • [8] Li X., Zhang Y. K., Plattner J. J., Mao W., Alley M. R. K., Xia Y., Hernandez V., et al. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone, Bioorg. Med. Chem. Lett., 23, 963−966, 2013.
  • [9] Li X., Zhang Y. K., Liu Y., Ding C. Z., Li Q., Zhou Y., Plattner J. J., et al. Synthesis and evaluation of novel alpha-amino cyclic boronates as inhibitors of HCV NS3 protease, Bioorg. Med. Chem. Lett., 20 (12), 3550−3556, 2010.
  • [10] Akama T., Baker S. J., Zhang Y. K., Hernandez V., Zhou H., Sanders V., Freund Y., et al. Discovery and structure-activity study of a novel benzoxaborole anti-inflammatory agent (AN2728) for the potential topical treatment of psoriasis and atopic dermatitis, Bioorg. Med. Chem. Lett., 19, 2129−2132, 2009.
  • [11] Baker S. J., Akama T., Zhang Y. K., Sauro V., Pandit C., Singh R., Kully M., et al. Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity for the potential treatment of cutaneous diseases, Bioorg. Med. Chem. Lett., 16, 5963−5967, 2006.
  • [12] Hicks J. W., Kyle C. B., Vogels C. M., Wheaton S. L., Baerlocher F. J., Decken A., Westcott S. A., Synthesis, characterization, and antifungal activity of boron-containing thiosemicarbazones, Chemistry&Biodiversity, 5, 2415−2422, 2008.
  • [13] Bhomia J., Sharma J., Lakhne R., Sharma R., Gupta R. S., Sharma R. A., Singh Y., Syntheses, silylation, characterization, and antimicrobial and antifertility activities of organoboron derivatives of some bioactive monofunctional bidentate semicarbazones, Applied Organometallic Chemistry, 32 (1), e3983, 2018.
  • [14] Trivedi R., Reddy E. R., Kumar Ch. K., Sridhar B., Kumar K. P., Rao M. S., Efficient synthesis, structural characterization and anti-microbial activity of chiral aryl boronate esters of 1,2-O-isopropylidene-α-D-xylofuranose, Bioorg. Med. Chem. Lett., 21, 3890−3893, 2011.
  • [15] Neuvonen K., Fulop F., Neuvonen H., Koch A., Kleinpeter E., Pihlaja K., Propagation of polar substituent effects in 1-(substituted phenyl)-6,7-dimethoxy-3,4-dihydro- and -1,2,3,4-tetrahydroisoquinolines as explained by resonance polarization concept, J. Org. Chem., 70 (26), 10670−10678, 2005.
  • [16] Perjesi P., Linnanto J., Kolehmainen E., Osz E., Virtanen E., E-2-benzylidenebenzocycloalkanones. IV. Studies on transmission of substituent effects on 13C NMR chemical shifts of E-2-(X-benzylidene)-1-tetralones, and -benzosuberones. Comparison with the 13C NMR data of chalcones and E-2-(X-benzylidene)-1-indanones, J. Mol. Struct., 740, 81−89, 2005.
  • [17] Marinkovic A. D., Jovanovic B. Z., Todorovic N., Juranic I. O., Linear free energy relationships of the 1H and 13C NMR chemical shifts in 3-cyano-4-(substituted phenyl)-6-phenyl-2(1H)pyridones, J. Mol. Struct., 920 (1), 90−96, 2009.
  • [18] Hansch C., Leo A., Taft R. W., A survey of Hammett substituent constants and resonance and field parameters, Chem. Rev., 91, 165−195, 1991.
  • [19] Agirbas A., The use of digital fabrication as a sketching tool in the architectural design process, Real Time-Proceedings of the 33rd eCAADe Conference, Vienna-Austria, 16−18 September, 2015.
  • [20] Agirbas A., Ardaman E., Simulation as an avant-garde form exploration tool: A case study with nCloth, DCA-European Conference Proceedings, İstanbul-Turkey, 11−14 May, 2016.
  • [21] Pir M., Agirbas H., Budak F., Ilter M., Synthesis, characterization, antimicrobial activity, and QSAR studies on substituted oxadiazaboroles, Med. Chem. Res., 25 (9), 1794−1812, 2016. [22] Ditchfield R., Self-consistent perturbation theory of diamagnetism. A gauge-invariant LCAO method for NMR chemical shifts, Mol. Phys., 27 (4), 789−807, 1974. [23] Dodds J. L., McWeeny R., Sadlej A. J., Self-consistent perturbation theory: Generalization for perturbation-dependent non-orthogonal basis set, Mol. Phys., 41 (6), 1419, 1980.
  • [24] McWeeny R., Perturbation theory for the Fock-Dirac density matrix, Phys. Rev., 126, 1028, 1962.
  • [25] Wolinski K., Hilton J. F., Pulay P., Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc., 112, 8251−8260, 1990.
  • [26] Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., et al. Gaussian 03, Revision B.05, Gaussian, Inc., Wallingford CT, 2004.
  • [27] Sheldrick G. M., A short history of SHELX, Acta Cryst., A64 (1), 112−122, 2008.
  • [28] Farrugia L. J., WINGX suite for small-molecule single-crystal crystallography, J. Appl. Crystallogr., 32, 837−838, 1999.
  • [29] Mercury, version 3.0; CCDC, available online via ccdc.cam.ac.uk/products/mercury, 2016.
  • [30] Spek A. L., PLATON-a multipurpose crystallographic tool. Utrecht University, Utrecht, 2005.
  • [31] Bromilow J., Brownlee R. T. C., Craik D. J., Fiske P. R., Rowe J. E., Sadek M., Carbon-13 substituent chemical shifts in the side-chain carbons of aromatic systems: The importance of π-polarization in determining chemical shifts, J. Chem. Soc. Perkin Trans. 2 (5), 753, 1981.
  • [32] Reynolds W. F., Polar substituent effects, Prog. Phys. Org. Chem., 14, 165−203, 1983.
  • [33] Hamer G. K., Peat I. R., Reynold W. F., Investigations of substituent effects by nuclear magnetic resonance spectroscopy and all-valance electron molecular orbital calculations. 1,4-substituted styrenes, Can. J. Chem., 51 (6), 897-914, 1973.
  • [34] Neuvonen K., Fülöp F., Neuvonen H., Simeonov M., Pihlaja K., Correlation analysis of the 13C chemical shifts of substituted benzaldehyde 2‐aminobenzoylhydrazones. Study of the propagation of substituent effects along a heteroatomic chain, J. Phys. Org. Chem., 10 (1), 55−66, 1997.
  • [35] Neuvonen K., Fülöp F., Neuvonen H., Pihlaja K., A correlation analysis of C=N 13C chemical shifts. The use of substituted benzaldehyde (2-hydroxycyclohexyl)hydrazones as probes, J. Org. Chem., 59 (20), 5895−5900, 1994.
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Meryem Pir 0000-0003-4305-8838

Hikmet Ağırbaş This is me

Onur Şahin This is me

Publication Date December 31, 2019
Acceptance Date December 15, 2019
Published in Issue Year 2019 Volume: 4 Issue: 4

Cite

APA Pir, M., Ağırbaş, H., & Şahin, O. (2019). Crystal structure, 1H and 13C NMR spectral studies of 1,2,4,5-oxadiazaborole derivatives. Journal of Boron, 4(4), 180-186. https://doi.org/10.30728/boron.466719