Research Article
BibTex RIS Cite

İkili ve üçlü kobalt bazlı metal borürlerin inorganik ergimiş tuz tekniği ile sentezi

Year 2020, Volume: 5 Issue: 1, 12 - 22, 29.03.2020
https://doi.org/10.30728/boron.613117

Abstract

Kristalin metal borür tozları inorganik ergimiş tuz ortamında düşük sıcaklık yöntemi ile sentezlenmiş, ikili ve üçlü metal borür kompozit tozlarının eldesi susuz metal klorürler ve sodyum borhidrür toz karışımları kullanılarak incelenmiştir. Reaksiyonlar, argon altında dikey bir tüp fırında silika tüp içine yerleştirilmiş alüminyum pota içinde gerçekleştirilmiştir. Reaksiyon sonunda elde edilen toz karışımına sıcak su ile liç işlemi yapılarak istenmeyen klorür fazları giderilmiştir. Seçilen bazı saf tozlar, kristalin özelliği geliştirmek amacıyla 1100°C’de tavlama işlemine tabi tutulmuştur. Sentezlenen ve tavlanmış tozların karakterizasyonu, X-ışını difraktometresi (XRD), X-ışını floresans spektrometresi (XRF), taramalı elektron mikroskobu (SEM/EDX) ve dinamik ışık saçma tekniği (DLS) kullanılarak analiz edilmiştir. Sonuçlar, inorganik ergimiş tuz tekniğinin (LiCl/KCl ötektik karışımı) CoCl2, NiCl2 ve NaBH4 toz karışımları arasındaki reaksiyon sırasında oluşan fazlar üzerindeki olumlu etkisini ortaya koymuştur. 750-950°C sıcaklıkları arasında gerçekleşen reaksiyonlarda CoB-Ni2B-CoBx, CoB-Ni4B3 ve CoB-NiB-Ni2Co0.67B0.33 fazlarını içeren ikili ve üçlü metal borür tozları nano boyutta elde edilmiştir. Sentezlenen tozların partikül boyutu ortalama 60 nm civarında hesaplanmıştır.

Supporting Institution

TUBITAK

Project Number

117F178

Thanks

Bu çalışma, “Kobalt – Metal – Bor (Metal=Ni, Fe, Ti) Esaslı Üçlü Metal Borürlerin Klorür Hammaddelerden Alternatif Düşük Sıcaklık Yöntemleri ile Sentezi, Karakterizasyonu ve Katalizör/Magnet/Hibrit Kompozit Üretimi Alanlarına Yönelik Uygulama Çalışmaları” isimli ve 117F178 numaralı “Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)” projesi tarafından desteklenmiştir. Enstrümantal destek için Koç Üniversitesi Yüzey Teknolojileri Araştırma Merkezi (KUYTAM) ve SEM analizleri için Dr. BarışYağcı’ya teşekkürlerimizi sunarız.

References

  • [1] Novosel E., Babic N., Influence of magnetic nanoparticles on wine fermentation, Phys. C, 493 (1), 119-124, 2013.
  • [2] Sooseok Choi T. W., Lapitan Jr. L. D.S., Cheng Y., Synthesis of cobalt boride nanoparticles using RF thermal plasma, Adv. Powder Technolop., 25, 365-371, 2014.
  • [3] Rinaldi A., et al., Elastic properties of hard cobalt boride composite nanoparticles, Acta Mater., 58 (19), 6474-6486, 2010.
  • [4] Euchner H., Mayrhofer P. H., Designing thin fi lm materials - Ternary borides from first principles, 583, 46–49, 2015.
  • [5] Lee I. H., Lee T. Y., Chung C. W., Etch characteristics of CoFeB magnetic thin films using high density plasma of a H2O/CH4/Ar gas mixture, Vacuum, 97, 49-54, 2013.
  • [6] Kotzott D., Ade M., Hillebrecht H., Single crystal studies on Co-containing τ-borides Co23-xMxB6(M=Al, Ga, Sn, Ti, V, Ir) and the boron-rich τ-boride Co12.3Ir8.9B10.5, J. Solid State Chem., 182 (3) 538-546, 2009.
  • [7] Xu D., Wang H., Guo Q., Ji S., Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4, Fuel Process. Technol., 92 (8), 1606-1610, 2011.
  • [8] Mustapić M. et al., Novel synthesis of superparamagnetic Ni-Co-B nanoparticles and their effect on superconductor properties of MgB2, Acta Mater., 70, 298-306, 2014.
  • [9] Mustapić , J. Horvat M., Skoko Ž., Al Hossain M. S., Dou S. X., Interplay between boron precursors and Ni-Co-B nanoparticle doping in the fabrication of MgB2 superconductor with improved electromagnetic properties, Acta Mater., 80, 457-467, 2014.
  • [10] Aydin M. Hasimoglu A., Ozdemir O. K., Kinetic properties of cobalt-titanium-boride (Co-Ti-B) catalysts for sodium borohydride hydrolysis reaction, Int. J. Hydrogen Energy, 41 (1), 239-248, 2016.
  • [11] Li X., Wang C., Han X., Wu Y., Surfactant-free synthesis and electromagnetic properties of Co-Ni-B composite particles, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 178 (3), 211-217, 2013.
  • [12] Wu H., Wu C., Bai F., Yi Y., Zhang B., Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution, Mater. Lett., 59 (14–15), 1748-1751, 2005.
  • [13] Zhao J., Ma H., Chen J., Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts, Int. J. Hydrogen Energy, 32. 18, pp. 4711–4716, 2007.
  • [14] Walter J. C., Zurawski A., Montgomery D., Thornburg M., Revankar S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, J. Power Sources, 179 (1), 335-339, 2008.
  • [15] Patel N., Fernandes R., Miotello A., Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution, J. Catal., 271 (2), 315-324, 2010.
  • [16] Li H., Wu Y., Zhang J., Dai W., M. Qiao, “Liquid phase acetonitrile hydrogenation to ethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst,” Appl. Catal. A Gen., vol. 275, no. 1–2, pp. 199–206, 2004.
  • [17] Ingersoll J. C., Mani N., Thenmozhiyal J. C., Muthaiah A., Catalytic hydrolysis of sodium borohydride by a novel nickel-cobalt-boride catalyst, J. Power Sources, 173 (1), 450-457, 2007.
  • [18] Shen J. H., Chen Y. W., Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene, J. Mol. Catal. A Chem., 273 (1–2), 265–276, 2007.
  • [19] Fernandes R., Patel N., Miotello A., Filippi M., Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4, J. Mol. Catal. A Chem., 298 (1-2), 1–6, 2009.
  • [20] Wu C., Bai Y., Liu D. X., Wu F., Pang M. L., Yi B. L., Ni-Co-B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells, Catal. Today, 170 (1), 33-39, 2011.
  • [21] Zhao Y., et al., A synergistic effect between nanoconfinement of carbon aerogels and catalysis of CoNiB nanoparticles on dehydrogenation of LiBH4, Int. J. Hydrogen Energy, 39 (2), 917-926, 2014.
  • [22] Khoshsima S., Altıntaş Z., Schmidt M., Bobnar M., Somer M., Balcı Ö., Crystalline CoFeB nanoparticles: Synthesis, microstructure and magnetic properties, J. Alloys Compd., 805, 471-482, 2019.
  • [23] Khoshsima S., Altıntaş Z., Somer M., Balcı Ö., “Synthesis of Cobalt-Nickel-Boron Based Composite Powders Using Metal Chloride Powder Blends” Proceedings of 27th International Conference on Metallurgy and Materials, pp. 1563-1568, 2019.
  • [24] Zhou Y., Liu Y., Wu W., Zhang Y., Gao M., Pan H., Improved hydrogen storage properties of LiBH4 destabilized by in situ formation of MgH2 and LaH3, J. Phys. Chem. C, 116 (1), 1588-1595, 2012.
  • [25] Zhu Y., Li Q., Mei T., Qian Y., Solid state synthesis of nitride, carbide and boride nanocrystals in an autoclave, J. Mater. Chem., 21 (36), 13756-13764, 2011.
  • [26] Cai P. Q. Y., Yanf Z., Shi L., Chem L., Zhao A., Gu Y., Low temperature synthesis of NbB2 nanorods by a solid-state reaction route, Mater. Lett., 59, 3550–3552, 2005.
  • [27] Martelli P., Caputo R., Remhof A., Mauron P., Borgschulte A., Z̈ttel A., Stability and decomposition of NaBH4, J. Phys. Chem. C, 114 (15), 7173-7177, 2010.
  • [28] Portehault D., A general solution route toward metal boride nanocrystals, Angew. Chemie - Int. Ed., 50 (14), 3262-3265, 2011.

The synthesis of binary and ternary cobalt based metal borides by inorganic molten salt technique

Year 2020, Volume: 5 Issue: 1, 12 - 22, 29.03.2020
https://doi.org/10.30728/boron.613117

Abstract

Crystalline metal boride powders were synthesized via low temperature method in inorganic molten salt medium, and binary and ternary metal boride composite powders were investigated using anhydrous metal chlorides and sodium borohydride powder mixtures. The reactions were carried out in an aluminum crucible placed in a silica tube under argon which was put in a vertical tube furnace. At the end of the reaction, the resulting powder mixture was leached with hot water to remove any undesirable chloride phases. In order to improve crystalline properties, some of pure powders were selected and annealed at 1100°C. Characterization of synthesized and annealed powders was carried out using X-ray diffractometer (XRD), X-ray fluorescence spectrometry (XRF), scanning electron microscopy (SEM / EDX) and dynamic light scattering technique (DLS). The results showed the positive effect of inorganic molten salt technique (LiCl/KCl eutectic mixture) on the formation of phases during the reaction between CoCl2, NiCl2 and NaBH4 powder mixtures. Following the reactions at between 750-950 °C, the binary and ternary metal boride powders consisting of CoB-Ni2B-CoBx, CoB-Ni4B3 ve CoB-NiB-Ni2Co0.67B0.33 phases were obtained. The measured particle size of the final particles had an average of 60 nm.

Project Number

117F178

References

  • [1] Novosel E., Babic N., Influence of magnetic nanoparticles on wine fermentation, Phys. C, 493 (1), 119-124, 2013.
  • [2] Sooseok Choi T. W., Lapitan Jr. L. D.S., Cheng Y., Synthesis of cobalt boride nanoparticles using RF thermal plasma, Adv. Powder Technolop., 25, 365-371, 2014.
  • [3] Rinaldi A., et al., Elastic properties of hard cobalt boride composite nanoparticles, Acta Mater., 58 (19), 6474-6486, 2010.
  • [4] Euchner H., Mayrhofer P. H., Designing thin fi lm materials - Ternary borides from first principles, 583, 46–49, 2015.
  • [5] Lee I. H., Lee T. Y., Chung C. W., Etch characteristics of CoFeB magnetic thin films using high density plasma of a H2O/CH4/Ar gas mixture, Vacuum, 97, 49-54, 2013.
  • [6] Kotzott D., Ade M., Hillebrecht H., Single crystal studies on Co-containing τ-borides Co23-xMxB6(M=Al, Ga, Sn, Ti, V, Ir) and the boron-rich τ-boride Co12.3Ir8.9B10.5, J. Solid State Chem., 182 (3) 538-546, 2009.
  • [7] Xu D., Wang H., Guo Q., Ji S., Catalytic behavior of carbon supported Ni-B, Co-B and Co-Ni-B in hydrogen generation by hydrolysis of KBH4, Fuel Process. Technol., 92 (8), 1606-1610, 2011.
  • [8] Mustapić M. et al., Novel synthesis of superparamagnetic Ni-Co-B nanoparticles and their effect on superconductor properties of MgB2, Acta Mater., 70, 298-306, 2014.
  • [9] Mustapić , J. Horvat M., Skoko Ž., Al Hossain M. S., Dou S. X., Interplay between boron precursors and Ni-Co-B nanoparticle doping in the fabrication of MgB2 superconductor with improved electromagnetic properties, Acta Mater., 80, 457-467, 2014.
  • [10] Aydin M. Hasimoglu A., Ozdemir O. K., Kinetic properties of cobalt-titanium-boride (Co-Ti-B) catalysts for sodium borohydride hydrolysis reaction, Int. J. Hydrogen Energy, 41 (1), 239-248, 2016.
  • [11] Li X., Wang C., Han X., Wu Y., Surfactant-free synthesis and electromagnetic properties of Co-Ni-B composite particles, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 178 (3), 211-217, 2013.
  • [12] Wu H., Wu C., Bai F., Yi Y., Zhang B., Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution, Mater. Lett., 59 (14–15), 1748-1751, 2005.
  • [13] Zhao J., Ma H., Chen J., Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co-B as catalysts, Int. J. Hydrogen Energy, 32. 18, pp. 4711–4716, 2007.
  • [14] Walter J. C., Zurawski A., Montgomery D., Thornburg M., Revankar S., Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts, J. Power Sources, 179 (1), 335-339, 2008.
  • [15] Patel N., Fernandes R., Miotello A., Promoting effect of transition metal-doped Co-B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution, J. Catal., 271 (2), 315-324, 2010.
  • [16] Li H., Wu Y., Zhang J., Dai W., M. Qiao, “Liquid phase acetonitrile hydrogenation to ethylamine over a highly active and selective Ni-Co-B amorphous alloy catalyst,” Appl. Catal. A Gen., vol. 275, no. 1–2, pp. 199–206, 2004.
  • [17] Ingersoll J. C., Mani N., Thenmozhiyal J. C., Muthaiah A., Catalytic hydrolysis of sodium borohydride by a novel nickel-cobalt-boride catalyst, J. Power Sources, 173 (1), 450-457, 2007.
  • [18] Shen J. H., Chen Y. W., Catalytic properties of bimetallic NiCoB nanoalloy catalysts for hydrogenation of p-chloronitrobenzene, J. Mol. Catal. A Chem., 273 (1–2), 265–276, 2007.
  • [19] Fernandes R., Patel N., Miotello A., Filippi M., Studies on catalytic behavior of Co-Ni-B in hydrogen production by hydrolysis of NaBH4, J. Mol. Catal. A Chem., 298 (1-2), 1–6, 2009.
  • [20] Wu C., Bai Y., Liu D. X., Wu F., Pang M. L., Yi B. L., Ni-Co-B catalyst-promoted hydrogen generation by hydrolyzing NaBH4 solution for in situ hydrogen supply of portable fuel cells, Catal. Today, 170 (1), 33-39, 2011.
  • [21] Zhao Y., et al., A synergistic effect between nanoconfinement of carbon aerogels and catalysis of CoNiB nanoparticles on dehydrogenation of LiBH4, Int. J. Hydrogen Energy, 39 (2), 917-926, 2014.
  • [22] Khoshsima S., Altıntaş Z., Schmidt M., Bobnar M., Somer M., Balcı Ö., Crystalline CoFeB nanoparticles: Synthesis, microstructure and magnetic properties, J. Alloys Compd., 805, 471-482, 2019.
  • [23] Khoshsima S., Altıntaş Z., Somer M., Balcı Ö., “Synthesis of Cobalt-Nickel-Boron Based Composite Powders Using Metal Chloride Powder Blends” Proceedings of 27th International Conference on Metallurgy and Materials, pp. 1563-1568, 2019.
  • [24] Zhou Y., Liu Y., Wu W., Zhang Y., Gao M., Pan H., Improved hydrogen storage properties of LiBH4 destabilized by in situ formation of MgH2 and LaH3, J. Phys. Chem. C, 116 (1), 1588-1595, 2012.
  • [25] Zhu Y., Li Q., Mei T., Qian Y., Solid state synthesis of nitride, carbide and boride nanocrystals in an autoclave, J. Mater. Chem., 21 (36), 13756-13764, 2011.
  • [26] Cai P. Q. Y., Yanf Z., Shi L., Chem L., Zhao A., Gu Y., Low temperature synthesis of NbB2 nanorods by a solid-state reaction route, Mater. Lett., 59, 3550–3552, 2005.
  • [27] Martelli P., Caputo R., Remhof A., Mauron P., Borgschulte A., Z̈ttel A., Stability and decomposition of NaBH4, J. Phys. Chem. C, 114 (15), 7173-7177, 2010.
  • [28] Portehault D., A general solution route toward metal boride nanocrystals, Angew. Chemie - Int. Ed., 50 (14), 3262-3265, 2011.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Zerrin Altıntaş This is me

Sina Khoshsima This is me

Mehmet Somer

Özge Balcı 0000-0001-6756-3180

Project Number 117F178
Publication Date March 29, 2020
Acceptance Date February 10, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Altıntaş, Z., Khoshsima, S., Somer, M., Balcı, Ö. (2020). İkili ve üçlü kobalt bazlı metal borürlerin inorganik ergimiş tuz tekniği ile sentezi. Journal of Boron, 5(1), 12-22. https://doi.org/10.30728/boron.613117

© 2016 All Rights Reserved
TENMAK Boron Research Institute