Research Article
BibTex RIS Cite

Hekzagonal bor nitrür ilavesinin basınçsız sinterlenmiş alumina matrisli kompozitler üzerine etkisi

Year 2020, Volume: 5 Issue: 1, 40 - 47, 29.03.2020
https://doi.org/10.30728/boron.633242

Abstract

Yapay diş, kemik uygulamaları gibi biyomalzemelerde, yüksek mukavemet, iyi kimyasal dayanım ve aşınma direnci göstermeleri nedeni ile yapısal seramikler kullanılmaktadır. Alümina (Al2O3) yüksek mukavemeti, yüksek kimyasal direnci ve beyaz renkli oluşu nedeni ile yapay diş uygulamalarına iyi bir adaydır. Ancak, insan diş ve kemiği ile karşılaştırıldığında Elastik modülü ve sertliğinin oldukça yüksek olması nedeni ile implant olarak kullanıldıklarında diş ve kemiğe zarar vermektedirler. Hekzagonal bor nitrür (hBN), yapısal olarak grafite benzeyen beyaz renkli, biyouyumlu yapay seramik bir malzemedir. hBN ilave edilerek Alumina’nın fiziksel özelliklerinin değiştirilmesi ile implant uygulamalarda kullanım potansiyelinin artırılması mümkün olabilir. Bu çalışmada, farklı oranlarda nano hBN ilavesinin hBN-alümina kompozitin fiziksel özelliklerine etkisi incelenmiştir. α-Al2O3, nano hBN ve sinterleme ilavesi olarak MgO tozları kullanılarak hazırlanan kompozit tozlar hidrolik presle şekillendirilmiş ve koruyucu atmosfer altında basınçsız sinterlenmiştir. Sinterlenen numunelerin fiziksel özellikleri (yoğunluk, elastik ve kayma modülleri, Poisson oranı) belirlenmiştir. Faz analizi (XRD) ve mikroyapı karakterizasyonları (SEM) yapılmıştır. hBN kompozit içerisinde homojen bir dağılım göstermiştir. Kompozitte hBN miktarının artması ile göreceli yoğunluğun azaldığı, gözenekliliğin arttığı, Elastik modülünün ve sertliğin düştüğü tespit edilmiştir.

Supporting Institution

Anadolu Üniversitesi

Project Number

1605F418

Thanks

Bu çalışma Anadolu Üniversitesi 1605F418 numaralı Bilimsel Araştırma Projesi tarafından desteklenmiştir.

References

  • [1] Andersson M.Odén A., A new all-ceramic crown: A dense-sintered, high-purity alumina coping with porcelain, Acta Odontol. Scand., 51 (1), 59-64, 1993.
  • [2] Ben-Nissan B., Choi A. H.Cordingley R., Alumina Ceramics, Chap.10: Bioceramics and their Clinical Applications, Woodhead Publishing, 223-242, 2008.
  • [3] Popat K. C., Desai T. A., Alumina, Chap 1.2: Biomaterials Science (Third Edition), Academic Press, 162-166, 2013.
  • [4] Tayyebi S. A., Mirjalili F. H., Samadi H.Nemati A., Review of synthesis and properties of hydroxyapatite/alumina nano composite powder, Chemistry Journal., 5 (2), 8, 2015.
  • [5] Kokubo T., Bioceramics and their clinical applications, Ed. T. Kokubo. Cambridge, England, Woodhead Pub. and Maney Pub., 784, 2008.
  • [6] A Al-Sanabani F., Madfa A.H Al-Qudaimi N., Alumina ceramic for dental applications: A review article, American J. Mater. Res., 1 (1), 26-34, 2014.
  • [7] Kusunose T., Kim Y. H., Sekino T., Matsumoto T., Tanaka N., Nakayama T.Niihara K., Fabrication of Al2O3/BN nanocomposites by chemical processing and their mechanical properties, J. Mater. Res., 20 (1), 183-190, 2005.
  • [8] Tayyebi S. A., Mirjalili F.,. Samadi, H., Nemati, A., Review of synthesis and properties of hydroxyapatit/alumina nano composite powder, Chemistry Journal, 5 (2), 8, 2015.
  • [9] Chiba A., Kimura S., Raghukandan K.Morizono Y., Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction, Mater. Sci. Eng., A, 350 (1), 179-183, 2003.
  • [10] Li J., Fartash B.Hermansson L., Hydroxyapatite-alumina composites and bone-bonding, Biomaterials, 16 (5), 417-22, 1995.
  • [11] Kim S., Kong Y. M., Lee I. S.Kim H. E., Effect of calcinations of starting powder on mechanical properties of hydroxyapatite–alumina bioceramic composite, J. Mater. Sci. Mater. Med. 13 (3), 307-310, 2002.
  • [12] Viswanath B., Ravishankar N., Interfacial reactions in hydroxyapatite/alumina nanocomposites, Scr. Mater. 55 (10). 3, 2006.
  • [13] Cavalcanti A. N., Foxton R. M., Watson T. F., Oliveira M. T., Giannini M., Marchi G. M., Y-TZP Ceramics: Key concepts for clinical application, Operative Dentistry, 34 (3). 344-351, 2009.
  • [14] Moraes M. C., Elias C. N., Duailibi Filho J., Oliveira L. G. D., Mechanical properties of alumina-zirconia composites for ceramic abutments, Mater. Res. 7. 643-649, 2004.
  • [15] Maccauro G., Lommetti P. R., Raffaelli L., Manicone P. F., Biomaterials: Applications for nanomedicine, In Tech, Rijeca, Croatia 299, 2011.
  • [16] López J. P., Alumina, zirconia, and other non-oxide inert bioceramics, Chap 6: Bio‐ceramics with clinical applications, John Wiley & Sons, Ltd., 153-173, 2014.
  • [17] Borovinskaya I. P., Ignat'eva T. I., Vershinnikov V. I., Khurtina G. G., Sachkova N. V., Preparation of ultrafine boron nitride powders by self-propagating high-temperature synthesis, Inorg Mater., 39 (6), 588-593, 2003.
  • [18] Atila A., Halici Z., Cadirci E., Karakus E., Palabiyik S. S., Ay N., Bakan F., vd., Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs, Mater. Sci. Eng, C, 58, 1082-1089, 2016.
  • [19] Kıvanç M., Barutca B., Koparal A. T., Göncü Y., Bostancı S. H., Ay N., Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability, Mater. Sci. Eng. C, 91, 115-124, 2018.
  • [20] Göncü Y., Geçgin M., Bakan F., Ay N., Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate, Mater. Sci. Eng. C., 79, 343-353, 2017.
  • [21] Aguirre T. G., Cramer C. L., Torres V. P., Hammann T. J., Holland T. B., Ma K., Effects of the addition of boron nitride nanoplate on the fracture toughness, flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering, J. Mech. Behav. Biomed. Mater., 93, 105-117, 2019.
  • [22] Tozar A., Karahan İ. H., A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating, Appl. Surf. Sci., 452. 322-336, 2018.
  • [23] Duan X., Yang Z., Chen L., Tian Z., Cai D., Wang Y., Jia D., vd., Review on the properties of hexagonal boron nitride matrix composite ceramics, J. Eur. Ceram. Soc., 36 (15), 3725-3737, 2016.
  • [24] Ibram G., A Review on magnesium aluminate (MgAl2O4) Spinel: Synthesis, processing and applications, Int. Mater. Rev,. 58, 63-112, 2013.
  • [25] Sako E. Y., Braulio M. A. L., Zinngrebe E., Van der Laan S. R., Pandolfelli V. C., Fundamentals and applications on in situ spinel formation mechanisms in Al2O3–MgO refractory castables, Ceram. Int., 38 (3), 2243-2251, 2012.
  • [26] Uylas O., Timuçin M., Suvacı E., Bilgiç M., Özdemir B., Uysal O., Cengiz U., vd. A Study on Spinel formation and sintering behavior of Al2O3-MgO System for induction furnace linings, 18 international metallurgy and materials congress,İstanbul, TÜRKİYE: UCTEA the Chamber of Metallurgical and Materials Engineers, 2016.
  • [27] Tripathi H. S., Mukherjee B., Das S., Haldar M. K., Das S. K., Ghosh A., Synthesis and densification of magnesium aluminate spinel: Effect of MgO reactivity, Ceram. Int. 29 (8), 915-918, 2003.
  • [28] Kelly J. R., Ceramics in restorative and prosthetic dentistry, Annu. Rev. Mater. Sci., 27 (1), 443-468, 1997.
  • [29] Denry I. L., Recent advances in ceramics for dentistry, Crit. Rev. Oral. Biol. Ued., 7 (2), 134-143, 1996.
  • [30] Denry I., Holloway J. A., Ceramics for dental applications: A Review. Materials (Basel), 3 (1), 351-368, 2010.
  • [31] Ohji T., Hirano T., Nakahira A., Niihara K., Particle/Matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites, J. Am. Ceram. Soc., 79 (1), 33-45, 1996.
  • [32] Kusunose T., Nomoto T., Sekino T., Kim B. S., Yamamoto Y., Niihara K., Machinability and contact damage of Al2O3/BN composites fabricated through chemical processing, J. Ceram. Soc. Jpn., 111 (1299), 821-825, 2003.
  • [33] Kusunose T., Sekino T., Choa Y. H., Niihara K., Machinability of silicon nitride/boron nitride nanocomposite, J. Am. Ceram. Soc., 85, 2689-2695, 2002.
  • [34] Xu J., Lee K. J., Beck S. Y., Ha S. J., Shin B. C., Cho M. W., Won-Seung C., Mechanical properties and machinability of AlN-hBN ceramics prepared by spark plasma sintering, J. Ceram. Soc. Jpn., 117, 1028-1031, 2009.

The effect of hexagonal boron nitride addition on presureless sintered alumina matrix composites

Year 2020, Volume: 5 Issue: 1, 40 - 47, 29.03.2020
https://doi.org/10.30728/boron.633242

Abstract

The structural ceramics use in biomaterials such as artificial teeth and bone applications because of their high strength, good chemical resistance, and abrasion resistance. Alumina (Al2O3) is a good candidate for artificial tooth applications due to its high strength, high chemical resistance, and white color. However, their elastic modulus and stiffness are quite high compared to human teeth and bone, so they damage the teeth and bone when used as an implant. Hexagonal boron nitride (hBN) is a white, biocompatible artificial ceramic material that is structurally similar to graphite. By changing the physical properties of Al2O3 with adding hBN, it is possible to increase the potential of use in implant applications. In this study, the physical properties of the composite were investigated by adding different amounts of nano hBN into the hBN-alumina composite. The composite powders prepared by using α-Al2O3, nano hBN and MgO as a sintering agent were shaped by the hydraulic press and pressureless sintered under a protective atmosphere. Physical properties (density, elastic and shear modulus, Poisson's ratio) of sintered samples were determined. Phase analysis (XRD) and microstructure characterization (SEM) were performed. hBN showed a homogeneous distribution in the composite. It was determined that relative density decreased, porosity increased, elastic modulus and stiffness decreased with the increasing amount of hBN in the composite.

Project Number

1605F418

References

  • [1] Andersson M.Odén A., A new all-ceramic crown: A dense-sintered, high-purity alumina coping with porcelain, Acta Odontol. Scand., 51 (1), 59-64, 1993.
  • [2] Ben-Nissan B., Choi A. H.Cordingley R., Alumina Ceramics, Chap.10: Bioceramics and their Clinical Applications, Woodhead Publishing, 223-242, 2008.
  • [3] Popat K. C., Desai T. A., Alumina, Chap 1.2: Biomaterials Science (Third Edition), Academic Press, 162-166, 2013.
  • [4] Tayyebi S. A., Mirjalili F. H., Samadi H.Nemati A., Review of synthesis and properties of hydroxyapatite/alumina nano composite powder, Chemistry Journal., 5 (2), 8, 2015.
  • [5] Kokubo T., Bioceramics and their clinical applications, Ed. T. Kokubo. Cambridge, England, Woodhead Pub. and Maney Pub., 784, 2008.
  • [6] A Al-Sanabani F., Madfa A.H Al-Qudaimi N., Alumina ceramic for dental applications: A review article, American J. Mater. Res., 1 (1), 26-34, 2014.
  • [7] Kusunose T., Kim Y. H., Sekino T., Matsumoto T., Tanaka N., Nakayama T.Niihara K., Fabrication of Al2O3/BN nanocomposites by chemical processing and their mechanical properties, J. Mater. Res., 20 (1), 183-190, 2005.
  • [8] Tayyebi S. A., Mirjalili F.,. Samadi, H., Nemati, A., Review of synthesis and properties of hydroxyapatit/alumina nano composite powder, Chemistry Journal, 5 (2), 8, 2015.
  • [9] Chiba A., Kimura S., Raghukandan K.Morizono Y., Effect of alumina addition on hydroxyapatite biocomposites fabricated by underwater-shock compaction, Mater. Sci. Eng., A, 350 (1), 179-183, 2003.
  • [10] Li J., Fartash B.Hermansson L., Hydroxyapatite-alumina composites and bone-bonding, Biomaterials, 16 (5), 417-22, 1995.
  • [11] Kim S., Kong Y. M., Lee I. S.Kim H. E., Effect of calcinations of starting powder on mechanical properties of hydroxyapatite–alumina bioceramic composite, J. Mater. Sci. Mater. Med. 13 (3), 307-310, 2002.
  • [12] Viswanath B., Ravishankar N., Interfacial reactions in hydroxyapatite/alumina nanocomposites, Scr. Mater. 55 (10). 3, 2006.
  • [13] Cavalcanti A. N., Foxton R. M., Watson T. F., Oliveira M. T., Giannini M., Marchi G. M., Y-TZP Ceramics: Key concepts for clinical application, Operative Dentistry, 34 (3). 344-351, 2009.
  • [14] Moraes M. C., Elias C. N., Duailibi Filho J., Oliveira L. G. D., Mechanical properties of alumina-zirconia composites for ceramic abutments, Mater. Res. 7. 643-649, 2004.
  • [15] Maccauro G., Lommetti P. R., Raffaelli L., Manicone P. F., Biomaterials: Applications for nanomedicine, In Tech, Rijeca, Croatia 299, 2011.
  • [16] López J. P., Alumina, zirconia, and other non-oxide inert bioceramics, Chap 6: Bio‐ceramics with clinical applications, John Wiley & Sons, Ltd., 153-173, 2014.
  • [17] Borovinskaya I. P., Ignat'eva T. I., Vershinnikov V. I., Khurtina G. G., Sachkova N. V., Preparation of ultrafine boron nitride powders by self-propagating high-temperature synthesis, Inorg Mater., 39 (6), 588-593, 2003.
  • [18] Atila A., Halici Z., Cadirci E., Karakus E., Palabiyik S. S., Ay N., Bakan F., vd., Study of the boron levels in serum after implantation of different ratios nano-hexagonal boron nitride–hydroxy apatite in rat femurs, Mater. Sci. Eng, C, 58, 1082-1089, 2016.
  • [19] Kıvanç M., Barutca B., Koparal A. T., Göncü Y., Bostancı S. H., Ay N., Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability, Mater. Sci. Eng. C, 91, 115-124, 2018.
  • [20] Göncü Y., Geçgin M., Bakan F., Ay N., Electrophoretic deposition of hydroxyapatite-hexagonal boron nitride composite coatings on Ti substrate, Mater. Sci. Eng. C., 79, 343-353, 2017.
  • [21] Aguirre T. G., Cramer C. L., Torres V. P., Hammann T. J., Holland T. B., Ma K., Effects of the addition of boron nitride nanoplate on the fracture toughness, flexural strength, and Weibull Distribution of hydroxyapatite composites prepared by spark plasma sintering, J. Mech. Behav. Biomed. Mater., 93, 105-117, 2019.
  • [22] Tozar A., Karahan İ. H., A comprehensive study on electrophoretic deposition of a novel type of collagen and hexagonal boron nitride reinforced hydroxyapatite/chitosan biocomposite coating, Appl. Surf. Sci., 452. 322-336, 2018.
  • [23] Duan X., Yang Z., Chen L., Tian Z., Cai D., Wang Y., Jia D., vd., Review on the properties of hexagonal boron nitride matrix composite ceramics, J. Eur. Ceram. Soc., 36 (15), 3725-3737, 2016.
  • [24] Ibram G., A Review on magnesium aluminate (MgAl2O4) Spinel: Synthesis, processing and applications, Int. Mater. Rev,. 58, 63-112, 2013.
  • [25] Sako E. Y., Braulio M. A. L., Zinngrebe E., Van der Laan S. R., Pandolfelli V. C., Fundamentals and applications on in situ spinel formation mechanisms in Al2O3–MgO refractory castables, Ceram. Int., 38 (3), 2243-2251, 2012.
  • [26] Uylas O., Timuçin M., Suvacı E., Bilgiç M., Özdemir B., Uysal O., Cengiz U., vd. A Study on Spinel formation and sintering behavior of Al2O3-MgO System for induction furnace linings, 18 international metallurgy and materials congress,İstanbul, TÜRKİYE: UCTEA the Chamber of Metallurgical and Materials Engineers, 2016.
  • [27] Tripathi H. S., Mukherjee B., Das S., Haldar M. K., Das S. K., Ghosh A., Synthesis and densification of magnesium aluminate spinel: Effect of MgO reactivity, Ceram. Int. 29 (8), 915-918, 2003.
  • [28] Kelly J. R., Ceramics in restorative and prosthetic dentistry, Annu. Rev. Mater. Sci., 27 (1), 443-468, 1997.
  • [29] Denry I. L., Recent advances in ceramics for dentistry, Crit. Rev. Oral. Biol. Ued., 7 (2), 134-143, 1996.
  • [30] Denry I., Holloway J. A., Ceramics for dental applications: A Review. Materials (Basel), 3 (1), 351-368, 2010.
  • [31] Ohji T., Hirano T., Nakahira A., Niihara K., Particle/Matrix interface and its role in creep inhibition in alumina/silicon carbide nanocomposites, J. Am. Ceram. Soc., 79 (1), 33-45, 1996.
  • [32] Kusunose T., Nomoto T., Sekino T., Kim B. S., Yamamoto Y., Niihara K., Machinability and contact damage of Al2O3/BN composites fabricated through chemical processing, J. Ceram. Soc. Jpn., 111 (1299), 821-825, 2003.
  • [33] Kusunose T., Sekino T., Choa Y. H., Niihara K., Machinability of silicon nitride/boron nitride nanocomposite, J. Am. Ceram. Soc., 85, 2689-2695, 2002.
  • [34] Xu J., Lee K. J., Beck S. Y., Ha S. J., Shin B. C., Cho M. W., Won-Seung C., Mechanical properties and machinability of AlN-hBN ceramics prepared by spark plasma sintering, J. Ceram. Soc. Jpn., 117, 1028-1031, 2009.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Yapıncak Göncü

İbrahim Ceyhun Onar This is me

Nuran Ay

Project Number 1605F418
Publication Date March 29, 2020
Acceptance Date March 23, 2020
Published in Issue Year 2020 Volume: 5 Issue: 1

Cite

APA Göncü, Y., Onar, İ. C., & Ay, N. (2020). Hekzagonal bor nitrür ilavesinin basınçsız sinterlenmiş alumina matrisli kompozitler üzerine etkisi. Journal of Boron, 5(1), 40-47. https://doi.org/10.30728/boron.633242