Research Article
BibTex RIS Cite

First principles investigations of Ta4AlX3 (X= B, C, N) MAX phase ceramics

Year 2020, Volume: 5 Issue: 3, 115 - 123, 30.09.2020
https://doi.org/10.30728/boron.731471

Abstract

Ta4AlX3 (X=B, C, N) MAX phase ceramics have been examined using first principles calculations in this study. Ta4AlX3 MAX phase ceramics have hexagonal crystal structure and the formation energies have been determined for the optimized crystal structures. The elastic constants of Ta4AlX3 MAX phase ceramics have been determined and these constants satisfy the mechanical stability criteria. In addition, the mechanical properties such as bulk modulus, shear modulus, etc. have been obtained to reveal the detailed properties of these compounds. The anisotropic elastic properties have been visualized in both 3D and 2D. Moreover, the thermal properties of Ta4AlX3 MAX phase ceramics such as thermal expansion coefficient, heat capacity etc. have been studied in 0 to 1000 K temperature range and 0 to 40 GPa pressure range. In this study, Ta4AlB3 has been considered for the first time along with Ta4AlC3 and Ta4AlN3 compounds and the effect of X atom to the properties of these compounds have been discussed in detail.

References

  • Low I. M., Advances In Science and Technology of Mn+1AXn Phases, 1st Edition, Woodhead Pub, 2012.
  • Sokol M., Natu V., Kota S., Barsoum M. W., On the chemical diversity of the max phases, Trends Chem., 1 (2), 210–223, 2019.
  • Lin Z., Zhuo M., Zhou Y., Li M., Wang J., Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides, J. Am. Ceram. Soc., 89 (12), 3765–3769, 2006.
  • Zhang J., Liu B., Wang J. Y., Zhou Y. C., Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations, J. Mater. Res., 24 (1), 39–49, 2009.
  • Uddin M. M., Ali M. A., Ali M. S., Structural, elastic, electronic and optical properties of metastable MAX phase Ti5SiC4 compound, Indian J. Pure Appl. Phys., 54 (6), 386-390, 2016.
  • Sürücü G., Erkişi A., The first principles investigation of structural, electronic, mechanical and lattice dynamical properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds, Boron, 3 (1), 24–32, 2018.
  • Nowotny V. H., Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn, Prog. Solid State Chem., 5 (C), 27–70,1971.
  • Lapauw T., Halim J., Lu J., Cabioc'h T., Hultman L., Barsoum M. W., Lambrinou K., et al., Synthesis of the novel Zr3AlC2 MAX phase, J. Eur. Ceram. Soc., 36 (3), 943–947, 2016.
  • Akhlaghi M., Tayebifard S. A., Salahi E., Shahedi A. M., Schmidt G., Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture, Ceram. Int., 44 (8), 9671–9678, 2018.
  • Qu L., Bei G., Stelzer B., Rueß H., Schneider J. M., Cao D., Zwaag S. et al., Synthesis, crystal structure, microstructure and mechanical properties of (Ti1-xZrx)3SiC2 MAX phase solid solutions, Ceram. Int., 45 (1), 1400–1408, 2019.
  • Drouelle E., Brunet V., Cormier J., Villechaise P., Sallot P., Naimi F., Bernard F. et al., Oxidation resistance of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: A comparison, J. Am. Ceram. Soc., 103 (2), 1270–1280, 2020.
  • Clark D. W., Zinkle S. J., Patel M. K., Parish C. M., High temperature ion irradiation effects in MAX phase ceramics, Acta Mater., 105, 130–146, 2016.
  • Gonzalez-Julian J., Mauer G., Sebold D., Mack D. E., Vassen R., Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges, J. Am. Ceram. Soc., 103 (4), 2362–2375, 2020.
  • Jin S., Su T., Hu Q., Zhou A., Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C, Mater. Res. Lett., 8 (4), 158–164, 2020.
  • Kirill S., Kolincio K. K., Emelyanov A., Mielewczyk-Gryn A., Gazda M., Roman M., Pazniak A., Rodionova V. et al., Evolution of magnetic and transport properties in (Cr1−xMnx)2AlC MAX-phase synthesized by arc melting technique, J. Magn. Magn. Mater., 493, 165642/1-7, 2020.
  • Xu J. Zhao M. Q, Wang Y., Yao W, Chen C., Anasori B., Sarycheva A. et al., Demonstration of Li-ion capacity of MAX phases, ACS Energy Lett., 1 (6), 1094–1099, 2016.
  • Anasori B., Lukatskaya M. R., Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2 (2), 1–17, 2017.
  • Guo Z., Zhou J., Zhu L., Sun Z., MXene: A promising photocatalyst for water splitting, J. Mater. Chem. A, 4 (29), 11446–11452, 2016.
  • Pang J. Mendes R. G., Bachmatiuk A., Zhao L., Ta H. Q., Gemming T., Liu H. et al., Applications of 2D MXenes in energy conversion and storage systems, Chem. Soc. Rev., 48 (1), 72–133, 2019.
  • Gao G., Ding G., L J., Yao K., Wu M., Qian M., Monolayer MXenes: Promising half-metals and spin gapless semiconductors, Nanoscale, 8 (16), 8986–8994, 2016.
  • Surucu G., Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds, Mater. Chem. Phys., 203, 106–117, 2018.
  • Gencer A., Surucu G., Electronic and lattice dynamical properties of Ti2SiB MAX phase, Mater. Res. Express, 5 (7), 076303/1-9, 2018.
  • Surucu G., Erkisi A., An ab initio study on the investigation of structural, electronic, mechanical and lattice dynamical properties of the M2AX type MAX phases Sc2AlB0.5C0.5, Sc2AlB0.5N0.5 and Sc2AlC0.5N0.5 compounds, Mater. Res. Express, 4 (10), 106520/1-13, 2017.
  • Chakraborty P., Chakrabarty A., Dutta A., Saha-Dasgupta T., Soft MAX phases with boron substitution: A computational prediction, Phys. Rev. Mater., 2 (10), 103605/1-6, 2018.
  • Surucu G., Gencer A., Wang X., Surucu O., Lattice dynamical and thermo-elastic properties of M2AlB (M= V, Nb, Ta) MAX phase borides, J. Alloys Compd., 819, 153256/1-10, 2020.
  • Khazaei M., Arai M., Sasaki T., Estili M., Sakka Y., Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2AlC (M= Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases, J. Phys.: Condens. Matter, 26 (50), 505503/1-12, 2014.
  • Griseri M., Tunca B., Lapauw T., Huang S, Popescu L., Barsoum M. W., Lambrinou K. et al., Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase, J. Eur. Ceram. Soc., 39 (10), 2973–2981, 2019.
  • Deng X. H., Fan B. B., Lu W., First-principles investigations on elastic properties of α- and β- Ta4AlC3, Solid State Commun., 149 (11–12), 441–444, 2009.
  • Du Y. L., Sun Z. M., Hashimoto H., Tian W. B., Elastic properties of Ta4AlC3 studied by first-principles calculations, Solid State Commun., 147 (7–8), 246–249, 2008.
  • Lane N. J., Naguib M., Presser V., Hug G., Hultman L., Barsoum M. W., First-order Raman scattering of the MAX phases Ta4AlC3, Nb4AlC3, Ti4AlN3, and Ta2AlC, J. Raman Spectrosc., 43 (7), 954–958, 2012.
  • Hu C. Lin Z., He L., Bao Y., Wang J., Li M., Zhouet Y. et al., Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/Hot-Pressing Method, J. Am. Ceram. Soc., 90 (8), 2542–2548, 2007.
  • Wang J., Wang J., Zhou Y., Lin Z., Hu C., Ab initio study of polymorphism in layered ternary carbide M4AlC3 (M = V, Nb and Ta), Scr. Mater., 58 (12), 1043–1046, 2008.
  • Lu W., Deng X., Wang H., Huang H., He L., Electronic structure and chemical bonding of α- and β-Ta4AlC3 phases: Full-potential calculation, J. Mater. Res., 23 (9), 2350–2356, 2008.
  • Du Y. L., Sun Z. M., Hashimoto H., Tian W. B., Bonding properties and bulk modulus of M4AlC3 (M = V, Nb, and Ta) studied by first-principles calculations, Phys. status solidi b, 246 (5), 1039–1043, 2009.
  • Peng F., Chen D., Yang X., Elasticity and thermodynamic properties of α-Ta4AlC3 under pressure, J. Alloys Compd., 489 (1), 140–145, 2010.
  • Li C., Wang Z., Wang C., Effects of aluminum vacancies on electronic structure and optical properties of Ta4AlC3 in situ: A first principles study, Phys. B: Condens. Matter, 406 (20), 3906–3910, 2011.
  • Lane N. J., Eklund P., Lu J., Spencer C. B., Hultman L., Barsoum M. W., High-temperature stability of α-Ta4AlC3, Mater. Res. Bull., 46 (7), 1088–1091, 2011.
  • Li C., Wang Z., First principles prediction of structural and mechanical properties of the nanolaminate compound M4AlN3 (M= V, Nb, and Ta), Phys. status solidi B, 248 (7), 1639–1644, 2011.
  • Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Int. J. Comput. Mater. Sci., 6 (1), 15–50, 1996.
  • Kresse G. Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (16), 11169–11186, 1996.
  • Kresse G. Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59 (3), 1758–1775, 1999.
  • Blöchl P. E., Projector augmented-wave method, Phys. Rev. B, 50 (24), 17953–17979, 1994.
  • Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (18), 3865–3868, 1996.
  • Pack J. D., Monkhorst H. J., Special points for Brillouin-zone integrations—a reply, Phys. Rev. B, 16 (4), 1748–1749, 1977.
  • Momma K., Izumi F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44 (6), 1272–1276, 2011.
  • Le Page Y., Saxe P., Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B, 65 (10), 104104/1-14, 2002.
  • Gaillac R., Pullumbi P., Coudert F.-X., ELATE: An open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28 (27), 275201/1-5, 2016.
  • Blanco M. A., Francisco E., Luaña V., GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158 (1), 57–72, 2004.
  • Woolfson M. M., Solid state physics 3. theory of lattice dynamics in the harmonic approximation, Acta Crystallogr. Sect. A, 29 (3), 314–314, 1973.
  • Born M., On the stability of crystal lattices, I, Math. Proc. Cambridge Philos. Soc., 36 (2), 160–172, 1940.
  • Mouhat F., Coudert F.-X., Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90 (22), 224104/1-4, 2014.
  • Surucu G., Colakoglu K., Deligoz E., Korozlu N., First-Principles Study on the MAX Phases Tin+1GaNn (n=1,2 and 3), J. Electron. Mater. 45 (8), 4256–4264, 2016.
  • Baysal M. B., Surucu G., Deligoz E., Ozısık H., The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications, Int. J. Hydrogen Energy, 43 (52), 23397–23408, 2018.
  • Flórez M., Recio J. M., Francisco E., Blanco M. A., Pendás A. M., First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B - Condens. Matter Mater. Phys., 66 (14), 1–8, 2002.
Year 2020, Volume: 5 Issue: 3, 115 - 123, 30.09.2020
https://doi.org/10.30728/boron.731471

Abstract

References

  • Low I. M., Advances In Science and Technology of Mn+1AXn Phases, 1st Edition, Woodhead Pub, 2012.
  • Sokol M., Natu V., Kota S., Barsoum M. W., On the chemical diversity of the max phases, Trends Chem., 1 (2), 210–223, 2019.
  • Lin Z., Zhuo M., Zhou Y., Li M., Wang J., Microstructures and theoretical bulk modulus of layered ternary tantalum aluminum carbides, J. Am. Ceram. Soc., 89 (12), 3765–3769, 2006.
  • Zhang J., Liu B., Wang J. Y., Zhou Y. C., Low-temperature instability of Ti2SnC: A combined transmission electron microscopy, differential scanning calorimetry, and X-ray diffraction investigations, J. Mater. Res., 24 (1), 39–49, 2009.
  • Uddin M. M., Ali M. A., Ali M. S., Structural, elastic, electronic and optical properties of metastable MAX phase Ti5SiC4 compound, Indian J. Pure Appl. Phys., 54 (6), 386-390, 2016.
  • Sürücü G., Erkişi A., The first principles investigation of structural, electronic, mechanical and lattice dynamical properties of the B and N Doped M2AX Type MAX Phases Ti2AlB0.5C0.5 and Ti2AlN0.5C0.5 Compounds, Boron, 3 (1), 24–32, 2018.
  • Nowotny V. H., Strukturchemie einiger Verbindungen der Übergangsmetalle mit den elementen C, Si, Ge, Sn, Prog. Solid State Chem., 5 (C), 27–70,1971.
  • Lapauw T., Halim J., Lu J., Cabioc'h T., Hultman L., Barsoum M. W., Lambrinou K., et al., Synthesis of the novel Zr3AlC2 MAX phase, J. Eur. Ceram. Soc., 36 (3), 943–947, 2016.
  • Akhlaghi M., Tayebifard S. A., Salahi E., Shahedi A. M., Schmidt G., Self-propagating high-temperature synthesis of Ti3AlC2 MAX phase from mechanically-activated Ti/Al/graphite powder mixture, Ceram. Int., 44 (8), 9671–9678, 2018.
  • Qu L., Bei G., Stelzer B., Rueß H., Schneider J. M., Cao D., Zwaag S. et al., Synthesis, crystal structure, microstructure and mechanical properties of (Ti1-xZrx)3SiC2 MAX phase solid solutions, Ceram. Int., 45 (1), 1400–1408, 2019.
  • Drouelle E., Brunet V., Cormier J., Villechaise P., Sallot P., Naimi F., Bernard F. et al., Oxidation resistance of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX phases: A comparison, J. Am. Ceram. Soc., 103 (2), 1270–1280, 2020.
  • Clark D. W., Zinkle S. J., Patel M. K., Parish C. M., High temperature ion irradiation effects in MAX phase ceramics, Acta Mater., 105, 130–146, 2016.
  • Gonzalez-Julian J., Mauer G., Sebold D., Mack D. E., Vassen R., Cr2AlC MAX phase as bond coat for thermal barrier coatings: Processing, testing under thermal gradient loading, and future challenges, J. Am. Ceram. Soc., 103 (4), 2362–2375, 2020.
  • Jin S., Su T., Hu Q., Zhou A., Thermal conductivity and electrical transport properties of double-A-layer MAX phase Mo2Ga2C, Mater. Res. Lett., 8 (4), 158–164, 2020.
  • Kirill S., Kolincio K. K., Emelyanov A., Mielewczyk-Gryn A., Gazda M., Roman M., Pazniak A., Rodionova V. et al., Evolution of magnetic and transport properties in (Cr1−xMnx)2AlC MAX-phase synthesized by arc melting technique, J. Magn. Magn. Mater., 493, 165642/1-7, 2020.
  • Xu J. Zhao M. Q, Wang Y., Yao W, Chen C., Anasori B., Sarycheva A. et al., Demonstration of Li-ion capacity of MAX phases, ACS Energy Lett., 1 (6), 1094–1099, 2016.
  • Anasori B., Lukatskaya M. R., Gogotsi Y., 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2 (2), 1–17, 2017.
  • Guo Z., Zhou J., Zhu L., Sun Z., MXene: A promising photocatalyst for water splitting, J. Mater. Chem. A, 4 (29), 11446–11452, 2016.
  • Pang J. Mendes R. G., Bachmatiuk A., Zhao L., Ta H. Q., Gemming T., Liu H. et al., Applications of 2D MXenes in energy conversion and storage systems, Chem. Soc. Rev., 48 (1), 72–133, 2019.
  • Gao G., Ding G., L J., Yao K., Wu M., Qian M., Monolayer MXenes: Promising half-metals and spin gapless semiconductors, Nanoscale, 8 (16), 8986–8994, 2016.
  • Surucu G., Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: An Ab-initio study on hypothetical M2AB (M = Ti, Zr, Hf; A = Al, Ga, In) compounds, Mater. Chem. Phys., 203, 106–117, 2018.
  • Gencer A., Surucu G., Electronic and lattice dynamical properties of Ti2SiB MAX phase, Mater. Res. Express, 5 (7), 076303/1-9, 2018.
  • Surucu G., Erkisi A., An ab initio study on the investigation of structural, electronic, mechanical and lattice dynamical properties of the M2AX type MAX phases Sc2AlB0.5C0.5, Sc2AlB0.5N0.5 and Sc2AlC0.5N0.5 compounds, Mater. Res. Express, 4 (10), 106520/1-13, 2017.
  • Chakraborty P., Chakrabarty A., Dutta A., Saha-Dasgupta T., Soft MAX phases with boron substitution: A computational prediction, Phys. Rev. Mater., 2 (10), 103605/1-6, 2018.
  • Surucu G., Gencer A., Wang X., Surucu O., Lattice dynamical and thermo-elastic properties of M2AlB (M= V, Nb, Ta) MAX phase borides, J. Alloys Compd., 819, 153256/1-10, 2020.
  • Khazaei M., Arai M., Sasaki T., Estili M., Sakka Y., Trends in electronic structures and structural properties of MAX phases: A first-principles study on M2AlC (M= Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases, J. Phys.: Condens. Matter, 26 (50), 505503/1-12, 2014.
  • Griseri M., Tunca B., Lapauw T., Huang S, Popescu L., Barsoum M. W., Lambrinou K. et al., Synthesis, properties and thermal decomposition of the Ta4AlC3 MAX phase, J. Eur. Ceram. Soc., 39 (10), 2973–2981, 2019.
  • Deng X. H., Fan B. B., Lu W., First-principles investigations on elastic properties of α- and β- Ta4AlC3, Solid State Commun., 149 (11–12), 441–444, 2009.
  • Du Y. L., Sun Z. M., Hashimoto H., Tian W. B., Elastic properties of Ta4AlC3 studied by first-principles calculations, Solid State Commun., 147 (7–8), 246–249, 2008.
  • Lane N. J., Naguib M., Presser V., Hug G., Hultman L., Barsoum M. W., First-order Raman scattering of the MAX phases Ta4AlC3, Nb4AlC3, Ti4AlN3, and Ta2AlC, J. Raman Spectrosc., 43 (7), 954–958, 2012.
  • Hu C. Lin Z., He L., Bao Y., Wang J., Li M., Zhouet Y. et al., Physical and mechanical properties of bulk Ta4AlC3 ceramic prepared by an in situ reaction synthesis/Hot-Pressing Method, J. Am. Ceram. Soc., 90 (8), 2542–2548, 2007.
  • Wang J., Wang J., Zhou Y., Lin Z., Hu C., Ab initio study of polymorphism in layered ternary carbide M4AlC3 (M = V, Nb and Ta), Scr. Mater., 58 (12), 1043–1046, 2008.
  • Lu W., Deng X., Wang H., Huang H., He L., Electronic structure and chemical bonding of α- and β-Ta4AlC3 phases: Full-potential calculation, J. Mater. Res., 23 (9), 2350–2356, 2008.
  • Du Y. L., Sun Z. M., Hashimoto H., Tian W. B., Bonding properties and bulk modulus of M4AlC3 (M = V, Nb, and Ta) studied by first-principles calculations, Phys. status solidi b, 246 (5), 1039–1043, 2009.
  • Peng F., Chen D., Yang X., Elasticity and thermodynamic properties of α-Ta4AlC3 under pressure, J. Alloys Compd., 489 (1), 140–145, 2010.
  • Li C., Wang Z., Wang C., Effects of aluminum vacancies on electronic structure and optical properties of Ta4AlC3 in situ: A first principles study, Phys. B: Condens. Matter, 406 (20), 3906–3910, 2011.
  • Lane N. J., Eklund P., Lu J., Spencer C. B., Hultman L., Barsoum M. W., High-temperature stability of α-Ta4AlC3, Mater. Res. Bull., 46 (7), 1088–1091, 2011.
  • Li C., Wang Z., First principles prediction of structural and mechanical properties of the nanolaminate compound M4AlN3 (M= V, Nb, and Ta), Phys. status solidi B, 248 (7), 1639–1644, 2011.
  • Kresse G., Furthmüller J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Int. J. Comput. Mater. Sci., 6 (1), 15–50, 1996.
  • Kresse G. Furthmüller J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (16), 11169–11186, 1996.
  • Kresse G. Joubert D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, 59 (3), 1758–1775, 1999.
  • Blöchl P. E., Projector augmented-wave method, Phys. Rev. B, 50 (24), 17953–17979, 1994.
  • Perdew J. P., Burke K., Ernzerhof M., Generalized Gradient Approximation Made Simple, Phys. Rev. Lett., 77 (18), 3865–3868, 1996.
  • Pack J. D., Monkhorst H. J., Special points for Brillouin-zone integrations—a reply, Phys. Rev. B, 16 (4), 1748–1749, 1977.
  • Momma K., Izumi F., VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44 (6), 1272–1276, 2011.
  • Le Page Y., Saxe P., Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B, 65 (10), 104104/1-14, 2002.
  • Gaillac R., Pullumbi P., Coudert F.-X., ELATE: An open-source online application for analysis and visualization of elastic tensors, J. Phys. Condens. Matter, 28 (27), 275201/1-5, 2016.
  • Blanco M. A., Francisco E., Luaña V., GIBBS: Isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun., 158 (1), 57–72, 2004.
  • Woolfson M. M., Solid state physics 3. theory of lattice dynamics in the harmonic approximation, Acta Crystallogr. Sect. A, 29 (3), 314–314, 1973.
  • Born M., On the stability of crystal lattices, I, Math. Proc. Cambridge Philos. Soc., 36 (2), 160–172, 1940.
  • Mouhat F., Coudert F.-X., Necessary and sufficient elastic stability conditions in various crystal systems, Phys. Rev. B, 90 (22), 224104/1-4, 2014.
  • Surucu G., Colakoglu K., Deligoz E., Korozlu N., First-Principles Study on the MAX Phases Tin+1GaNn (n=1,2 and 3), J. Electron. Mater. 45 (8), 4256–4264, 2016.
  • Baysal M. B., Surucu G., Deligoz E., Ozısık H., The effect of hydrogen on the electronic, mechanical and phonon properties of LaMgNi4 and its hydrides for hydrogen storage applications, Int. J. Hydrogen Energy, 43 (52), 23397–23408, 2018.
  • Flórez M., Recio J. M., Francisco E., Blanco M. A., Pendás A. M., First-principles study of the rocksalt-cesium chloride relative phase stability in alkali halides, Phys. Rev. B - Condens. Matter Mater. Phys., 66 (14), 1–8, 2002.
There are 54 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Ayşenur Gencer 0000-0003-2574-3516

Publication Date September 30, 2020
Acceptance Date August 10, 2020
Published in Issue Year 2020 Volume: 5 Issue: 3

Cite

APA Gencer, A. (2020). First principles investigations of Ta4AlX3 (X= B, C, N) MAX phase ceramics. Journal of Boron, 5(3), 115-123. https://doi.org/10.30728/boron.731471

© 2016 All Rights Reserved
TENMAK Boron Research Institute