Review
BibTex RIS Cite
Year 2020, Volume: 5 Issue: 4, 199 - 208, 29.12.2020
https://doi.org/10.30728/boron.734804

Abstract

References

  • [1]Avci M. , Yilmaz B., Tezcaner A., Evis Z., Strontium doped hydroxyapatite biomimetic coatings on Ti6Al4V plates, Ceram. Int., 43 (12), 9431–9436, 2017.
  • [2]Yilmaz B., Evis Z., Tezcaner A., Banerjee S., Surface Characterization and Biocompatibility of Selenium-Doped Hydroxyapatite Coating on Titanium Alloy, Int. J. Appl. Ceram. Technol. 13 (6), 1059–1068, 2016.
  • [3]Thian E.S., Huang J., Best S.M., Barber Z.H., Bonfield W., Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: Anin vitro study using acellular simulated body fluid, J. Biomed. Mater. Res. 76B (2), 326–333, 2006.
  • [4]Tampieri A., Celotti G.C., Landi E., Sandri M., Magnesium Doped Hydroxyapatite: Synthesis and Characterization, Key. Eng. Mater., 264–268, 2051–2054, 2004.
  • [5]Ciobanu C.S., Iconaru S.L., Chifiriuc M.C., Costescu A., Le Coustumer P., Predoi D., Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles, BioMed Res. Int., 2013, 1–10, 2013.
  • [6]Uysal I., Severcan F., Evis Z., Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride, Ceram. Int., 39 (7), 7727–7733, 2013.
  • [7]Toker S.M., Tezcaner A., Evis Z., Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride, J. Biomed. Mater. Res., 96B (2), 207–217, 2011.
  • [8]Alshemary A.Z., Engin Pazarceviren A., Tezcaner A., Evis Z., Fe3+/SeO42− dual doped nano hydroxyapatite: A novel material for biomedical applications, J. Biomed. Mater. Res., 106 (1) 340–352, 2018.
  • [9]Samani S., Hossainalipour S.M., Tamizifar M., Rezaie H.R., In vitro antibacterial evaluation of sol-gel-derived Zn-, Ag-, and (Zn+ Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus, J. Biomed. Mater. Res., 101A (1), 222–230, 2013.
  • [10]Bodhak S., Bose S., Bandyopadhyay A., Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics: Electro-Thermally Polarized Doped Hydroxyapatite Ceramics, J. Am. Ceram. Soc., 94 (4), 1281–1288, 2011.
  • [11]Sasaki K., Hayashi Y., Toshiyuki K., Guo B., Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite, Chemosphere, 207, 139–146, 2018.
  • [12]Liu Y., Xue K., Yao S., Structure, degradation and hydroxyapatite conversion of B-doped 58S bioglass and glass-ceramics, J. Ceram. Soc. Jpn., 127 (4), 232–241, 2019.
  • [13]Choi W.-W., Chen K.Y., Evaluation of boron removal by adsorption on solids, Environ. Sci. Technol., 13 (2), 189–196, 1979.
  • [14]Yoshikawa E., Sasaki A., Endo M., Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia, J. Hazard. Mater., 237–238, 277–282, 2012.
  • [15]Sasaki K., Toshiyuki K., Guo B., Ideta K., Hayashi Y., Hirajima T., Miyawaki J., Calcination effect of borate-bearing hydroxyapatite on the mobility of borate, J. Hazard. Mater., 344, 90–97, 2018.
  • [16]Bose S., Fielding G., Tarafder S., Bandyopadhyay A., Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis, Trends Biotechnol., 31 (10) 594–605, 2013.
  • [17]Abdelnour S.A., Abd El-Hack M.E., Swelum A.A., Perillo A., Losacco C., The vital roles of boron in animal health and production: A comprehensive review, J. Trace Elem. Med. Biol., 50, 296–304, 2018.
  • [18]Khaliq H., Juming Z., Ke-Mei P., The Physiological Role of Boron on Health, Biol. Trace Elem. Res., 186, 31–51, 2018.
  • [19]Dzondo-Gadet M., Mayap-Nzietchueng R., Hess K., Nabet P., Belleville F., Dousset B., Action of Boron at the Molecular Level, Effects on Transcription and Translation in an Acellular System, Biol. Trace Elem. Res., 85 (1), 23–33, 2002.
  • [20]Swager T.M., Luppino S.P., Nothing Boring about this Borylation, Synfacts, 11 (3), 0266–0266, 2015.
  • [21]Lakhkar N.J., Lee I.-H., Kim H.-W., Salih V., Wall I.B., Knowles J.C., Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses, Adv. Drug Delivery Rev., 65 (4), 405–420, 2013.
  • [22]Jakob F., Seefried L., Kitz C., Stich A., Sponholz B., Raab P., Ebert R., "Nutritional Influences on Bone Health", Chap. 11: Trace Elements and Bone, Springer-Verlag London Limited, London, 2010.
  • [23]Ternane R., Cohen-Adad M.T., Panczer G., Goutaudier C., Kbir-Ariguib N., Trabelsi-Ayedi M., Florian P., Massiot D., Introduction of boron in hydroxyapatite: Synthesis and structural characterization, J. Alloys Compd., 333 (1-2), 62–71, 2002.
  • [24]Kolmas J., Velard F., Jaguszewska A., Lemaire F., Kerdjoudj H., Gangloff S.C., Ka A., Substitution of strontium and boron into hydroxyapatite crystals : Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells, Mater. Sci. Eng. C, 79, 638–646, 2017.
  • [25]Barheine S., Hayakawa S., Ja C., Shirosaki Y., Osaka A., Effect of Disordered Structure of Boron-Containing Calcium Phosphates on their In Vitro Biodegradability, J. Am. Chem. Soc., 94 (8), 2656–2662, 2011.
  • [26]Alhammad M.S., Nanostructure hydroxyapatite based ceramics by sol gel method, J. Alloys Compd., 661, 251–256, 2016.
  • [27]Atila D., Karataş A., Evcin A., Keskin D., Tezcaner A., Bacterial cellulose-reinforced boron-doped hydroxyapatite/gelatin scaffolds for bone tissue engineering, Cellulose, 26, 9765–9785, 2019.
  • [28]Tunçay E., Demirtaş T.T., Gümüşderelioğlu M., Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds, J. Trace Elem. Med. Biol., 40, 72–81, 2017.
  • [29]Nakamura M., Zhuang Z., Aizawa M., Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their surface properties, Key Eng. Mater., 529–530, 109–113, 2012.
  • [30]Satoshi H., Akihito S., Tsuru K., Osaka A., Fujii E., Kawabata K., Jaeger C., Preparation and Characterization of Boron-Containing Hydroxyapatite, Key Eng. Mater., 361–363, 191–194, 2007.
  • [31]Sasaki K., Toshiyuki K., Ideta K., Miki H., Hirajima T., Miyawaki J., Murayama M., vd., Removal mechanism of high concentration borate by co-precipitation with hydroxyapatite, J. Environ. Chem. Eng., 4 (1), 1092–1101, 2016.
  • [32]Ke D., Vu A.A., Bandyopadhyay A., Bose S., Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants, Acta Biomater., 84, 414–423, 2019.
  • [33]Cao J., Lian R., Jiang X., Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility, Appl. Surf. Sci., 515, 146069, 2020. https://doi.org/10.1016/j.apsusc.2020.146069.
  • [34]Evcin A., Buyukleblebici B., Ti6A14V coating with B2O3 and Al2O3 containing hydroxyapatite by HVOF technique, Scientia Iranica, 26,1980–1989, 2019.
  • [35]Arslan A., Çakmak S., Gümüşderelioğlu M., Enhanced osteogenic activity with boron-doped nanohydroxyapatite-loaded poly(butylene adipate-co-terephthalate) fibrous 3D matrix, Artif. Cells Nanomed. Biotechnol., 46, 790–799, 2018.
  • [36]Albayrak O., Materials Characterization Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment, Mater. Charact., 113, 82–89, 2016.
  • [37]Albayrak Ö., Uǧurlu M., Bor katkili hidroksiapatit üretimi ve karakterizasyonu: Bor orani ve sinterleme sicakliǧinin yapi ve mekanik özellikler üzerindeki etkisi, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(3), 749–761, 2016.
  • [38]Calis M., Demirtas T.T., Vatansever A., Irmak G., Sakarya A.H., Atilla P., Ozgur F., Gumusderelioglu M., A Biomimetic Alternative to Synthetic Hydroxyapatite: “Boron-Containing Bone-Like Hydroxyapatite” Precipitated From Simulated Body Fluid, Annals of Plastic Surgery, 79 (3), 304–311, 2017.
  • [39]Ciftci E., Sevil K., Korkusuz P., Timuçin M., Korkusuz F., Boron Containing Nano Hydroxyapatites (B-n-HAp) Stimulate Mesenchymal Stem Cell Adhesion, Proliferation and Differentiation, Key Eng. Mater., 631, 373–378, 2014.
  • [40]Gizer M., Köse S., Karaosmanoglu B., Taskiran E.Z., Berkkan A., Timuçin M., Korkusuz F., vd., The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells, Biol. Trace Elem. Res., 193, 364–376, 2020.
  • [41]Suchanek W., Yashima M., Kakihana M., Yoshimura M., Hydroxyapatite ceramics with selected sintering additives, Biomaterials, 18 (13), 923–933, 1997.
  • [42]Ternane R., Cohen-Adad M.T., Panczer G., Goutaudier C., Dujardin C., Boulon G., Kbir-Ariguib N., vd., Structural and luminescent properties of new Ce3+ doped calcium borophosphate with apatite structure, Solid State Sci., 4 (1), 53–59, 2002.
  • [43]Ternane R., Panczer G., Cohen-Adad M.T., Goutaudier C., Boulon G., Kbir-Ariguib N., Trabelsi-Ayedi M., Relationships between structural and luminescence properties in Eu3+-doped new calcium borohydroxyapatite, Opt. Mater., 16 (1-2), 291–300, 2001.
  • [44]Zhang X., Zhang J., Ma W., Liao S., Zhang X., Wang Z., Yu L., vd., From Nonluminescence to Bright Blue Emission: Boron-Induced Highly Efficient Ce3+-Doped Hydroxyapatite Phosphor, Inorg. Chem., 58 (19), 13481–13491, 2019.
  • [45]Al-Hazmi F.E., Synthesis and electrical properties of Bi doped hydroxyapatite ceramics, J. Alloys Compd., 665, 119–123, 2016.
  • [46]Demirci S., Kaya M.S., Doğan A., Kalay Ş., Antibacterial and cytotoxic properties of boron-containing dental composite Antibacterial and cytotoxic properties of boron-containing dental composite, Turkish Journal of Biology, 39, 417–426, 2015.
  • [47]Sayin Z., Ucan U.S., Sakmanoglu A., Antibacterial and Antibiofilm Effects of Boron on Different Bacteria, Biol. Trace Elem. Res., 173 (1), 241–246, 2016.

Boron doped hydroxapatites in biomedical applications

Year 2020, Volume: 5 Issue: 4, 199 - 208, 29.12.2020
https://doi.org/10.30728/boron.734804

Abstract

Hydroxyapatite has been widely used in biomedical applications as a coating material for implant surfaces, a drug carrier, a scaffold or composite for bone tissue engineering applications. The highly ionic structure of hydroxyapatite allows doping of various ions, resulting in an improvement in its properties. Boron is one of the elements which can be doped into hydroxyapatite structure by replacing phosphate (PO43-) or hydroxyl (OH-) sites to obtain scaffolds for bone tissue engineering applications or a coating material for metal substrates. Although the effects of supplemental boron on bone, liver, and brain metabolism have been shown to have important results as a nutrient, there are very few studies in the literature on the use of boron-doped hydroxyapatite in the biomedical field. In this review, the details of synthesis methods and functional groups of boron-doped hydroxyapatite were tabulated. Generally, the addition of boron leads to the formation of rod-like morphology, while the density and Vicker’s microhardness of hydroxyapatite decrease. Thermal stability and electrical insulation properties were observed to improve with boron doping. Boron was also shown to increase biodegradability, bioactivity as well as cell proliferation and differentiation of different cell types on the surface of hydroxyapatite.

References

  • [1]Avci M. , Yilmaz B., Tezcaner A., Evis Z., Strontium doped hydroxyapatite biomimetic coatings on Ti6Al4V plates, Ceram. Int., 43 (12), 9431–9436, 2017.
  • [2]Yilmaz B., Evis Z., Tezcaner A., Banerjee S., Surface Characterization and Biocompatibility of Selenium-Doped Hydroxyapatite Coating on Titanium Alloy, Int. J. Appl. Ceram. Technol. 13 (6), 1059–1068, 2016.
  • [3]Thian E.S., Huang J., Best S.M., Barber Z.H., Bonfield W., Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: Anin vitro study using acellular simulated body fluid, J. Biomed. Mater. Res. 76B (2), 326–333, 2006.
  • [4]Tampieri A., Celotti G.C., Landi E., Sandri M., Magnesium Doped Hydroxyapatite: Synthesis and Characterization, Key. Eng. Mater., 264–268, 2051–2054, 2004.
  • [5]Ciobanu C.S., Iconaru S.L., Chifiriuc M.C., Costescu A., Le Coustumer P., Predoi D., Synthesis and Antimicrobial Activity of Silver-Doped Hydroxyapatite Nanoparticles, BioMed Res. Int., 2013, 1–10, 2013.
  • [6]Uysal I., Severcan F., Evis Z., Characterization by Fourier transform infrared spectroscopy of hydroxyapatite co-doped with zinc and fluoride, Ceram. Int., 39 (7), 7727–7733, 2013.
  • [7]Toker S.M., Tezcaner A., Evis Z., Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride, J. Biomed. Mater. Res., 96B (2), 207–217, 2011.
  • [8]Alshemary A.Z., Engin Pazarceviren A., Tezcaner A., Evis Z., Fe3+/SeO42− dual doped nano hydroxyapatite: A novel material for biomedical applications, J. Biomed. Mater. Res., 106 (1) 340–352, 2018.
  • [9]Samani S., Hossainalipour S.M., Tamizifar M., Rezaie H.R., In vitro antibacterial evaluation of sol-gel-derived Zn-, Ag-, and (Zn+ Ag)-doped hydroxyapatite coatings against methicillin-resistant Staphylococcus aureus, J. Biomed. Mater. Res., 101A (1), 222–230, 2013.
  • [10]Bodhak S., Bose S., Bandyopadhyay A., Influence of MgO, SrO, and ZnO Dopants on Electro-Thermal Polarization Behavior and In Vitro Biological Properties of Hydroxyapatite Ceramics: Electro-Thermally Polarized Doped Hydroxyapatite Ceramics, J. Am. Ceram. Soc., 94 (4), 1281–1288, 2011.
  • [11]Sasaki K., Hayashi Y., Toshiyuki K., Guo B., Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite, Chemosphere, 207, 139–146, 2018.
  • [12]Liu Y., Xue K., Yao S., Structure, degradation and hydroxyapatite conversion of B-doped 58S bioglass and glass-ceramics, J. Ceram. Soc. Jpn., 127 (4), 232–241, 2019.
  • [13]Choi W.-W., Chen K.Y., Evaluation of boron removal by adsorption on solids, Environ. Sci. Technol., 13 (2), 189–196, 1979.
  • [14]Yoshikawa E., Sasaki A., Endo M., Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia, J. Hazard. Mater., 237–238, 277–282, 2012.
  • [15]Sasaki K., Toshiyuki K., Guo B., Ideta K., Hayashi Y., Hirajima T., Miyawaki J., Calcination effect of borate-bearing hydroxyapatite on the mobility of borate, J. Hazard. Mater., 344, 90–97, 2018.
  • [16]Bose S., Fielding G., Tarafder S., Bandyopadhyay A., Trace element doping in calcium phosphate ceramics to Understand osteogenesis and angiogenesis, Trends Biotechnol., 31 (10) 594–605, 2013.
  • [17]Abdelnour S.A., Abd El-Hack M.E., Swelum A.A., Perillo A., Losacco C., The vital roles of boron in animal health and production: A comprehensive review, J. Trace Elem. Med. Biol., 50, 296–304, 2018.
  • [18]Khaliq H., Juming Z., Ke-Mei P., The Physiological Role of Boron on Health, Biol. Trace Elem. Res., 186, 31–51, 2018.
  • [19]Dzondo-Gadet M., Mayap-Nzietchueng R., Hess K., Nabet P., Belleville F., Dousset B., Action of Boron at the Molecular Level, Effects on Transcription and Translation in an Acellular System, Biol. Trace Elem. Res., 85 (1), 23–33, 2002.
  • [20]Swager T.M., Luppino S.P., Nothing Boring about this Borylation, Synfacts, 11 (3), 0266–0266, 2015.
  • [21]Lakhkar N.J., Lee I.-H., Kim H.-W., Salih V., Wall I.B., Knowles J.C., Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses, Adv. Drug Delivery Rev., 65 (4), 405–420, 2013.
  • [22]Jakob F., Seefried L., Kitz C., Stich A., Sponholz B., Raab P., Ebert R., "Nutritional Influences on Bone Health", Chap. 11: Trace Elements and Bone, Springer-Verlag London Limited, London, 2010.
  • [23]Ternane R., Cohen-Adad M.T., Panczer G., Goutaudier C., Kbir-Ariguib N., Trabelsi-Ayedi M., Florian P., Massiot D., Introduction of boron in hydroxyapatite: Synthesis and structural characterization, J. Alloys Compd., 333 (1-2), 62–71, 2002.
  • [24]Kolmas J., Velard F., Jaguszewska A., Lemaire F., Kerdjoudj H., Gangloff S.C., Ka A., Substitution of strontium and boron into hydroxyapatite crystals : Effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells, Mater. Sci. Eng. C, 79, 638–646, 2017.
  • [25]Barheine S., Hayakawa S., Ja C., Shirosaki Y., Osaka A., Effect of Disordered Structure of Boron-Containing Calcium Phosphates on their In Vitro Biodegradability, J. Am. Chem. Soc., 94 (8), 2656–2662, 2011.
  • [26]Alhammad M.S., Nanostructure hydroxyapatite based ceramics by sol gel method, J. Alloys Compd., 661, 251–256, 2016.
  • [27]Atila D., Karataş A., Evcin A., Keskin D., Tezcaner A., Bacterial cellulose-reinforced boron-doped hydroxyapatite/gelatin scaffolds for bone tissue engineering, Cellulose, 26, 9765–9785, 2019.
  • [28]Tunçay E., Demirtaş T.T., Gümüşderelioğlu M., Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds, J. Trace Elem. Med. Biol., 40, 72–81, 2017.
  • [29]Nakamura M., Zhuang Z., Aizawa M., Fabrications of boron-containing apatite ceramics via ultrasonic spray-pyrolysis route and their surface properties, Key Eng. Mater., 529–530, 109–113, 2012.
  • [30]Satoshi H., Akihito S., Tsuru K., Osaka A., Fujii E., Kawabata K., Jaeger C., Preparation and Characterization of Boron-Containing Hydroxyapatite, Key Eng. Mater., 361–363, 191–194, 2007.
  • [31]Sasaki K., Toshiyuki K., Ideta K., Miki H., Hirajima T., Miyawaki J., Murayama M., vd., Removal mechanism of high concentration borate by co-precipitation with hydroxyapatite, J. Environ. Chem. Eng., 4 (1), 1092–1101, 2016.
  • [32]Ke D., Vu A.A., Bandyopadhyay A., Bose S., Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants, Acta Biomater., 84, 414–423, 2019.
  • [33]Cao J., Lian R., Jiang X., Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility, Appl. Surf. Sci., 515, 146069, 2020. https://doi.org/10.1016/j.apsusc.2020.146069.
  • [34]Evcin A., Buyukleblebici B., Ti6A14V coating with B2O3 and Al2O3 containing hydroxyapatite by HVOF technique, Scientia Iranica, 26,1980–1989, 2019.
  • [35]Arslan A., Çakmak S., Gümüşderelioğlu M., Enhanced osteogenic activity with boron-doped nanohydroxyapatite-loaded poly(butylene adipate-co-terephthalate) fibrous 3D matrix, Artif. Cells Nanomed. Biotechnol., 46, 790–799, 2018.
  • [36]Albayrak O., Materials Characterization Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment, Mater. Charact., 113, 82–89, 2016.
  • [37]Albayrak Ö., Uǧurlu M., Bor katkili hidroksiapatit üretimi ve karakterizasyonu: Bor orani ve sinterleme sicakliǧinin yapi ve mekanik özellikler üzerindeki etkisi, Journal of the Faculty of Engineering and Architecture of Gazi University, 31(3), 749–761, 2016.
  • [38]Calis M., Demirtas T.T., Vatansever A., Irmak G., Sakarya A.H., Atilla P., Ozgur F., Gumusderelioglu M., A Biomimetic Alternative to Synthetic Hydroxyapatite: “Boron-Containing Bone-Like Hydroxyapatite” Precipitated From Simulated Body Fluid, Annals of Plastic Surgery, 79 (3), 304–311, 2017.
  • [39]Ciftci E., Sevil K., Korkusuz P., Timuçin M., Korkusuz F., Boron Containing Nano Hydroxyapatites (B-n-HAp) Stimulate Mesenchymal Stem Cell Adhesion, Proliferation and Differentiation, Key Eng. Mater., 631, 373–378, 2014.
  • [40]Gizer M., Köse S., Karaosmanoglu B., Taskiran E.Z., Berkkan A., Timuçin M., Korkusuz F., vd., The Effect of Boron-Containing Nano-Hydroxyapatite on Bone Cells, Biol. Trace Elem. Res., 193, 364–376, 2020.
  • [41]Suchanek W., Yashima M., Kakihana M., Yoshimura M., Hydroxyapatite ceramics with selected sintering additives, Biomaterials, 18 (13), 923–933, 1997.
  • [42]Ternane R., Cohen-Adad M.T., Panczer G., Goutaudier C., Dujardin C., Boulon G., Kbir-Ariguib N., vd., Structural and luminescent properties of new Ce3+ doped calcium borophosphate with apatite structure, Solid State Sci., 4 (1), 53–59, 2002.
  • [43]Ternane R., Panczer G., Cohen-Adad M.T., Goutaudier C., Boulon G., Kbir-Ariguib N., Trabelsi-Ayedi M., Relationships between structural and luminescence properties in Eu3+-doped new calcium borohydroxyapatite, Opt. Mater., 16 (1-2), 291–300, 2001.
  • [44]Zhang X., Zhang J., Ma W., Liao S., Zhang X., Wang Z., Yu L., vd., From Nonluminescence to Bright Blue Emission: Boron-Induced Highly Efficient Ce3+-Doped Hydroxyapatite Phosphor, Inorg. Chem., 58 (19), 13481–13491, 2019.
  • [45]Al-Hazmi F.E., Synthesis and electrical properties of Bi doped hydroxyapatite ceramics, J. Alloys Compd., 665, 119–123, 2016.
  • [46]Demirci S., Kaya M.S., Doğan A., Kalay Ş., Antibacterial and cytotoxic properties of boron-containing dental composite Antibacterial and cytotoxic properties of boron-containing dental composite, Turkish Journal of Biology, 39, 417–426, 2015.
  • [47]Sayin Z., Ucan U.S., Sakmanoglu A., Antibacterial and Antibiofilm Effects of Boron on Different Bacteria, Biol. Trace Elem. Res., 173 (1), 241–246, 2016.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Review Article
Authors

İdil Uysal This is me

Bengi Yılmaz

Zafer Evis

Publication Date December 29, 2020
Acceptance Date October 30, 2020
Published in Issue Year 2020 Volume: 5 Issue: 4

Cite

APA Uysal, İ., Yılmaz, B., & Evis, Z. (2020). Boron doped hydroxapatites in biomedical applications. Journal of Boron, 5(4), 199-208. https://doi.org/10.30728/boron.734804