Research Article
BibTex RIS Cite

Improvement on flame retarding performance: preparation and characterization of water-based indoor paints with addition of boric acid

Year 2021, Volume: 6 Issue: 2, 309 - 315, 30.06.2021
https://doi.org/10.30728/boron.865316

Abstract

The design of a fire-protection of the construction materials for buildings has become necessary to reduce the risk of a serious fire with the increasing population and increasing urbanization. During a fire, to extend the time of interfering with a building, water-based indoor paints have received attention; however, the performance and flame retardant property of these paints need to be improved. In this study, boric acid, which is the product of boron, was chosen as an additive for a flame retardant to develop this performance of the prepared paints due to its advantages such as a low toxicity, odorless, colorless, and corrosion resistance. In order to investigate the effect of different weight ratios of boric acid, water-based indoor paints have been prepared with the addition of 5%, 10%, and 20% (w/w) of boric acid. In addition, the synergistic effect of boric acid and melamine on the flame retarding performance of the prepared paints was also investigated. The physicochemical properties, flammability characteristics and thermal properties were analyzed by Fourier transform infrared spectroscopy (FTIR), limiting oxygen index (LOI), and thermogravimetric analysis (TGA), respectively. The results demonstrated that the characteristic peaks of boric acid were observed in the prepared paints. The prepared sample (P6) including 20% (w/w) of boric acid showed a more significant enhancement in flammability behavior from 24% to over 55% than that of containing melamine and boric acid. Moreover, the results of the thermogravimetric analysis demonstrated that increasing the amount of boric acid showed more effectiveness on the property of flame retardancy among the prepared paints due to the result of the mass-loss rate. In conclusion, the prepared indoor paint, P6, has served as a suitable option to halogen-based paints for the enhancement of the flame retardancy of the water-based indoor paints.

Thanks

The authors are immensely grateful to Ortaç Boya Ltd. Sti. (Ankara, Turkey) for preparing the paints.

References

  • [1] Hu X., Zhu X., Sun Z., Efficient flame-retardant and smoke-suppression properties of MgAlCO3-LDHs on the intumescent fire retardant coating for steel structures, Coat., 135, 291-298, 2019. 10.1016/j.porgcoat.2019.06.014
  • [2] Nasir K. Md., Sulong N. H. R., Johan M. R., Afifi A. M, Synergistic effect of industrial- and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties, Prog. Org. Coat., 149, 105905, 2020. 10.1016/j.porgcoat.2020.105905
  • [3] Triantafyllidis Z., Bisby L. A., Fibre-reinforced intumescent fire protection coatings as a confining material for concrete columns, Constr. Build. Mater., 231, 117085, 2020. 10.1016/j.conbuildmat.2019.117085
  • [4] Weiss K. D., Paint and coatings: A mature industry in transition, Prog. Polym. Sci., 22, 203-245, 1997. 10.1016/S0079-6700(96)00019-6
  • [5] Ceyhan L., Türkiye’de Boya ve Vernik Endüstrisinin İncelenmesi ve Sektör Analizi, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2001.
  • [6] Chen X. W., Wu Y. X., Huang Y. T., Jiang J. R., Xu J. T., Guan J. P., Synthesis of a reactive boron-based flame retardant to enhance the flame retardancy of silk, React. Funct. Polym., 156, 104731, 2020. 10.1016/j.reactfunctpolym.2020.104731
  • [7] Eti Maden İşletmeleri Genel Müdürlüğü Bor Sektör Raporu. http://www.etimaden.gov.tr/d/file/bor-sektor-raporu-2013-docx.pdf. Yayın tarihi Eylül 15, 2014.
  • [8] Tombal T. D., Özkan Ş. G., Ünver İ. K., Osmanlıoğlu A. E., Properties, production, uses of boron compounds and their importance in nuclear reactor technology, BORON, 1 (2), 86-95, 2016.
  • [9] Aydın D. Y., Çinko floroborat sentezi ve alev geciktirici olarak kullanılabilirliği, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2015.
  • [10] Özkul C., Çiftçi E., Tokel S., Savaş M., Boron as an exploration tool for terrestrial borate deposits: A soil geochemical study in Neogene Emet-Hisarcık basin where the world largest borate deposits occur (Kütahya-western Turkey), J. Geochem. Explor., 173, 31-51, 2017. 10.1016/j.gexplo.2016.11.014
  • [11] Donmez Cavdar A., Mengeloğlu F., Karakus K., Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites, Meas., 60, 6-12, 2015. 10.1016/j.measurement.2014.09.078
  • [12] Cheng X. W., Wu Y. X., Huang Y. T., Jiang J. R., Xu J. T., Guan J. P., Synthesis of a reactive boron-based flame retardant to enhance the flame retardancy of silk, React. Funct. Polym., 156, 104731, 2020. 10.1016/j.reactfunctpolym.2020.104731
  • [13] Alongi J., Horrocks A. R., Carosio F., Malucelli G., Update On Flame Retardant Textiles: State of The Art, Environmental Issues And Innovative Solutions, Smithers Rapra, Shawbury, UK, p. 35, 2013.
  • [14] Xu W., Rui C., Jiaying X., Preparation and mechanism of polyurethane prepolymer and boric acid co‐modified phenolic foam composite: Mechanical properties, thermal stability, and flame retardant properties, Polym. Adv.Technol., 1738-1750, 2019. 10.1002/pat.4606
  • [15] Uddin K. M. A., Ago M., Rojas O. J., Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties, Carbohydr. Polym., 177, 13-21, 2017. 10.1016/j.carbpol.2017.08.116
  • [16] Ortiz-Herrero L., Cardaba I., Setien S., Bartolome L., Alonso M. L., Maguregui M. I., OPLS multivariate regression of FTIR-ATR spectra of acrylic paints for age estimation in contemporary artworks, Talanta, 205, 120114, 2019. 10.1016/j.talanta.2019.120114
  • [17] Germinario G., van der Werf I. D., Sabbatini L., Chemical characterisation of spray paints by a multi-analytical (Py/GC–MS, FTIR, μ-Raman) approach, Microchem. J., 124, 929-939, 2016. 10.1016/j.microc.2015.04.016
  • [18] Zhang J., Koubaa A., Xing D., Liu W., Wang Q., Wang X. M., Wang H., Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide, Mater. Des., 191, 108589, 2020. 10.1016/j.matdes.2020.108589
  • [19] Torun S. B., Donmez Cavdar A., Ozdemir T., The synergistic effect of intumescent coating containing titanium dioxide and antimony trioxide onto spruce and alder wood species, J. Build. Eng., 31, 101407, 2020. 10.1016/j.jobe.2020.101407
  • [20] Hait D. S. K., Christopher J., Chen Y., Hodgson P., Tuli D. K., Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents, Powder Technol., 235, 581-589, 2013. 10.1016/j.powtec.2012.11.015
  • [21] Abeywardena M. R., Elkaduwe R. K. W. H. M. K., Karunarathne D. G. G. P., Pitawala H. M. T. G. A., Rajapakse R. M. G., Manipura A., Mantilaka M. M. M. G. P. G., Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size, Adv. Powder Technol., 31 (1), 269-278, 2020. 10.1016/j.apt.2019.10.018
  • [22] Uner I. H., Deveci I., Baysal E., Turkoglu T., Toker H., Peker H., Thermal analysis of Oriental beech wood treated with some borates as fire retardants, Maderas: Ciencia y tecnología, 18 (2), 293-304, 2016. 10.4067/S0718-221X2016005000027
  • [23] Nyambo C., Kandare E., Wilkie C.A., Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid, Polym. Degrad. Stab., 94 (4), 513-520, 2009. 10.1016/j.polymdegradstab.2009.01.028
  • [24] Ullah S., Ahmad F., Yusoff P. S. M. M., Effect of boric acid and melamine on the intumescent fire-retardant coating composition for the fire protection of structural steel substrates, J. Appl. Polym. Sci., 128, 2983-2993, 2013. 10.1002/app.38318
  • [25] Demirel M. Cam elyaf takviyeli poliester kompozitlere yanmazlık özelliği kazandırılması, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2007.

Alev geciktirme performansının iyileştirilmesi: su bazlı iç cephe boyalarının borik asit ilavesiyle hazırlanması ve karakterizasyonu

Year 2021, Volume: 6 Issue: 2, 309 - 315, 30.06.2021
https://doi.org/10.30728/boron.865316

Abstract

Artan nüfus ve kentleşme ile ciddi bir yangın riskini azaltmak için binalardaki yapı malzemelerinin yangından korunma tasarımı gerekli hale gelmiştir. Yangın sırasında, bir binaya müdahale süresini uzatmak için su bazlı iç mekan boyaları dikkat çekmiştir; ancak, bu boyaların performansı ve alev geciktirici özelliğinin iyileştirilmesi gerekmektedir. Bu çalışmada, bor ürünü olan borik asit, düşük toksisite, kokusuz, renksiz ve korozyon direnci gibi avantajlarından dolayı hazırlanan boyaların bu performansını geliştirmek için alev geciktirici katkı maddesi olarak seçilmiştir. Borik asidin farklı ağırlık oranlarının etkisini araştırmak için; ağırlıkça %5, %10 ve %20 oranlarında borik asit ilavesiyle su bazlı iç mekan boyaları hazırlanmıştır. Ayrıca, borik asit ve melaminin hazırlanan boyaların alev geciktirme performansı üzerindeki sinerjik etkisi de araştırılmıştır. Hazırlanan boyaların; fizikokimyasal özellikleri Fourier dönüşüm kızılötesi spektroskopisi (FTIR) ile, yanıcılık özellikleri sınırlayıcı oksijen indeksi (LOI) ile, termal özellikler ise termogravimetrik analiz (TGA) yöntemi ile analiz edilmiştir. Sonuçlar, hazırlanan boyalarda borik asidin karakteristik piklerinin gözlemlendiğini göstermiştir. Ağırlıkça %20 oranında borik asit içeren numune (P6), yanıcılık davranışında melamin ve borik asidi birlikte içerenlere göre %24’den %55’in üzerinde önemli bir artış göstermiştir. Ayrıca termogravimetrik analiz sonuçları, borik asit miktarının arttırılmasının, hazırlanan boyalar arasında kütle kayıp oranı sayesinde alev geciktirme özelliği üzerinde daha etkili olduğunu göstermiştir. Sonuç olarak, ağırlıkça %20 oranında borik asit ile hazırlanan iç mekan boyası, P6, su bazlı iç mekan boyalarının alev geciktiriciliğinin arttırılması için halojen bazlı boyalara uygun bir seçenek olarak hizmet etmiştir.

References

  • [1] Hu X., Zhu X., Sun Z., Efficient flame-retardant and smoke-suppression properties of MgAlCO3-LDHs on the intumescent fire retardant coating for steel structures, Coat., 135, 291-298, 2019. 10.1016/j.porgcoat.2019.06.014
  • [2] Nasir K. Md., Sulong N. H. R., Johan M. R., Afifi A. M, Synergistic effect of industrial- and bio-fillers waterborne intumescent hybrid coatings on flame retardancy, physical and mechanical properties, Prog. Org. Coat., 149, 105905, 2020. 10.1016/j.porgcoat.2020.105905
  • [3] Triantafyllidis Z., Bisby L. A., Fibre-reinforced intumescent fire protection coatings as a confining material for concrete columns, Constr. Build. Mater., 231, 117085, 2020. 10.1016/j.conbuildmat.2019.117085
  • [4] Weiss K. D., Paint and coatings: A mature industry in transition, Prog. Polym. Sci., 22, 203-245, 1997. 10.1016/S0079-6700(96)00019-6
  • [5] Ceyhan L., Türkiye’de Boya ve Vernik Endüstrisinin İncelenmesi ve Sektör Analizi, Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2001.
  • [6] Chen X. W., Wu Y. X., Huang Y. T., Jiang J. R., Xu J. T., Guan J. P., Synthesis of a reactive boron-based flame retardant to enhance the flame retardancy of silk, React. Funct. Polym., 156, 104731, 2020. 10.1016/j.reactfunctpolym.2020.104731
  • [7] Eti Maden İşletmeleri Genel Müdürlüğü Bor Sektör Raporu. http://www.etimaden.gov.tr/d/file/bor-sektor-raporu-2013-docx.pdf. Yayın tarihi Eylül 15, 2014.
  • [8] Tombal T. D., Özkan Ş. G., Ünver İ. K., Osmanlıoğlu A. E., Properties, production, uses of boron compounds and their importance in nuclear reactor technology, BORON, 1 (2), 86-95, 2016.
  • [9] Aydın D. Y., Çinko floroborat sentezi ve alev geciktirici olarak kullanılabilirliği, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2015.
  • [10] Özkul C., Çiftçi E., Tokel S., Savaş M., Boron as an exploration tool for terrestrial borate deposits: A soil geochemical study in Neogene Emet-Hisarcık basin where the world largest borate deposits occur (Kütahya-western Turkey), J. Geochem. Explor., 173, 31-51, 2017. 10.1016/j.gexplo.2016.11.014
  • [11] Donmez Cavdar A., Mengeloğlu F., Karakus K., Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites, Meas., 60, 6-12, 2015. 10.1016/j.measurement.2014.09.078
  • [12] Cheng X. W., Wu Y. X., Huang Y. T., Jiang J. R., Xu J. T., Guan J. P., Synthesis of a reactive boron-based flame retardant to enhance the flame retardancy of silk, React. Funct. Polym., 156, 104731, 2020. 10.1016/j.reactfunctpolym.2020.104731
  • [13] Alongi J., Horrocks A. R., Carosio F., Malucelli G., Update On Flame Retardant Textiles: State of The Art, Environmental Issues And Innovative Solutions, Smithers Rapra, Shawbury, UK, p. 35, 2013.
  • [14] Xu W., Rui C., Jiaying X., Preparation and mechanism of polyurethane prepolymer and boric acid co‐modified phenolic foam composite: Mechanical properties, thermal stability, and flame retardant properties, Polym. Adv.Technol., 1738-1750, 2019. 10.1002/pat.4606
  • [15] Uddin K. M. A., Ago M., Rojas O. J., Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties, Carbohydr. Polym., 177, 13-21, 2017. 10.1016/j.carbpol.2017.08.116
  • [16] Ortiz-Herrero L., Cardaba I., Setien S., Bartolome L., Alonso M. L., Maguregui M. I., OPLS multivariate regression of FTIR-ATR spectra of acrylic paints for age estimation in contemporary artworks, Talanta, 205, 120114, 2019. 10.1016/j.talanta.2019.120114
  • [17] Germinario G., van der Werf I. D., Sabbatini L., Chemical characterisation of spray paints by a multi-analytical (Py/GC–MS, FTIR, μ-Raman) approach, Microchem. J., 124, 929-939, 2016. 10.1016/j.microc.2015.04.016
  • [18] Zhang J., Koubaa A., Xing D., Liu W., Wang Q., Wang X. M., Wang H., Improving lignocellulose thermal stability by chemical modification with boric acid for incorporating into polyamide, Mater. Des., 191, 108589, 2020. 10.1016/j.matdes.2020.108589
  • [19] Torun S. B., Donmez Cavdar A., Ozdemir T., The synergistic effect of intumescent coating containing titanium dioxide and antimony trioxide onto spruce and alder wood species, J. Build. Eng., 31, 101407, 2020. 10.1016/j.jobe.2020.101407
  • [20] Hait D. S. K., Christopher J., Chen Y., Hodgson P., Tuli D. K., Preparation and evaluation of hydrophobically modified core shell calcium carbonate structure by different capping agents, Powder Technol., 235, 581-589, 2013. 10.1016/j.powtec.2012.11.015
  • [21] Abeywardena M. R., Elkaduwe R. K. W. H. M. K., Karunarathne D. G. G. P., Pitawala H. M. T. G. A., Rajapakse R. M. G., Manipura A., Mantilaka M. M. M. G. P. G., Surfactant assisted synthesis of precipitated calcium carbonate nanoparticles using dolomite: Effect of pH on morphology and particle size, Adv. Powder Technol., 31 (1), 269-278, 2020. 10.1016/j.apt.2019.10.018
  • [22] Uner I. H., Deveci I., Baysal E., Turkoglu T., Toker H., Peker H., Thermal analysis of Oriental beech wood treated with some borates as fire retardants, Maderas: Ciencia y tecnología, 18 (2), 293-304, 2016. 10.4067/S0718-221X2016005000027
  • [23] Nyambo C., Kandare E., Wilkie C.A., Thermal stability and flammability characteristics of ethylene vinyl acetate (EVA) composites blended with a phenyl phosphonate-intercalated layered double hydroxide (LDH), melamine polyphosphate and/or boric acid, Polym. Degrad. Stab., 94 (4), 513-520, 2009. 10.1016/j.polymdegradstab.2009.01.028
  • [24] Ullah S., Ahmad F., Yusoff P. S. M. M., Effect of boric acid and melamine on the intumescent fire-retardant coating composition for the fire protection of structural steel substrates, J. Appl. Polym. Sci., 128, 2983-2993, 2013. 10.1002/app.38318
  • [25] Demirel M. Cam elyaf takviyeli poliester kompozitlere yanmazlık özelliği kazandırılması, Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 2007.
There are 25 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Berk Uslu 0000-0002-8117-9537

Şükran Melda Eskitoros Toğay 0000-0002-7473-8417

Nursel Dilsiz 0000-0002-6496-0487

Publication Date June 30, 2021
Acceptance Date May 11, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Uslu, B., Eskitoros Toğay, Ş. M., & Dilsiz, N. (2021). Improvement on flame retarding performance: preparation and characterization of water-based indoor paints with addition of boric acid. Journal of Boron, 6(2), 309-315. https://doi.org/10.30728/boron.865316

© 2016 All Rights Reserved
TENMAK Boron Research Institute