Research Article
BibTex RIS Cite

Effects of different boron salt treatments on micropropagation and genetic stability in in vitro cultures of Liquidambar orientalis Miller

Year 2022, Volume: 7 Issue: 4, 521 - 527, 31.12.2022
https://doi.org/10.30728/boron.1140926

Abstract

In the present study, the boron salts effects on the micropropagation of Liquidambar orientalis, a relict-endemic plant species, were investigated and genetic stability of micro-shoots was determined by ISSR marker technique. Especially in species with low salinity and drought tolerance, salt stress may cause physiological and molecular changes such as plant growth and development, increase in secondary metabolite content in response to stress, and somaclonal variation. In this context, three different concentrations of boric acid, sodium perborate, sodium metaborate and disodium octaborate salts were applied to meristems isolated from in vitro clonal propagated L. orientalis and the effects of these boron salts on meristem regeneration and development were evaluated. When compared to the control group samples in which no salt application was applied, the best regeneration percentage was determined as 1mgL-1 disodium octaborate treatment with a value of 100%, while when the shoot forming capacity index was evaluated, 5mgL-1 sodium perborate treatment with a value of 4.94 gave the best results. However, when compared with the mother plant, it was observed that all salt treatments caused somaclonal variation on genetic stability, and in the light of the analyzed data, the lowest 30% (5mgL-1 disodium octaborate) and the highest 49% (1 mgL-1 boric acid) somaclonal variation were determined in all applications.

Supporting Institution

YOK

Project Number

YOK

Thanks

This study is derived from Taner Mercan's master's thesis. We would like to thank Muğla Metropolitan Municipality Agricultural Services Department for helping to provide plant material and laboratory facilities during the thesis work.

References

  • [1] Aslan, M.B., & Sahin, H.T. (2016). A forgotten forest product source: Anatolian sweetgum tree (Liquidambar orientalis Miller). Journal of Bartın Faculty of Forestry, 18(1), 103-117.
  • [2] Alan, M., Velioglu, E., Ezen, T., Sıklar, S., & Ozturk, H. (2018). Diversity of some quantitative characters of Oriental sweet gum (Liquidambar orientalis Mill.) for five-year-old seedlings. Turkish Journal of Forestry Research, 5(1), 74-81.
  • [3] Ekim, T., Koyuncu, M., Vural, M., Duman, H., Aytac, Z., & Adıguzel, N. (2000). Red data book of Turkish plants (Pteridophyta and Spermatophyta). Turkish Nature Conservation Association Van 100. Yıl University, Barıçcan Ofset, Ankara, 246.
  • [4] Alan, M., & Kaya, Z. (2003). Oriental swet gum. (Liquidambar orientalis Mill.). EUFORGEN Technical Guidelines.
  • [5] Acar, M.I. (1989). Determination of composition of Liquidambar orientalis Mill. balm essential oil by analyzing it with GC-MS-DS system. Forestry Research Institute Publications, 33, 5-21.
  • [6] Bozkurt, Y., Goker, Y., & Kurtoglu, A. (1989). Some properties of sweetgum tree. Journal of the Faculty of Forestry Istanbul University, 39(1), 43-52.
  • [7] Ozkaynak, E., & Samancı, B. (2005). Acclimatization in micropropagation. Selcuk Journal of Agriculture and Food Sciences, 19(36), 28-36.
  • [8] Pospisilova, J., Ticha, I., Kadlecek, P., Haisel, D., & Plzakova, S. (1999). Acclimatization of micro-propagated plants to ex vitro conditions. Biologia Plantarum, 42(4), 481-497.
  • [9] Mansuroglu, S., & Gurel, E. (2001). Micropropagation. In Babaoglu, M., Gürel, E., & Ozcan, S. (Eds.), Plant Biotechnology I. Tissue Culture and Applications (8, 262-281), Selcuk University Foundation Publications.
  • [10] Parlak, S. (Eds.). (2012). Alternative vegetative production method in sweetgum (Liquidambar orientalis Miller). Publication Organ of the Chamber of Forest Engineers.
  • [11] Bayraktar, M., Hayta, S., Parlak, S., & Gurel, A. (2015). Micropropagation of centennial tertiary relict trees of Liquidambar orientalis Miller through meristematic nodules produced by cultures of primordial shoots. Trees, 29(4), 999-1009.
  • [12] Krishnan, P.N., Decruse, S.W., & Radha, R.K. (2011). Conservation of medicinal plants of Western Ghats, India and its sustainable utilization through in vitro technology. In Vitro Cellular & Developmental Biology – Plant, 47(1), 110–122.
  • [13] Reed, B.M., Sarasan, V., Kane, M., Bunn, E., & Pence, V.C. (2011). Biodiversity conservation and conservation biotechnology tools. In Vitro Cellular & Developmental Biology – Plant, 47(1), 1–4.
  • [14] Munns, R., & Termaat, A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13, 143–160.
  • [15] Nable, R.O., Banuelos, G.S., & Paull, J.G. (1997). Boron toxicity. Plant and Soil, 193, 181–198.
  • [16] Keren, R., & Bingham, F.T. (1985). Boron in water, soils and plants. In Stuart, R. (Ed.), Advances in soil science (1, 229–276). Springer.
  • [17] Kaya, E., Souza, F.V.D., Yilmaz-Gokdogan, E., Ceylan, M., & Jenderek, M. (2017). Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen. Turkish Journal of Biology, 41, 242–248.
  • [18] Lloyd, G., & McCown, B.H. (1980). Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. The International Plant Propagators Society, 30, 421­427.
  • [19] Lambardi, M., Sharma, K.K., & Thorpe, T.A. (1993). Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In Vitro Cellular & Developmental Biology – Plant, 29, 189–199. [20] Doyle, J.J., & Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, 11-15.
  • [21] Kaya, E. (2015). ISSR analysis for determination of genetic diver sity and relationship in eight Turkish olive (Olea europaea L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj, 43(1), 96–99.
  • [22] Skirvin, R.M. (1986). Propagation of temperate fruits and nuts. In Conger, B.V. (Ed.), Cloning of agricultural plants via in vitro techniques. CRC Press.
  • [23] George, E.F. (1993). Plant propagation by tissue culture (1). Exegetics Limited.
  • [24] Kataeva, N.V., & Butenko, R.G. (1987). Clonal micropropagation of apple trees. Acta Horticulturae, 12, 585–588.
  • [25] Brondani, G.E., Araujo, M.A., Alcântara, B.K., Carvalho, J.G., Gonçalves, A.N., & Almeida, M. de. (2012). Acta Scientiarum. Agronomy, 34(4), 403-411.
  • [26] Murashige, T., & Skoog, F.A. (1962). Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
  • [27] Findeklee, P., & Goldbach, H.E. (1996). Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots. Botanica Acta, 109(6), 463–465.
  • [28] Hu, H., Brown, P.H., & Labavitch, J.M. (1996). Species variability in boron requirement is correlated with cell wall pectin. Journal of Experimental Botany, 47(2), 227-232.
  • [29] Teng, C.C., & Zhang, Y.C. (2009). The Influence of boric acid and sucrose on the in vitro germination of Potato pollen. Seed, 28(2), 15-20.
  • [30] Liang, G.J., Huang, G.P., & Deng L. (2011). Effect of boron, sugar, calcium and DA-6 on the growth of loquat pollen tube. Journal of Zhaoqing University, 32(2), 50-56.
  • [31] Lank, P., & Wahl, M. (2014). Boric Acid. In Philip, W. (Ed.), Encyclopedia of Toxicology (Third Edition, 533-535). Academic Press.
  • [32] Lovatt, C.J., & Dugger, W.M. (1984). Boron. In Frieden, E. (Ed.), Biochemistry of the essential ultratrace elements (389-421). Plenum Press.
  • [33] Loomis, W.D., & Durst, R.W. (1992). Chemistry and biology of boron. BioFactors, 3(4), 229-239.
  • [34] Warrington, K. (1923). The effects of boric acid and borax on the bread bean and certain other plants. Annals of Botany, 37, 629-672.
  • [35] Eaton, F.M. (1944). Deficiency, toxicity, and accumulation of boron in plants. Journal of Agricultural Research, 69(6), 237-277.
  • [36] Larkin, P.J., & Scowcroft, W.R. (1981). Somaclonal variation – a novelsource of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4), 197–214.
  • [37] Zietkiewicz, E., Rafalski, A., Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183.
  • [38] Leroy, X.J., Leon, K., Charles, G., & Branchard, M. (2000). Cauliflower somatic embryogenesis and analysis of regenerant stability by ISSRs. Plant Cell Reports, 19(11), 1102-1107.
  • [39] Martins, M., Sarmento, D., & Oliveira, M.M. (2004). Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Reports, 23(7), 492-496.
  • [40] Venkatachalam, L., Sreedha, R.V., & Bhagyalakshmi, N. (2007). Micropropagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regulation, 51(3), 193-205.
  • [41] Joshi, P., & Dhawan, V. (2007). Assessment of genetic fidelity of micropropagated Swerita chiraytia plantlets by ISSR marker assay. Plant Biology, 51(1), 22-26.
  • [42] Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants, unraveling the signaling networks. Frontiers in plant science, 5, 151.
  • [43] El-Beltagi, H.S., Ahmed, S.H., Namich, A.A.M., & Abdel-Sattar, R.R. (2017). Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environmental Bulletin, 26(1A), 1091-1100.
  • [44] Wang, W.X., Barak, T., Vinocur, B., Shoseyov, O., & Altman, A. (2007). Abiotic resistance and chaperones, possible physiological role of SP1, a stable and stabilizing protein from Populus. In Vasil, K. (Ed.), Plant Biotechnology 2000 and Beyond (pp. 439-443). Dordrecht, Kluwer.
  • [45] Flowers, T.J., & Colmer, T.D. (2015). Plant salt tolerance, adaptations in halophytes. Annals of botany, 115(3), 327-331.
  • [46] Matthes, M., Singh, R., Cheah, S.C., & Karp, A. (2001). Variation in oil palm (Elaeis guineensis Jacq.) tissue culture derived regenerants revealed by AFLPs with methylationsensitive enzymes. Theoretical and Applied Genetics, 102(6), 971-979.
  • [47] Afify, A.M.R., El-Beltagi, H.S., Abd El-Salam, S.M., & Omran, A.A. (2012). Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS ONE, 7(e31154), 1-6.
  • [48] Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R.K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1-18.
  • [49] Bhojwani, S.S., & Dantu, P.K. (2013). Plant tissue culture, an introductory text. Springer.
  • [50] Veilleux, R.E., & Johnson, A.T. (1998). Somaclonal variation: molecular analysis, transformation interaction, and utilization. Plant Breeding Reviews, 16, 229-268.
  • [51] Filipecki, M., & Malepszy, S. (2006). Unintended consequencesof plant transformation: a molecular insight. Journal of Applied Genetics, 47(4), 277-286.
  • [52] Evans, D.A., & Sharp, W.R. (1988). Somaclonal andgametoclonal variation. In Evans, D.A., Sharp, W.R., & Ammirato, P.V. (Eds.), Handbook of Plant Cell Culture (97-132). Macmillan Publishing Company.
  • [53] Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In Vasil, I.K., & Thorpe, T.A. (Eds.), Plant cell and tissue culture (139-152). Dordrecht: Kluwer Academic Publishers.
  • [54] Barret, P., Brinkman, M., & Beckert, M. (2006). A sequence related to rice Pong transposable element displays transcriptional activation by in vitro culture and reveals somaclonal variations in maize. Genome, 49(11), 1399-1407.
  • [55] Baranek, M., Krizan, B., Ondrusikova, E., & Pidra, M. (2010). DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell, Tissue and Organ Culture (PCTOC), 101(1), 11-22.

Liquidambar orientalis Miller in vitro kültürlerinde farklı bor tuzu uygulamalarının mikro çoğaltma ve genetik stabilite üzerine etkileri

Year 2022, Volume: 7 Issue: 4, 521 - 527, 31.12.2022
https://doi.org/10.30728/boron.1140926

Abstract

Bu çalışmada, relikt endemik bir bitki türü olan Liquidambar orientalis'in mikroçoğaltımı üzerinde bor tuzlarının etkileri araştırılmış ve mikro sürgünlerin genetik stabilitesi ISSR markör tekniği ile belirlenmiştir. Tuz stresi, özellikle tuzluluk oranı ve kuraklığa toleransı düşük olan türlerde, bitki büyüme ve gelişmesi, strese yanıt olarak sekonder metabolit içeriğinde artış, somaklonal varyasyon gibi fizyolojik ve moleküler değişikliklere neden olabilir. Bu kapsamda, in vitro klonal çoğaltılmış L. orientalis'ten izole edilen meristemlere borik asit, sodyum perborat, sodyum metaborat ve disodyum oktaborat tuzlarının üç farklı konsantrasyonu uygulanmış ve bu bor tuzlarının meristem rejenerasyonu ve gelişimi üzerindeki etkileri değerlendirilmiştir. Tuz uygulaması yapılmayan kontrol grubu örnekleri ile karşılaştırıldığında %100 oranında en iyi rejenerasyon 1mgL-1 disodyum oktaborat uygulaması sonrası belirlenirken, sürgün oluşturma kapasite indeksi değerlendirildiğinde en iyi sonuç 4,94 ile 5mgL-1 sodyum perborat uygulamasından elde edilmiştir. Ancak anaç ile karşılaştırıldığında tüm tuz uygulamalarının genetik stabilite üzerinde somaklonal varyasyona neden olduğu görülmüş ve analiz edilen veriler ışığında en düşük %30 (5mgL-1 disodyum oktaborat) ve en yüksek %49 (1 mgL-1 borik asit) somaklonal varyasyon tüm uygulamalarda belirlenmiştir.

Project Number

YOK

References

  • [1] Aslan, M.B., & Sahin, H.T. (2016). A forgotten forest product source: Anatolian sweetgum tree (Liquidambar orientalis Miller). Journal of Bartın Faculty of Forestry, 18(1), 103-117.
  • [2] Alan, M., Velioglu, E., Ezen, T., Sıklar, S., & Ozturk, H. (2018). Diversity of some quantitative characters of Oriental sweet gum (Liquidambar orientalis Mill.) for five-year-old seedlings. Turkish Journal of Forestry Research, 5(1), 74-81.
  • [3] Ekim, T., Koyuncu, M., Vural, M., Duman, H., Aytac, Z., & Adıguzel, N. (2000). Red data book of Turkish plants (Pteridophyta and Spermatophyta). Turkish Nature Conservation Association Van 100. Yıl University, Barıçcan Ofset, Ankara, 246.
  • [4] Alan, M., & Kaya, Z. (2003). Oriental swet gum. (Liquidambar orientalis Mill.). EUFORGEN Technical Guidelines.
  • [5] Acar, M.I. (1989). Determination of composition of Liquidambar orientalis Mill. balm essential oil by analyzing it with GC-MS-DS system. Forestry Research Institute Publications, 33, 5-21.
  • [6] Bozkurt, Y., Goker, Y., & Kurtoglu, A. (1989). Some properties of sweetgum tree. Journal of the Faculty of Forestry Istanbul University, 39(1), 43-52.
  • [7] Ozkaynak, E., & Samancı, B. (2005). Acclimatization in micropropagation. Selcuk Journal of Agriculture and Food Sciences, 19(36), 28-36.
  • [8] Pospisilova, J., Ticha, I., Kadlecek, P., Haisel, D., & Plzakova, S. (1999). Acclimatization of micro-propagated plants to ex vitro conditions. Biologia Plantarum, 42(4), 481-497.
  • [9] Mansuroglu, S., & Gurel, E. (2001). Micropropagation. In Babaoglu, M., Gürel, E., & Ozcan, S. (Eds.), Plant Biotechnology I. Tissue Culture and Applications (8, 262-281), Selcuk University Foundation Publications.
  • [10] Parlak, S. (Eds.). (2012). Alternative vegetative production method in sweetgum (Liquidambar orientalis Miller). Publication Organ of the Chamber of Forest Engineers.
  • [11] Bayraktar, M., Hayta, S., Parlak, S., & Gurel, A. (2015). Micropropagation of centennial tertiary relict trees of Liquidambar orientalis Miller through meristematic nodules produced by cultures of primordial shoots. Trees, 29(4), 999-1009.
  • [12] Krishnan, P.N., Decruse, S.W., & Radha, R.K. (2011). Conservation of medicinal plants of Western Ghats, India and its sustainable utilization through in vitro technology. In Vitro Cellular & Developmental Biology – Plant, 47(1), 110–122.
  • [13] Reed, B.M., Sarasan, V., Kane, M., Bunn, E., & Pence, V.C. (2011). Biodiversity conservation and conservation biotechnology tools. In Vitro Cellular & Developmental Biology – Plant, 47(1), 1–4.
  • [14] Munns, R., & Termaat, A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13, 143–160.
  • [15] Nable, R.O., Banuelos, G.S., & Paull, J.G. (1997). Boron toxicity. Plant and Soil, 193, 181–198.
  • [16] Keren, R., & Bingham, F.T. (1985). Boron in water, soils and plants. In Stuart, R. (Ed.), Advances in soil science (1, 229–276). Springer.
  • [17] Kaya, E., Souza, F.V.D., Yilmaz-Gokdogan, E., Ceylan, M., & Jenderek, M. (2017). Cryopreservation of citrus seed via dehydration followed by immersion in liquid nitrogen. Turkish Journal of Biology, 41, 242–248.
  • [18] Lloyd, G., & McCown, B.H. (1980). Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot tip culture. The International Plant Propagators Society, 30, 421­427.
  • [19] Lambardi, M., Sharma, K.K., & Thorpe, T.A. (1993). Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine (Pinus halepensis Mill.). In Vitro Cellular & Developmental Biology – Plant, 29, 189–199. [20] Doyle, J.J., & Doyle, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19, 11-15.
  • [21] Kaya, E. (2015). ISSR analysis for determination of genetic diver sity and relationship in eight Turkish olive (Olea europaea L.) cultivars. Notulae Botanicae Horti Agrobotanici Cluj, 43(1), 96–99.
  • [22] Skirvin, R.M. (1986). Propagation of temperate fruits and nuts. In Conger, B.V. (Ed.), Cloning of agricultural plants via in vitro techniques. CRC Press.
  • [23] George, E.F. (1993). Plant propagation by tissue culture (1). Exegetics Limited.
  • [24] Kataeva, N.V., & Butenko, R.G. (1987). Clonal micropropagation of apple trees. Acta Horticulturae, 12, 585–588.
  • [25] Brondani, G.E., Araujo, M.A., Alcântara, B.K., Carvalho, J.G., Gonçalves, A.N., & Almeida, M. de. (2012). Acta Scientiarum. Agronomy, 34(4), 403-411.
  • [26] Murashige, T., & Skoog, F.A. (1962). Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497.
  • [27] Findeklee, P., & Goldbach, H.E. (1996). Rapid effects of boron deficiency on cell wall elasticity modulus in Cucurbita pepo roots. Botanica Acta, 109(6), 463–465.
  • [28] Hu, H., Brown, P.H., & Labavitch, J.M. (1996). Species variability in boron requirement is correlated with cell wall pectin. Journal of Experimental Botany, 47(2), 227-232.
  • [29] Teng, C.C., & Zhang, Y.C. (2009). The Influence of boric acid and sucrose on the in vitro germination of Potato pollen. Seed, 28(2), 15-20.
  • [30] Liang, G.J., Huang, G.P., & Deng L. (2011). Effect of boron, sugar, calcium and DA-6 on the growth of loquat pollen tube. Journal of Zhaoqing University, 32(2), 50-56.
  • [31] Lank, P., & Wahl, M. (2014). Boric Acid. In Philip, W. (Ed.), Encyclopedia of Toxicology (Third Edition, 533-535). Academic Press.
  • [32] Lovatt, C.J., & Dugger, W.M. (1984). Boron. In Frieden, E. (Ed.), Biochemistry of the essential ultratrace elements (389-421). Plenum Press.
  • [33] Loomis, W.D., & Durst, R.W. (1992). Chemistry and biology of boron. BioFactors, 3(4), 229-239.
  • [34] Warrington, K. (1923). The effects of boric acid and borax on the bread bean and certain other plants. Annals of Botany, 37, 629-672.
  • [35] Eaton, F.M. (1944). Deficiency, toxicity, and accumulation of boron in plants. Journal of Agricultural Research, 69(6), 237-277.
  • [36] Larkin, P.J., & Scowcroft, W.R. (1981). Somaclonal variation – a novelsource of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60(4), 197–214.
  • [37] Zietkiewicz, E., Rafalski, A., Labuda, D. (1994). Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176-183.
  • [38] Leroy, X.J., Leon, K., Charles, G., & Branchard, M. (2000). Cauliflower somatic embryogenesis and analysis of regenerant stability by ISSRs. Plant Cell Reports, 19(11), 1102-1107.
  • [39] Martins, M., Sarmento, D., & Oliveira, M.M. (2004). Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Reports, 23(7), 492-496.
  • [40] Venkatachalam, L., Sreedha, R.V., & Bhagyalakshmi, N. (2007). Micropropagation in banana using high levels of cytokinins does not involve any genetic changes as revealed by RAPD and ISSR markers. Plant Growth Regulation, 51(3), 193-205.
  • [41] Joshi, P., & Dhawan, V. (2007). Assessment of genetic fidelity of micropropagated Swerita chiraytia plantlets by ISSR marker assay. Plant Biology, 51(1), 22-26.
  • [42] Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants, unraveling the signaling networks. Frontiers in plant science, 5, 151.
  • [43] El-Beltagi, H.S., Ahmed, S.H., Namich, A.A.M., & Abdel-Sattar, R.R. (2017). Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environmental Bulletin, 26(1A), 1091-1100.
  • [44] Wang, W.X., Barak, T., Vinocur, B., Shoseyov, O., & Altman, A. (2007). Abiotic resistance and chaperones, possible physiological role of SP1, a stable and stabilizing protein from Populus. In Vasil, K. (Ed.), Plant Biotechnology 2000 and Beyond (pp. 439-443). Dordrecht, Kluwer.
  • [45] Flowers, T.J., & Colmer, T.D. (2015). Plant salt tolerance, adaptations in halophytes. Annals of botany, 115(3), 327-331.
  • [46] Matthes, M., Singh, R., Cheah, S.C., & Karp, A. (2001). Variation in oil palm (Elaeis guineensis Jacq.) tissue culture derived regenerants revealed by AFLPs with methylationsensitive enzymes. Theoretical and Applied Genetics, 102(6), 971-979.
  • [47] Afify, A.M.R., El-Beltagi, H.S., Abd El-Salam, S.M., & Omran, A.A. (2012). Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS ONE, 7(e31154), 1-6.
  • [48] Krishna, H., Alizadeh, M., Singh, D., Singh, U., Chauhan, N., Eftekhari, M., & Sadh, R.K. (2016). Somaclonal variations and their applications in horticultural crops improvement. 3 Biotech, 6(1), 1-18.
  • [49] Bhojwani, S.S., & Dantu, P.K. (2013). Plant tissue culture, an introductory text. Springer.
  • [50] Veilleux, R.E., & Johnson, A.T. (1998). Somaclonal variation: molecular analysis, transformation interaction, and utilization. Plant Breeding Reviews, 16, 229-268.
  • [51] Filipecki, M., & Malepszy, S. (2006). Unintended consequencesof plant transformation: a molecular insight. Journal of Applied Genetics, 47(4), 277-286.
  • [52] Evans, D.A., & Sharp, W.R. (1988). Somaclonal andgametoclonal variation. In Evans, D.A., Sharp, W.R., & Ammirato, P.V. (Eds.), Handbook of Plant Cell Culture (97-132). Macmillan Publishing Company.
  • [53] Karp, A. (1994). Origins, causes and uses of variation in plant tissue cultures. In Vasil, I.K., & Thorpe, T.A. (Eds.), Plant cell and tissue culture (139-152). Dordrecht: Kluwer Academic Publishers.
  • [54] Barret, P., Brinkman, M., & Beckert, M. (2006). A sequence related to rice Pong transposable element displays transcriptional activation by in vitro culture and reveals somaclonal variations in maize. Genome, 49(11), 1399-1407.
  • [55] Baranek, M., Krizan, B., Ondrusikova, E., & Pidra, M. (2010). DNA-methylation changes in grapevine somaclones following in vitro culture and thermotherapy. Plant Cell, Tissue and Organ Culture (PCTOC), 101(1), 11-22.
There are 54 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Taner Mercan 0000-0003-1187-8284

Selin Galatalı 0000-0002-1992-3361

Damla Ekin Özkaya 0000-0002-2952-1999

Onur Çelik 0000-0002-1040-9833

Ergun Kaya 0000-0003-4255-3802

Project Number YOK
Publication Date December 31, 2022
Acceptance Date November 7, 2022
Published in Issue Year 2022 Volume: 7 Issue: 4

Cite

APA Mercan, T., Galatalı, S., Özkaya, D. E., Çelik, O., et al. (2022). Effects of different boron salt treatments on micropropagation and genetic stability in in vitro cultures of Liquidambar orientalis Miller. Journal of Boron, 7(4), 521-527. https://doi.org/10.30728/boron.1140926