Research Article
BibTex RIS Cite

Co-synthesis of zirconium boride/silicide/oxide composite powders by magnesiothermic reduction

Year 2022, Volume: 7 Issue: 4, 552 - 559, 31.12.2022
https://doi.org/10.30728/boron.1177551

Abstract

This study uses a magnesiothermic reduction method to investigate the co-synthesis of zirconium boride, silicides, and oxide powder composites using ZrO2, B2O3, Si, and Mg initial powders. The synthesis of high-temperature ceramic powders is examined through milling durations, reduction temperatures, and excess magnesium addition. Thermochemical analysis of probable reaction products was conducted by the Factsage software. According to the results, the thermochemical predictions and resultant powder phases showed good coherency. High-energy milling has a significant effect on the formation of the zirconium boride phase after annealing. However, extended milling time and higher annealing temperature have no significant effects on the composition of the constituted composite powders according to the X-ray diffraction results. An annealing temperature of 600 ºC was enough to obtain ZrB2-based ceramic composite powders. In the final powder phases, the excess magnesium addition to the stoichiometric displays an important feature. After the milling, annealing, and leaching procedure, the stoichiometric powder composition comprises ZrB2, ZrSi, ZrSi2, ZrO2, and MgSiO2, and excess Mg added powders have the ZrB2, ZrSi, ZrSi2, ZrO2 phases in their structure. Scanning electron microscopy analysis was utilized to observe the morphologies of the powders throughout each step of the synthesis procedure and revealed the finely structured morphology of synthesized powders.

References

  • Adibpur, F., Zaferi, M., & Tayebifard, S. A. (2013). Feasibility Study of Metallic Reductant Element Replacement by Mechanical Activation Process in ZrB2-ZrC Composite Synthesis from Raw Oxide Materials by SHS. Life Science Journal, 10(8), 336–341.
  • Ağaoğulları, D., Balci, Ö., Mertdinç, S., Tekoğlu, E., & Öveçoğlu, M. L. (2018). Synthesis of VB2-V3B4-V2B3/VC hybrid powders via powder metallurgy processes. Journal of Boron, 3(3), 180–187. https://doi.org/10.30728/boron.441148
  • Ağaoğulları, D., Balcı, Ö., Akçamlı, N., Suryanarayana, C., Duman, İ., & Öveçoğlu, M. L. (2019). Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride. Processing and Application of Ceramics, 13(1), 32–43. https://doi.org/10.2298/PAC1901032A
  • Aguirre, T. G., Lamm, B. W., Cramer, C. L., & Mitchell, D. J. (2022). Zirconium-diboride silicon-carbide composites: A review. Ceramics International, 48(6), 7344–7361. https://doi.org/10.1016/j.ceramint.2021.11.314
  • Astapov, A. N., Pogozhev, Y. S., Prokofiev, M. V., Lifanov, I. P., Potanin, A. Y., Levashov, E. A., & Vershinnikov, V. I. (2019). Kinetics and mechanism of high-temperature oxidation of the heterophase ZrSi2-MoSi2-ZrB2 ceramics. Ceramics International, 45(5), 6392–6404. https://doi.org/10.1016/j.ceramint.2018.12.126
  • Balcı, Ö., Ağaoğulları, D., Duman, İ., & Öveçoğlu, M. L. (2012). Carbothermal production of ZrB2–ZrO2 ceramic powders from ZrO2–B2O3/B system by high-energy ball milling and annealing assisted process. Ceramics International, 38(3), 2201–2207. https://doi.org/10.1016/j.ceramint.2011.10.067
  • Balcı, Ö., Ağaoğulları, D., Ovalı, D., Lütfi Öveçoğlu, M., Duman, İ. (2015). In situ synthesis of NbB2–NbC composite powders by milling-assisted carbothermal reduction of oxide raw materials. Advanced Powder Technology, 26(4), 1200–1209. https://doi.org/10.1016/j.apt.2015.06.001
  • Balcı, Ö., Ağaoğulları, D., Öveçoğlu, M. L., & Duman, İ. (2016). Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends. Transactions of Nonferrous Metals Society of China, 26(3), 747–758. https://doi.org/10.1016/S1003-6326(16)64165-1 Balcı, Ö., Akçamlı, N., Ağaoğulları, D., Öveçoğlu, M. L., & Duman, İ. (2017). Otoklavda sentezlenen ZrB2 -ZrO2 tozlarının farklı tekniklerle sinterlenmesi ve yığın yapıların mikroyapısal ve bazı mekanik özelliklerinin incelenmesi. Bor Dergisi, 2(1), 1–10.
  • Baris, M., Simsek, T., Simsek, T., Ozcan, S., & Kalkan, B. (2018). High purity synthesis of ZrB2 by a combined ball milling and carbothermal method: Structural and magnetic properties. Advanced Powder Technology, 29(10), 2440–2446. https://doi.org/10.1016/j.apt.2018.06.024
  • Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory Diborides of Zirconium and Hafnium. Journal of the American Ceramic Society, 90(5), 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  • Golla, B. R., Mukhopadhyay, A., Basu, B., & Thimmappa, S. K. (2020). Review on ultra-high temperature boride ceramics. In Progress in Materials Science (Vol. 111, p. 100651). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2020.100651
  • Guo, S.-Q., Kagawa, Y., Nishimura, T., & Tanaka, H. (2008). Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Materialia, 58(7), 579–582. https://doi.org/10.1016/j.scriptamat.2007.11.019
  • Guo, S.-Q. Q., Kagawa, Y., & Nishimura, T. (2009). Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of the European Ceramic Society, 29(4), 787–794. https://doi.org/10.1016/j.jeurceramsoc.2008.06.037
  • Guo, W.-M., & Zhang, G.-J. (2009). Reaction Processes and Characterization of ZrB 2 Powder Prepared by Boro/Carbothermal Reduction of ZrO 2 in Vacuum. Journal of the American Ceramic Society, 92(1), 264–267. https://doi.org/10.1111/j.1551-2916.2008.02836.x
  • Jia, Y., Mehta, S. T., Li, R., Rahman Chowdhury, M. A., Horn, T., & Xu, C. (2021). Additive manufacturing of ZrB2–ZrSi2 ultra-high temperature ceramic composites using an electron beam melting process. Ceramics International, 47(2), 2397–2405. https://doi.org/10.1016/j.ceramint.2020.09.082
  • Karasev, A. I. (1973). Preparation of technical zirconium diboride by the carbothermic reduction of mixtures of zirconium and boron oxides. Soviet Powder Metallurgy and Metal Ceramics, 12(11), 926–929. https://doi.org/10.1007/BF00794633
  • Liu, C., Chang, X., Wu, Y., Li, X., Xue, Y., Wang, X., & Hou, X. (2020). In-situ synthesis of ultra-fine ZrB2–ZrC–SiC nanopowders by sol-gel method. Ceramics International, 46(6), 7099–7108. https://doi.org/10.1016/j.ceramint.2019.11.202
  • Mousavi, S. M., Zakeri, M., Kermani, M., Rahimipour, M. R., & Tayebifard, S. A. (2019). A comparative study on the synthesis of oxide-free ZrB2-xZrC composites. Ceramics International, 45(3), 3760–3766. https://doi.org/10.1016/j.ceramint.2018.11.044
  • Ovalı, D., Ağaoğulları, D., & Öveçoğlu, M. L. (2017). Effects of excess reactant amounts on the mechanochemically synthesized molybdenum silicides from MoO 3 , SiO 2 and Mg blends. International Journal of Refractory Metals and Hard Materials, 65, 19–24. https://doi.org/10.1016/j.ijrmhm.2016.10.006
  • Ovalı, D., Ağaoğulları, D., & Öveçoğlu, M. L. (2019a). Mechanochemical synthesis and characterisation of niobium silicide nanoparticles. Ceramics International, 45(8), 10654–10663. https://doi.org/10.1016/j.ceramint.2019.02.135
  • Ovalı, D., Ağaoğulları, D., & Öveçoğlu, M. L. (2019b). Room-temperature synthesis of tungsten silicide powders using various initial systems. International Journal of Refractory Metals and Hard Materials, 82, 58–68. https://doi.org/10.1016/j.ijrmhm.2019.03.028 Predel, B. (2012). B - Zr (Boron - Zirconium) (pp. 87–88). https://doi.org/10.1007/978-3-540-44756-6_48
  • Qu, Q., Han, J., Han, W., Zhang, X., & Hong, C. (2008). In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Materials Chemistry and Physics, 110(2–3), 216–221. https://doi.org/10.1016/j.matchemphys.2008.01.041 Ran, S., Van der Biest, O., & Vleugels, J. (2010). ZrB2 Powders Synthesis by Borothermal Reduction. Journal of the American Ceramic Society, 93(6), 1586–1590. https://doi.org/10.1111/j.1551-2916.2010.03747.x
  • Sha, J. J., Li, J., Wang, S. H., Wang, Y. C., Zhang, Z. F., & Dai, J. X. (2015). Toughening effect of short carbon fibers in the ZrB2-ZrSi2 ceramic composites. Materials and Design, 75, 160–165. https://doi.org/10.1016/j.matdes.2015.03.006
  • Sha, J. J., Wei, Z. Q., Li, J., Zhang, Z. F., Yang, X. L., Zhang, Y. C., & Dai, J. X. (2014). Mechanical properties and toughening mechanism of WC-doped ZrB2-ZrSi2 ceramic composites by hot pressing. Materials and Design, 62, 199–204. https://doi.org/10.1016/j.matdes.2014.04.083
  • Shao, G., Zhao, X., Wang, H., Chen, J., Zhang, R., Fan, B., Lu, H., Xu, H., & Chen, D. (2016). ZrB2-ZrSi2-SiC composites prepared by reactive spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 60, 104–107. https://doi.org/10.1016/j.ijrmhm.2016.07.011
  • Silvestroni, L., Meriggi, G., & Sciti, D. (2014). Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corrosion Science, 83, 281–291. https://doi.org/10.1016/j.corsci.2014.02.026
  • Sonber, J. K., & Suri, A. K. (2011). Synthesis and consolidation of zirconium diboride: review. Advances in Applied Ceramics, 110(6), 321–334. https://doi.org/10.1179/1743676111Y.0000000008
  • Wang, M., Wang, C. A., & Zhang, X. (2012). Effects of SiC platelet and ZrSi2 additive on sintering and mechanical properties of ZrB2-based ceramics by hot-pressing. Materials and Design, 34, 293–297. https://doi.org/10.1016/j.matdes.2011.08.016
  • Xu, L., Guo, W., Liu, Q., Zhang, Y., Wu, L., You, Y., & Lin, H. (2022). Fully dense ZrB 2 ceramics by borothermal reduction with ultra‐fine ZrO 2 and solid solution. Journal of the American Ceramic Society, October 2021, 1–8. https://doi.org/10.1111/jace.18317
  • Yen, B. K. (1998). X-ray diffraction study of mechanochemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides. Journal of Alloys and Compounds, 268(1–2), 266–269. https://doi.org/10.1016/S0925-8388(97)00581-1
  • Zamora, V., Guiberteau, F., & Ortiz, A. L. (2020). Effect of high-energy ball-milling on the spark plasma sinterability of ZrB2 with transition metal disilicides. Journal of the European Ceramic Society, 40(15), 5020–5028. https://doi.org/10.1016/j.jeurceramsoc.2020.06.046
  • Zhang, G.-J., Ni, D.-W., Zou, J., Liu, H.-T., Wu, W.-W., Liu, J.-X., Suzuki, T. S., & Sakka, Y. (2018). Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. Journal of the European Ceramic Society, 38(2), 371–389. https://doi.org/10.1016/j.jeurceramsoc.2017.09.012
  • Zhu, S., Fahrenholtz, W. G., & Hilmas, G. E. (2007). Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. Journal of the European Ceramic Society, 27(4), 2077–2083. https://doi.org/10.1016/j.jeurceramsoc.2006.07.003

Zirkonyum borür/silisit/oksit kompozit tozlarının magnezyotermik indirgeme ile sentezi

Year 2022, Volume: 7 Issue: 4, 552 - 559, 31.12.2022
https://doi.org/10.30728/boron.1177551

Abstract

Bu çalışmada, ZrO2, B2O3, Si ve Mg başlangıç tozları kullanılarak zirkonyum borür, silisit ve oksit kompozit tozlarının magnezyotermik indirgeme yöntemi kullanılarak birlikte sentezlenmesi araştırılmıştır. Seramik tozlarının sentezlenmesinde incelenen üretim parametreleri farklı öğütme süreleri, tavlama sıcaklıkları ve fazla magnezyum ilavesidir. Kullanılan başlangıç toz sisteminin termokimyasal analizi, Factsage yazılımı kullanılarak yapılmıştır. Sonuçlara göre, termokimyasal tahminler ve elde edilen toz kompozisyonları tutarlılık göstermiştir. Yüksek enerjili öğütmenin, tavlama sonrası zirkonyum borür fazının oluşuması üzerinde önemli bir etkisi olduğu görülmüştür. Bunun yanında, x-ışını kırınımı sonuçlarına göre, uzatılan öğütme süresinin ve farklı tavlama sıcaklıklarının, oluşturulan kompozit tozların bileşimi üzerinde çok belirgin bir etkiye sahip olmadığı görülmüştür. ZrB2 esaslı seramik kompozit tozlarının elde edilmesi için 600 ºC tavlama sıcaklığının yeterli olduğu görülmüştür. Stokiyometrik başlangıç toz kompozisyonuna, yapılan fazla magnezyum ilavesinin sentezlenen toz kompozisyonlarındaki fazları değiştirdiği saptanmıştır. Öğütme, tavlama ve liç işlemlerinden sonra stokiyometrik toz bileşimi ZrB2, ZrSi, ZrSi2, ZrO2 ve Mg2SiO4 içerirken, fazla Mg katkılı tozların yapısında ZrB2, ZrSi, ZrSi2, ZrO2 fazları bulunmaktadır. Sentez prosedürünün her aşaması boyunca tozların morfolojilerini gözlemlemek için taramalı elektron mikroskobu analizi kullanılmıştır ve sentezlenen tozların ince yapılı bir morfolojiye sahip olduğu görülmüştür.

References

  • Adibpur, F., Zaferi, M., & Tayebifard, S. A. (2013). Feasibility Study of Metallic Reductant Element Replacement by Mechanical Activation Process in ZrB2-ZrC Composite Synthesis from Raw Oxide Materials by SHS. Life Science Journal, 10(8), 336–341.
  • Ağaoğulları, D., Balci, Ö., Mertdinç, S., Tekoğlu, E., & Öveçoğlu, M. L. (2018). Synthesis of VB2-V3B4-V2B3/VC hybrid powders via powder metallurgy processes. Journal of Boron, 3(3), 180–187. https://doi.org/10.30728/boron.441148
  • Ağaoğulları, D., Balcı, Ö., Akçamlı, N., Suryanarayana, C., Duman, İ., & Öveçoğlu, M. L. (2019). Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride. Processing and Application of Ceramics, 13(1), 32–43. https://doi.org/10.2298/PAC1901032A
  • Aguirre, T. G., Lamm, B. W., Cramer, C. L., & Mitchell, D. J. (2022). Zirconium-diboride silicon-carbide composites: A review. Ceramics International, 48(6), 7344–7361. https://doi.org/10.1016/j.ceramint.2021.11.314
  • Astapov, A. N., Pogozhev, Y. S., Prokofiev, M. V., Lifanov, I. P., Potanin, A. Y., Levashov, E. A., & Vershinnikov, V. I. (2019). Kinetics and mechanism of high-temperature oxidation of the heterophase ZrSi2-MoSi2-ZrB2 ceramics. Ceramics International, 45(5), 6392–6404. https://doi.org/10.1016/j.ceramint.2018.12.126
  • Balcı, Ö., Ağaoğulları, D., Duman, İ., & Öveçoğlu, M. L. (2012). Carbothermal production of ZrB2–ZrO2 ceramic powders from ZrO2–B2O3/B system by high-energy ball milling and annealing assisted process. Ceramics International, 38(3), 2201–2207. https://doi.org/10.1016/j.ceramint.2011.10.067
  • Balcı, Ö., Ağaoğulları, D., Ovalı, D., Lütfi Öveçoğlu, M., Duman, İ. (2015). In situ synthesis of NbB2–NbC composite powders by milling-assisted carbothermal reduction of oxide raw materials. Advanced Powder Technology, 26(4), 1200–1209. https://doi.org/10.1016/j.apt.2015.06.001
  • Balcı, Ö., Ağaoğulları, D., Öveçoğlu, M. L., & Duman, İ. (2016). Synthesis of niobium borides by powder metallurgy methods using Nb2O5, B2O3 and Mg blends. Transactions of Nonferrous Metals Society of China, 26(3), 747–758. https://doi.org/10.1016/S1003-6326(16)64165-1 Balcı, Ö., Akçamlı, N., Ağaoğulları, D., Öveçoğlu, M. L., & Duman, İ. (2017). Otoklavda sentezlenen ZrB2 -ZrO2 tozlarının farklı tekniklerle sinterlenmesi ve yığın yapıların mikroyapısal ve bazı mekanik özelliklerinin incelenmesi. Bor Dergisi, 2(1), 1–10.
  • Baris, M., Simsek, T., Simsek, T., Ozcan, S., & Kalkan, B. (2018). High purity synthesis of ZrB2 by a combined ball milling and carbothermal method: Structural and magnetic properties. Advanced Powder Technology, 29(10), 2440–2446. https://doi.org/10.1016/j.apt.2018.06.024
  • Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory Diborides of Zirconium and Hafnium. Journal of the American Ceramic Society, 90(5), 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  • Golla, B. R., Mukhopadhyay, A., Basu, B., & Thimmappa, S. K. (2020). Review on ultra-high temperature boride ceramics. In Progress in Materials Science (Vol. 111, p. 100651). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2020.100651
  • Guo, S.-Q., Kagawa, Y., Nishimura, T., & Tanaka, H. (2008). Pressureless sintering and physical properties of ZrB2-based composites with ZrSi2 additive. Scripta Materialia, 58(7), 579–582. https://doi.org/10.1016/j.scriptamat.2007.11.019
  • Guo, S.-Q. Q., Kagawa, Y., & Nishimura, T. (2009). Mechanical behavior of two-step hot-pressed ZrB2-based composites with ZrSi2. Journal of the European Ceramic Society, 29(4), 787–794. https://doi.org/10.1016/j.jeurceramsoc.2008.06.037
  • Guo, W.-M., & Zhang, G.-J. (2009). Reaction Processes and Characterization of ZrB 2 Powder Prepared by Boro/Carbothermal Reduction of ZrO 2 in Vacuum. Journal of the American Ceramic Society, 92(1), 264–267. https://doi.org/10.1111/j.1551-2916.2008.02836.x
  • Jia, Y., Mehta, S. T., Li, R., Rahman Chowdhury, M. A., Horn, T., & Xu, C. (2021). Additive manufacturing of ZrB2–ZrSi2 ultra-high temperature ceramic composites using an electron beam melting process. Ceramics International, 47(2), 2397–2405. https://doi.org/10.1016/j.ceramint.2020.09.082
  • Karasev, A. I. (1973). Preparation of technical zirconium diboride by the carbothermic reduction of mixtures of zirconium and boron oxides. Soviet Powder Metallurgy and Metal Ceramics, 12(11), 926–929. https://doi.org/10.1007/BF00794633
  • Liu, C., Chang, X., Wu, Y., Li, X., Xue, Y., Wang, X., & Hou, X. (2020). In-situ synthesis of ultra-fine ZrB2–ZrC–SiC nanopowders by sol-gel method. Ceramics International, 46(6), 7099–7108. https://doi.org/10.1016/j.ceramint.2019.11.202
  • Mousavi, S. M., Zakeri, M., Kermani, M., Rahimipour, M. R., & Tayebifard, S. A. (2019). A comparative study on the synthesis of oxide-free ZrB2-xZrC composites. Ceramics International, 45(3), 3760–3766. https://doi.org/10.1016/j.ceramint.2018.11.044
  • Ovalı, D., Ağaoğulları, D., & Öveçoğlu, M. L. (2017). Effects of excess reactant amounts on the mechanochemically synthesized molybdenum silicides from MoO 3 , SiO 2 and Mg blends. International Journal of Refractory Metals and Hard Materials, 65, 19–24. https://doi.org/10.1016/j.ijrmhm.2016.10.006
  • Ovalı, D., Ağaoğulları, D., & Öveçoğlu, M. L. (2019a). Mechanochemical synthesis and characterisation of niobium silicide nanoparticles. Ceramics International, 45(8), 10654–10663. https://doi.org/10.1016/j.ceramint.2019.02.135
  • Ovalı, D., Ağaoğulları, D., & Öveçoğlu, M. L. (2019b). Room-temperature synthesis of tungsten silicide powders using various initial systems. International Journal of Refractory Metals and Hard Materials, 82, 58–68. https://doi.org/10.1016/j.ijrmhm.2019.03.028 Predel, B. (2012). B - Zr (Boron - Zirconium) (pp. 87–88). https://doi.org/10.1007/978-3-540-44756-6_48
  • Qu, Q., Han, J., Han, W., Zhang, X., & Hong, C. (2008). In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Materials Chemistry and Physics, 110(2–3), 216–221. https://doi.org/10.1016/j.matchemphys.2008.01.041 Ran, S., Van der Biest, O., & Vleugels, J. (2010). ZrB2 Powders Synthesis by Borothermal Reduction. Journal of the American Ceramic Society, 93(6), 1586–1590. https://doi.org/10.1111/j.1551-2916.2010.03747.x
  • Sha, J. J., Li, J., Wang, S. H., Wang, Y. C., Zhang, Z. F., & Dai, J. X. (2015). Toughening effect of short carbon fibers in the ZrB2-ZrSi2 ceramic composites. Materials and Design, 75, 160–165. https://doi.org/10.1016/j.matdes.2015.03.006
  • Sha, J. J., Wei, Z. Q., Li, J., Zhang, Z. F., Yang, X. L., Zhang, Y. C., & Dai, J. X. (2014). Mechanical properties and toughening mechanism of WC-doped ZrB2-ZrSi2 ceramic composites by hot pressing. Materials and Design, 62, 199–204. https://doi.org/10.1016/j.matdes.2014.04.083
  • Shao, G., Zhao, X., Wang, H., Chen, J., Zhang, R., Fan, B., Lu, H., Xu, H., & Chen, D. (2016). ZrB2-ZrSi2-SiC composites prepared by reactive spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 60, 104–107. https://doi.org/10.1016/j.ijrmhm.2016.07.011
  • Silvestroni, L., Meriggi, G., & Sciti, D. (2014). Oxidation behavior of ZrB2 composites doped with various transition metal silicides. Corrosion Science, 83, 281–291. https://doi.org/10.1016/j.corsci.2014.02.026
  • Sonber, J. K., & Suri, A. K. (2011). Synthesis and consolidation of zirconium diboride: review. Advances in Applied Ceramics, 110(6), 321–334. https://doi.org/10.1179/1743676111Y.0000000008
  • Wang, M., Wang, C. A., & Zhang, X. (2012). Effects of SiC platelet and ZrSi2 additive on sintering and mechanical properties of ZrB2-based ceramics by hot-pressing. Materials and Design, 34, 293–297. https://doi.org/10.1016/j.matdes.2011.08.016
  • Xu, L., Guo, W., Liu, Q., Zhang, Y., Wu, L., You, Y., & Lin, H. (2022). Fully dense ZrB 2 ceramics by borothermal reduction with ultra‐fine ZrO 2 and solid solution. Journal of the American Ceramic Society, October 2021, 1–8. https://doi.org/10.1111/jace.18317
  • Yen, B. K. (1998). X-ray diffraction study of mechanochemical synthesis and formation mechanisms of zirconium carbide and zirconium silicides. Journal of Alloys and Compounds, 268(1–2), 266–269. https://doi.org/10.1016/S0925-8388(97)00581-1
  • Zamora, V., Guiberteau, F., & Ortiz, A. L. (2020). Effect of high-energy ball-milling on the spark plasma sinterability of ZrB2 with transition metal disilicides. Journal of the European Ceramic Society, 40(15), 5020–5028. https://doi.org/10.1016/j.jeurceramsoc.2020.06.046
  • Zhang, G.-J., Ni, D.-W., Zou, J., Liu, H.-T., Wu, W.-W., Liu, J.-X., Suzuki, T. S., & Sakka, Y. (2018). Inherent anisotropy in transition metal diborides and microstructure/property tailoring in ultra-high temperature ceramics—A review. Journal of the European Ceramic Society, 38(2), 371–389. https://doi.org/10.1016/j.jeurceramsoc.2017.09.012
  • Zhu, S., Fahrenholtz, W. G., & Hilmas, G. E. (2007). Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics. Journal of the European Ceramic Society, 27(4), 2077–2083. https://doi.org/10.1016/j.jeurceramsoc.2006.07.003
There are 33 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Didem Ovalı Döndaş 0000-0002-7934-6535

Publication Date December 31, 2022
Acceptance Date December 1, 2022
Published in Issue Year 2022 Volume: 7 Issue: 4

Cite

APA Ovalı Döndaş, D. (2022). Co-synthesis of zirconium boride/silicide/oxide composite powders by magnesiothermic reduction. Journal of Boron, 7(4), 552-559. https://doi.org/10.30728/boron.1177551

© 2016 All Rights Reserved
TENMAK Boron Research Institute