Research Article
BibTex RIS Cite

Çinko borat’ın antimikrobiyal, antifibrinolitik, enzim inhibisyonu ve yara iyileşme özellikleri

Year 2023, Volume: 8 Issue: 3, 99 - 104, 30.09.2023
https://doi.org/10.30728/boron.1180847

Abstract

Boron içerikli bileşenler son zamanlarda farmasötik uygulamalarda kullanılmaktadır. Esansiyel bir element olan Çinko (Zn) umut veren biyobozunur metallerden biridir. Bu çalışma, çinko borat’ın antimikrobiyal, antifibrinolitik, yara iyileşme ve enzim inhibisyonu karakteristiklerini belirlemek üzere tasarlanmıştır. In vitro yara çizik testine göre yara oluşumun 24. saatinde çinko boratın 0.01 µg/mL konsantrasyonda 3T3 fibroblast hücrelerinin proliferasyonunu uyardığı belirlenmiştir. En yüksek enzim inhibisyonu kollagenaza karşı 1 mg/mL konsantrasyonda gözlenmiştir. Candida albicans ve Staphylococcus aureus’a karşı çinko boratın minimum inhibisyon konsantrasyonları (MIC) sırasıyla 1 mg/mL ve 0.5 mg/mL olarak tespit edilmiştir. Çinko boratın 1, 0.5 ve 0.1 mg/mL konsantrasyonlarda herhangi bir fibrinolitik aktivitesi gözlenmemiştir. Çinko boratın yara iyileşme sürecini iyileştirmede etkin bir şekilde kullanılabileceği ve muhtemel yara enfeksiyonlarını önleyebileceği sonucuna varılmıştır.

References

  • [1] Balbino, C. A., Pereira, L. M., & Curi, R. (2005). Mechanisms Involved in Wound Healing: A Revision, Revista Brasileira de Ciências Farmacêuticas, 41, 27-51.
  • [2] Chen, H. L., Chen, X. Y., & Wu, J. (2012). The incidence of pressure ulcers in surgical patients of the last 5 years: a systematic review, Wounds, 24(9), 234-41.
  • [3] Williamson, D., & Harding, K. (2010). Wound healing, Medicine, 32(12), 4-7.
  • [4] Guo, S., & DiPietro, L. A. (2010). Factors Affecting Wound Healing, Journal of Dental Research, 89(3), 219–229.
  • [5] Edwards, R., & Harding, K. G. (2004). Bacteria and wound healing, Current Opinion in Infectious Diseases, 17(2), 91-96.
  • [6] Demirci S., Doğan, A., Karakuş, E., Halıcı, Z., Topçu A., Demirci, E., & Sahin, F. (2015). Boron and Poloxamer (F68 and F127) Containing hydrogel formulation for burn wound healing, Biological Trace Element Research, 168, 169-180.
  • [7] Kuru, R., Kurt Mutlu, E., Cempel, E., Belentepe Celik, S., & Yarat, A. (2018). Evaluation of Dietary Boron in terms of Health: A Retrospective Study, Clinical and Experimental Health Sciences, 8(4), 296-300.
  • [8] Nzietchueng, R. M., Dousset, B., Franck, P., Benderdour, M., Nabet , P., & Hess, K. (2002). Mechanisms implicated in the effects of boron on wound healing, Journal of Trace Elements in Medicine and Biology, 16(4), 239-244.
  • [9] Borokhov, O., & Schubert, D. (2007). New Biocides Development. In Zhu, P. C. (Eds.), Antimicrobial Properties of Boron Derivatives, 967, 412-435. ACS Symposium Series.
  • [10] Sezen, Y., Aylin, U., Cemiloglu Ulker, O., & Duydu, Y. (2016). Protective effect of boric acid on oxidative DNA damage in chinese hamster lung fibroblast V79 cell lines, Cell Journal, 17(4), 748-754.
  • [11] Cao J., Zhu, W., Shen, A. G., & Hu, J. M. (2022). Rational synthesis of Three-Layered plasmonic nanocomposites of copper Sulfide/Gold/Zinc-Doped Prussian blue analogues for improved photothermal disinfection and wound healing, Journal of Colloid and Interface Science, 610(15), 621-633.
  • [12] Thompson, C. B., Wiemken, T. L., & Brown, T. S. (2017). Effect of postoperative dressing on excisions performed on the leg: A comparison between zinc oxide compression dressing versus standard wound care, Dermatologic Surgery, 43, 1379–1384.
  • [13] Wang, Y., Ying, T., Li, J., Xu, Y., Wang, R., Ke, Q.,. Shen, S. G. F, Xu ,H., & Lin, K. (2020). Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via antioxidant and anti-inflammatory activities, Chemical Engineering Journal, 402, 126273–126286.
  • [14] Malini, M., Thirumavalavan, M., Yang, W. Y. , Lee, J. F. , & Annadurai G. (2015). A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties, International Journal of Biological Macromolecules, 80, 121-129.
  • [15] Pizzorno, L. (2015). Nothing boring about boron, Integrative Medicine, 14(4), 35–48.
  • [16] Farfán-García, E. D., Castillo-Mendieta, N. T., Ciprés-Flores, F. J., Padilla-Martínez, I. I., Trujillo-Ferrara, J. G., & Soriano-Ursúa, M. A. (2016). Current data regarding the structure-toxicity relationship of boron-containing compounds, Toxicology letters, 258, 115-125.
  • [17] Das, B. C., Thapa, P., Karki, R., Schinke, C., Das, S., Kambhampati, S., Banerjee, S. K., Veldhuizen, P. V., Verma, A., Weiss, L. M., & Evans, T. (2013). Boron chemicals in diagnosis and therapeutics, Future medicinal chemistry, 5(6), 653-676.
  • [18] Lee, K. K., Kim, J. H., Cho, J. J., & Choi, J. D. (1999). Inhibitory Effects of 150 Plant Extracts on Elastase Activity, and Their Anti-inflammatory Effects, International Journal of Cosmetic Science, 21, 71–82.
  • [19] Barrantes, E., & Guinea, M. (2003). Inhibition of collagenase and metalloproteinases by aloins and aloe gel, Life Sciences, 72, 843–850.
  • [20] Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nature protocols, 2(2), 329-333.
  • [21] Babu, M., Jerard, C., Michael, B. P., Suresh, S., & Ramachandran, R. (2018). Mesoporous silica loaded caffeine inhibits inflammatory markers in lipopolysaccharide-activated rat macrophage cells, Journal of Applied Pharmaceutical Science, 8(12), 124-131.
  • [22] Chebassier, N., Ouijja, E. H., Viegas, I., & Dreno, B. (2004). Stimulatory effect of boron and manganese salts on keratinocyte migration, Acta dermato-venereologica, 84(3), 191-194.
  • [23] Lansdown, A. B. G., Mirastschijski, U., Stubbs, N., Scanlon, E., & Agren, M. S., (2007). Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen, 15(1), 2-16.
  • [24] Demirci, S., Doğan, A., Aydın, S., Dülger, E. Ç., & Şahin F. (2016). Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation, Molecular and Cellular Biochemistry, 417 (1–2) 119-133.
  • [25] Doğan, A., Demirci, S., Bayir Y., Halici, Z., Karakus E., Aydin A., Cadirci E., Albayrak, A., Demirci E., Karaman A., Ayan A.K., Gundogdu C., & Sahin F. (2014). Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering, Materials Science & Engineering. C, Materials For Biological Applications, 44, 246-53.
  • [26] Ghimeray, A. K., Jung, U. S., Lee, H. Y., Kim, Y. H., Ryu, E. K., & Chang, M. S. (2015). In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract, Clinical, Cosmetic and Investigational Dermatology, 8, 389–396.
  • [27] Snow, R. J., & Bachovchin, W. W. (1995). Boronic acid inhibitors of dipeptidy [peptidase IV: a new class of immunosuppressive agents, Advanced Medicinal Chemistry, 3, 149- 177.
  • [28] Yilmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains, Turkish Journal of Medical Sciences, 42(Sup. 2), 1423-1429.
  • [29] Soares, M. M. S. R., & Cury, A. E. (2001). In vitro activity of antifungal and antiseptic agents against dermatophyte isolates from patients with tinea pedis, Brazilian Journal of Microbiology, 32(2), 130-134.
  • [30] Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., & Shapiro, L. (2005). Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH, Journal of medicinal chemistry, 48(23), 7468-7476.
  • [31] Argin, S., Gülerim, M., and Şahin, F. (2019). Development of antimicrobial gelatin films with boron derivatives, Turkish Journal of Biology, 43(1), 47-57.
  • [32] Dembitsky, V. M. and Srebnik, M. (2003). Synthesis and Biological Activity of R-Aminoboronic Acids. Amine-Carboxyboranes and Their Derivatives, Tetrahedron, 59(5), 579-593.
  • [33] Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., and Srebnik, M. (2004). Synthesis and evaluation of oxazaborolidines for antibacterial activity against Streptococcus mutans, Journal of Medicinal Chemistry, 47(10), 2409-2410.
  • [34] Ugur, A., Ceylan, O., Boran, R., Ayrikcil, S., Saraç, N., & Yilmaz, D. (2019). A new approach for prevention the oxidations and mutations: Zinc borate, Journal of Boron, 4(4), 196-202.

Antimicrobial, antifibrinolytic, enzyme inhibitory and wound healing properties of zinc borate

Year 2023, Volume: 8 Issue: 3, 99 - 104, 30.09.2023
https://doi.org/10.30728/boron.1180847

Abstract

Boron containing compounds (BCGs) have recently been used for pharmaceutical applications. Zinc, an essential element, is known to be one of the most promising biodegradable metals. The present study was conducted to determine the wound healing properties of zinc borate with its antimicrobial, antifibrinolytic and enzyme inhibitory characteristics. In vitro scratch wound healing assay revealed that zinc borate at 0.01 µg/mL concentration stimulated the proliferation of 3T3 fibroblast cells after 24 h of scar formation. The highest enzyme inhibition was observed against collagenase at 1 mg/mL (81.5%). Minimum inhibition concentration (MIC) values were determined as 1 mg/mL and 0.5 mg/mL against Candida albicans and Staphylococcus aureus, respectively. Zinc borate did not have any fibrinolytic activity at 1, 0.5 and 0.1 mg/mL concentrations. It can be suggested that zinc borate can be used effectively to improve the wound healing process and to prevent the possible wound infections.

References

  • [1] Balbino, C. A., Pereira, L. M., & Curi, R. (2005). Mechanisms Involved in Wound Healing: A Revision, Revista Brasileira de Ciências Farmacêuticas, 41, 27-51.
  • [2] Chen, H. L., Chen, X. Y., & Wu, J. (2012). The incidence of pressure ulcers in surgical patients of the last 5 years: a systematic review, Wounds, 24(9), 234-41.
  • [3] Williamson, D., & Harding, K. (2010). Wound healing, Medicine, 32(12), 4-7.
  • [4] Guo, S., & DiPietro, L. A. (2010). Factors Affecting Wound Healing, Journal of Dental Research, 89(3), 219–229.
  • [5] Edwards, R., & Harding, K. G. (2004). Bacteria and wound healing, Current Opinion in Infectious Diseases, 17(2), 91-96.
  • [6] Demirci S., Doğan, A., Karakuş, E., Halıcı, Z., Topçu A., Demirci, E., & Sahin, F. (2015). Boron and Poloxamer (F68 and F127) Containing hydrogel formulation for burn wound healing, Biological Trace Element Research, 168, 169-180.
  • [7] Kuru, R., Kurt Mutlu, E., Cempel, E., Belentepe Celik, S., & Yarat, A. (2018). Evaluation of Dietary Boron in terms of Health: A Retrospective Study, Clinical and Experimental Health Sciences, 8(4), 296-300.
  • [8] Nzietchueng, R. M., Dousset, B., Franck, P., Benderdour, M., Nabet , P., & Hess, K. (2002). Mechanisms implicated in the effects of boron on wound healing, Journal of Trace Elements in Medicine and Biology, 16(4), 239-244.
  • [9] Borokhov, O., & Schubert, D. (2007). New Biocides Development. In Zhu, P. C. (Eds.), Antimicrobial Properties of Boron Derivatives, 967, 412-435. ACS Symposium Series.
  • [10] Sezen, Y., Aylin, U., Cemiloglu Ulker, O., & Duydu, Y. (2016). Protective effect of boric acid on oxidative DNA damage in chinese hamster lung fibroblast V79 cell lines, Cell Journal, 17(4), 748-754.
  • [11] Cao J., Zhu, W., Shen, A. G., & Hu, J. M. (2022). Rational synthesis of Three-Layered plasmonic nanocomposites of copper Sulfide/Gold/Zinc-Doped Prussian blue analogues for improved photothermal disinfection and wound healing, Journal of Colloid and Interface Science, 610(15), 621-633.
  • [12] Thompson, C. B., Wiemken, T. L., & Brown, T. S. (2017). Effect of postoperative dressing on excisions performed on the leg: A comparison between zinc oxide compression dressing versus standard wound care, Dermatologic Surgery, 43, 1379–1384.
  • [13] Wang, Y., Ying, T., Li, J., Xu, Y., Wang, R., Ke, Q.,. Shen, S. G. F, Xu ,H., & Lin, K. (2020). Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via antioxidant and anti-inflammatory activities, Chemical Engineering Journal, 402, 126273–126286.
  • [14] Malini, M., Thirumavalavan, M., Yang, W. Y. , Lee, J. F. , & Annadurai G. (2015). A versatile chitosan/ZnO nanocomposite with enhanced antimicrobial properties, International Journal of Biological Macromolecules, 80, 121-129.
  • [15] Pizzorno, L. (2015). Nothing boring about boron, Integrative Medicine, 14(4), 35–48.
  • [16] Farfán-García, E. D., Castillo-Mendieta, N. T., Ciprés-Flores, F. J., Padilla-Martínez, I. I., Trujillo-Ferrara, J. G., & Soriano-Ursúa, M. A. (2016). Current data regarding the structure-toxicity relationship of boron-containing compounds, Toxicology letters, 258, 115-125.
  • [17] Das, B. C., Thapa, P., Karki, R., Schinke, C., Das, S., Kambhampati, S., Banerjee, S. K., Veldhuizen, P. V., Verma, A., Weiss, L. M., & Evans, T. (2013). Boron chemicals in diagnosis and therapeutics, Future medicinal chemistry, 5(6), 653-676.
  • [18] Lee, K. K., Kim, J. H., Cho, J. J., & Choi, J. D. (1999). Inhibitory Effects of 150 Plant Extracts on Elastase Activity, and Their Anti-inflammatory Effects, International Journal of Cosmetic Science, 21, 71–82.
  • [19] Barrantes, E., & Guinea, M. (2003). Inhibition of collagenase and metalloproteinases by aloins and aloe gel, Life Sciences, 72, 843–850.
  • [20] Liang, C. C., Park, A. Y., & Guan, J. L. (2007). In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro, Nature protocols, 2(2), 329-333.
  • [21] Babu, M., Jerard, C., Michael, B. P., Suresh, S., & Ramachandran, R. (2018). Mesoporous silica loaded caffeine inhibits inflammatory markers in lipopolysaccharide-activated rat macrophage cells, Journal of Applied Pharmaceutical Science, 8(12), 124-131.
  • [22] Chebassier, N., Ouijja, E. H., Viegas, I., & Dreno, B. (2004). Stimulatory effect of boron and manganese salts on keratinocyte migration, Acta dermato-venereologica, 84(3), 191-194.
  • [23] Lansdown, A. B. G., Mirastschijski, U., Stubbs, N., Scanlon, E., & Agren, M. S., (2007). Zinc in wound healing: Theoretical, experimental, and clinical aspects, Wound Repair Regen, 15(1), 2-16.
  • [24] Demirci, S., Doğan, A., Aydın, S., Dülger, E. Ç., & Şahin F. (2016). Boron promotes streptozotocin-induced diabetic wound healing: roles in cell proliferation and migration, growth factor expression, and inflammation, Molecular and Cellular Biochemistry, 417 (1–2) 119-133.
  • [25] Doğan, A., Demirci, S., Bayir Y., Halici, Z., Karakus E., Aydin A., Cadirci E., Albayrak, A., Demirci E., Karaman A., Ayan A.K., Gundogdu C., & Sahin F. (2014). Boron containing poly-(lactide-co-glycolide) (PLGA) scaffolds for bone tissue engineering, Materials Science & Engineering. C, Materials For Biological Applications, 44, 246-53.
  • [26] Ghimeray, A. K., Jung, U. S., Lee, H. Y., Kim, Y. H., Ryu, E. K., & Chang, M. S. (2015). In vitro antioxidant, collagenase inhibition, and in vivo anti-wrinkle effects of combined formulation containing Punica granatum, Ginkgo biloba, Ficus carica, and Morus alba fruits extract, Clinical, Cosmetic and Investigational Dermatology, 8, 389–396.
  • [27] Snow, R. J., & Bachovchin, W. W. (1995). Boronic acid inhibitors of dipeptidy [peptidase IV: a new class of immunosuppressive agents, Advanced Medicinal Chemistry, 3, 149- 177.
  • [28] Yilmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains, Turkish Journal of Medical Sciences, 42(Sup. 2), 1423-1429.
  • [29] Soares, M. M. S. R., & Cury, A. E. (2001). In vitro activity of antifungal and antiseptic agents against dermatophyte isolates from patients with tinea pedis, Brazilian Journal of Microbiology, 32(2), 130-134.
  • [30] Benkovic, S. J., Baker, S. J., Alley, M. R. K., Woo, Y. H., Zhang, Y. K., Akama, T., & Shapiro, L. (2005). Identification of borinic esters as inhibitors of bacterial cell growth and bacterial methyltransferases, CcrM and MenH, Journal of medicinal chemistry, 48(23), 7468-7476.
  • [31] Argin, S., Gülerim, M., and Şahin, F. (2019). Development of antimicrobial gelatin films with boron derivatives, Turkish Journal of Biology, 43(1), 47-57.
  • [32] Dembitsky, V. M. and Srebnik, M. (2003). Synthesis and Biological Activity of R-Aminoboronic Acids. Amine-Carboxyboranes and Their Derivatives, Tetrahedron, 59(5), 579-593.
  • [33] Jabbour, A., Steinberg, D., Dembitsky, V. M., Moussaieff, A., Zaks, B., and Srebnik, M. (2004). Synthesis and evaluation of oxazaborolidines for antibacterial activity against Streptococcus mutans, Journal of Medicinal Chemistry, 47(10), 2409-2410.
  • [34] Ugur, A., Ceylan, O., Boran, R., Ayrikcil, S., Saraç, N., & Yilmaz, D. (2019). A new approach for prevention the oxidations and mutations: Zinc borate, Journal of Boron, 4(4), 196-202.
There are 34 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Rukiye Boran 0000-0003-2395-2445

Tuba Baygar 0000-0002-1238-3227

Nurdan Saraç 0000-0001-7676-542X

Semih Ayrıkçil 0000-0002-1606-4151

Derviş Yılmaz 0000-0002-5468-4546

Aysel Uğur 0000-0002-5188-1106

Publication Date September 30, 2023
Acceptance Date July 28, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Boran, R., Baygar, T., Saraç, N., Ayrıkçil, S., et al. (2023). Antimicrobial, antifibrinolytic, enzyme inhibitory and wound healing properties of zinc borate. Journal of Boron, 8(3), 99-104. https://doi.org/10.30728/boron.1180847