Research Article
BibTex RIS Cite

Arildiyazonyum katyonlarının bor kümeleri ile izolasyonu ve stabilizasyonu

Year 2023, Volume: 8 Issue: 4, 135 - 143, 29.12.2023
https://doi.org/10.30728/boron.1338235

Abstract

Diazonyum tuzlarının birçok uygulama için yararlı ara ürünler olduğu bulundu. Birkaç tuz izole edilmesine rağmen, kısa ömürlü oldukları bulundu. Yüklü bor kafeslerinin zayıf koordine edici anyonlar olduğu bilinmektedir. Kafesler, karakterizasyonlar ve diğer reaksiyonlar için kısa ömürlü katyonları izole etmek için kullanıldı. Bu çalışmada, diazonyum katyonlarını izole etmek ve karakterize etmek için dodekaborat dianyon ve karborat anyonunu kolaylaştırdık. Bu kafesler ile diazonyum katyonunun ortam koşullarında bir aydan fazla stabil kaldığı görülmüştür.

Project Number

2018-30-06-30-004

References

  • [1] Griefs, P. (1858). Vorläufige notiz über die einwirkung von salpetriger säure auf amidinitro- und aminitrophenylsäure. Justus Liebigs Annalen der Chemie, 106, 123-125. https://doi.org/10.1002/jlac.18581060114. [2]. de Souza Ferreira, I. L., de Medeiros, J. I., Steffens, F., & Oliveira, F. R. (2020). Seawater as an alternative to dye cotton fiber with reactive dyes. Textile Research Journal, 91(9-10), 1184-1193. https://doi.org/10.1177/0040517520972482.
  • [3]. Hanor, A. (1942). Dyes and dyeing. Journal of Chemical Education, 19(10), 460. https://doi.org/10.1021/ed019p460.
  • [4]. Mahmoud, W. H., Omar, M. M., & Sayed, F. N.(2016). Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azo dye metal complexes. Journal of Thermal Analysis and Calorimetry, 124 (2), 1071-1089. https://doi.org/10.1007/s10973-015-5172-1.
  • [5]. Sharma, R., Rawal, R. K., Gaba, T., Singla, N., Malhotra, M., Matharoo, S., & Bhardwaj, T. R. (2013). Design, synthesis and ex vivo evaluation of colon-specific azo based prodrugs of anticancer agents. Bioorganic & Medicinal Chemistry Letters, 23(19), 5332-5338. https:// doi.org/10.1016/j.bmcl.2013.07.059.
  • [6]. Ahmad, K., Naseem, H. A., Parveen, S., Shah, H.-R., Shah, S. S. A., Shaheen, S., … & Ashfaq, M. (2019). Synthesis and spectroscopic characterizationof medicinal azo derivatives and metal complexes of Indandion. Journal of Molecular Structure, 1198, 126885. https://doi.org/10.1016/j.molstruc.2019.126885.
  • [7]. Mutlu, H., Geiselhart, C. M., & Barner-Kowollik, C. (2018). Untapped potential for debonding on demand: the wonderful world of azo-compounds. Materials Horizons, 5(2), 162-183. https://doi.org/10.1039/C7MH00920H.
  • [8]. Li, X., Wu, Y., Gu, D., & Gan, F. (2010). Spectral, thermal and optical properties of metal(ІІ)-azo complexes for optical recording media. Dyes and Pigments, 86(2), 182- 189. https://doi.org/10.1016/j.dyepig.2010.01.002.
  • [9]. Arab, P., Rabbani, M. G., Sekizkardes, A. K., İslamoğlu, T., & El-Kaderi, H. M. (2014). Copper(I)-catalyzedsynthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture. Chemistry of Materials, 26(3), 1385-1392. https://doi.org/10.1021/cm403161e
  • [10]. Hodgson, H. H. (1947). The sandmeyer reaction. Chemical Reviews, 40(2), 251-277. https://doi. org/10.1021/cr60126a003. [11]. Balz, G., & Schiemann, G. (1927). Über aromatische fluorverbindungen, I.: Ein neues verfahren zu ihrer darstellung. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 60(5), 1186-1190. https://doi.org/10.1002/cber.19270600539.
  • [12]. Pschorr, R. (1896). Neue synthese des phenanthrens und seiner derivate. Berichte der Deutschen Chemischen Gesellschaft, 29(1), 496-501. https://doi.org/10.1002/cber.18960290198.
  • [13]. Meerwein, H., Büchner, E., & van Emster, K. (1939). Über die einwirkung aromatischer diazoverbindungen auf α,β-ungesättigte carbonylverbindungen. Journal für Praktische Chemie, 152(7-10), 237-266. https://doi.org/10.1002/prac.19391520705.
  • [14]. Gomberg, M., & Bachmann, W. E. (1924). The synthesis of biaryl compounds by means of the diazo reaction. Journal of the American Chemical Society, 46(10), 2339-2343. https://doi.org/10.1021/ja01675a026.
  • [15]. Roglans, A., Pla-Quintana, A., & Moreno-Mañas, M. (2006). Diazonium salts as substrates in palladiumcatalyzed cross-coupling reactions. Chemical Reviews, 106(11), 4622-4643. https://doi.org/10.1021/cr0509861.
  • [16]. Mo, F., Dong, G., Zhang, Y., & Wang, J. (2013). Recent applications of arene diazonium salts in organic synthesis. Organic & Biomolecular Chemistry, 11(10), 1582. https://doi.org/10.1039/C3OB27366K.
  • [17]. Oger, N., d’Halluin, M., Le Grognec, E., & Felpin, F. X. (2014). Using aryl diazonium salts in palladiumcatalyzed reactions under safer conditions. Organic Process Research & Development, 18(12), 1786-1801.https://doi.org/10.1021/op500299t.
  • [18]. Felpin, F. X., & Sengupta, S. (2019). Biaryl synthesis with arenediazonium salts: Cross-coupling, CHarylation and annulation reactions. Chemical Society Reviews, 48(4), 1150-1193. https://doi.org/10.1039/C8CS00453F.
  • [19]. Naseem, H. A., Aziz, T., Shah, H. R., Ahmad, K., Parveen, S., & Ashfaq, M. (2021). Rational synthesis and characterization of medicinal phenyl diazenyl-3-hydroxy-1h-inden-1-one azo derivatives and their metal complexes. Journal of Molecular Structure, 1227, 129574. https://doi.org/10.1016/j.molstruc.2020.129574.
  • [20]. Oger, N., Le Grognec, E., & Felpin, F. X. (2015). Handling diazonium salts in flow for organic and material chemistry. Organic Chemistry Frontiers, 2(5), 590-614.https://doi.org/10.1039/c5qo00037h.
  • [21]. Hu, T., Baxendale, I., & Baumann, M. (2016). Exploring flow procedures for diazonium formation. Molecules, 21(7), 918. https://doi.org/10.3390/molecules21070918.
  • [22] Firth, J. D., & Fairlamb, I. J. S. (2020). A need for caution in the preparation and application of synthetically versatile aryl diazonium tetrafluoroborate salts. Organic Letters, 22(18), 7057-7059. https://doi.org/10.1021/acs.orglett.0c02685.
  • [23]. Filimonov, V. D., Trusova, M., Postnikov, P.,Krasnokutskaya, E. A., Lee, Y. M., Hwang, H. Y., & Chi, K. W. (2008). Unusually stable, versatile, and pure arenediazonium tosylates: Their preparation, structures, and synthetic applicability. Organic Letters, 10(18), 3961-3964. https://doi.org/10.1021/ol8013528.
  • [24]. Callonnec, F. L., Fouquet, E., & Felpin, F. X. (2021). Unprecedented substoichiometric use of hazardous aryl diazonium salts in the heck-matsuda reaction via a double catalytic. Cycle Organic Letters, 13(10), 2646-2649. https://doi.org/10.1021/ol200752x.
  • [25]. Susperregui, N., Miqueu, K., Sotiropoulos, J. M., Le Callonnec, F., Fouquet, E., & Felpin, F. X. (2012). Sustainable heck–matsuda reaction with catalytic amounts of diazonium salts: An experimental and theoretical study. Chemistry-A European Journal, 18(23), 7210-7218. https://doi.org/10.1002/chem.201200444.
  • [26]. Oger, N., Le Callonnec, F., Jacquemin, D., Fouquet, E., Le Grognec, E., & Felpin, F. X. (2014). Heck–matsuda arylation of olefins through a bicatalytic approach: Improved procedures and rationalization. Advanced Synthesis & Catalysis, 356(5), 1065-1071. https://doi.org/10.1002/adsc.201301144.
  • [27]. Mihelac, M., Siljanovska, A., & Kosmrlj, J. (2021). A convenient approach to arenediazonium tosylates. Dyes and Pigments, 184, 108726. https://doi.org/10.1016/j. dyepig.2020.108726.
  • [28]. Honraedt, A., Raux, M. A., Grognec, E. L., Jacquemin, D., & Felpin, F. X. (2014). Copper-catalyzed free-radical C-H arylation of pyrroles. Chemical Communications, 50(40), 5236-5238.https://doi.org/10.1039/C3CC45240A.
  • [29]. Bonin, H., Fouquet, E., & Felpin, F. X. (2011). Aryl diazonium versus iodonium salts: Preparation, applications and mechanisms for the suzuki–miyaura cross-coupling reaction. Advanced Synthesis & Catalysis, 353(17), 3063-3084. https://doi.org/10.1002/ adsc.201100531.
  • [30]. Reed, C. A. (2009). H+, CH3+, and R3Si+ Carborane reagents: When triflates fail. Accounts of Chemical Research, 43(1), 121-128. https://doi.org/10.1021/ ar900159e.
  • [31]. Reed, C. A. (2000) Taming superacids: Stabilization of the fullerene cations HC60+ and C60·+. Science, 289(5476), 101-104. https://doi.org/10.1126/science.289.5476.101.
  • [32]. Geis, V., Guttsche, K., Knapp, C., Scherer, H., &Uzun, R. (2009). Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2-. Dalton Transactions, 2009(15),2687-2694. https://doi.org/10.1039/b821030f.
  • [33]. Knoth, W. H., Miller, H. C., Sauer, J. C., Balthis, J. H.,Chia, Y. T., & Muetterties, E. L. (1964). Chemistry of boranes. IX. Halogenation of B10H10-2 and B12H12-2. Inorganic Chemistry, 3(2), 159-167. https://doi.org/10.1021/ic50012a002.
  • [34]. Gu, W., & Ozerov, O. V. (2011). Exhaustive chlorination of [B12H12]2- without chlorine gas and the use of [B12Cl12]2- as a supporting anion in catalytic hydrodefluorination of aliphatic C-F bonds. Inorganic Chemistry, 50(7), 2726-2728. https://doi.org/10.1021/ ic200024u.
  • [35]. Rempala, P., & Michl, J. (2003). A proposed mechanism of [closo-CB11H12]- formation by dichlorocarbene insertion into [nido-B11H14]-. A computational study by density functional theory. Collection of Czechoslovak Chemical Communications, 68(3), 644-662. https://doi.org/10.1135/cccc20030644.
  • [36]. Mueller, L.O. (2008). Weakly coordinating anions and lewis superacidity [Doctoral dissertation, Albert Ludwig University of Freiburg]. Retrieved from https://d-nb.info/988804875/34.
  • [37]. Pecyna, J., Rončević, I., & Michl, J. (2019). Insertion of carbenes into deprotonated nidoundecaborane, B11H13(2-). Molecules, 24(20), 3779. https://doi.org/10.3390/molecules24203779.
  • [38]. Douvris, C., & Michl, J. (2013). Update 1 of: Chemistry of the carba-closo-dodecaborate(-) Anion, CB11H12-.Chemical Reviews, 113(10), PR179-PR233. https://doi.org/10.1021/cr400059k.

Isolation and stabilization of aryldiazonium cations with boron clusters

Year 2023, Volume: 8 Issue: 4, 135 - 143, 29.12.2023
https://doi.org/10.30728/boron.1338235

Abstract

Diazonium salts were found to be useful intermediates for many applications. Although few salts were isolated, they were found to be short lived. Charged boron cages have been known to be weakly coordinating anions. The cages were used to isolate short lived cations for characterizations and further reactions. In this study , we have facilitated dodecaborate dianion and carborate anion to isolate and characterize diazonium cations. With these cages, it was found that diazonium cation to be stable more than a month at ambient conditions.

Supporting Institution

Ulusal Bor Araştırma Enstitüsü,

Project Number

2018-30-06-30-004

Thanks

We would like to thank BOREN for partially supporting this research

References

  • [1] Griefs, P. (1858). Vorläufige notiz über die einwirkung von salpetriger säure auf amidinitro- und aminitrophenylsäure. Justus Liebigs Annalen der Chemie, 106, 123-125. https://doi.org/10.1002/jlac.18581060114. [2]. de Souza Ferreira, I. L., de Medeiros, J. I., Steffens, F., & Oliveira, F. R. (2020). Seawater as an alternative to dye cotton fiber with reactive dyes. Textile Research Journal, 91(9-10), 1184-1193. https://doi.org/10.1177/0040517520972482.
  • [3]. Hanor, A. (1942). Dyes and dyeing. Journal of Chemical Education, 19(10), 460. https://doi.org/10.1021/ed019p460.
  • [4]. Mahmoud, W. H., Omar, M. M., & Sayed, F. N.(2016). Synthesis, spectral characterization, thermal, anticancer and antimicrobial studies of bidentate azo dye metal complexes. Journal of Thermal Analysis and Calorimetry, 124 (2), 1071-1089. https://doi.org/10.1007/s10973-015-5172-1.
  • [5]. Sharma, R., Rawal, R. K., Gaba, T., Singla, N., Malhotra, M., Matharoo, S., & Bhardwaj, T. R. (2013). Design, synthesis and ex vivo evaluation of colon-specific azo based prodrugs of anticancer agents. Bioorganic & Medicinal Chemistry Letters, 23(19), 5332-5338. https:// doi.org/10.1016/j.bmcl.2013.07.059.
  • [6]. Ahmad, K., Naseem, H. A., Parveen, S., Shah, H.-R., Shah, S. S. A., Shaheen, S., … & Ashfaq, M. (2019). Synthesis and spectroscopic characterizationof medicinal azo derivatives and metal complexes of Indandion. Journal of Molecular Structure, 1198, 126885. https://doi.org/10.1016/j.molstruc.2019.126885.
  • [7]. Mutlu, H., Geiselhart, C. M., & Barner-Kowollik, C. (2018). Untapped potential for debonding on demand: the wonderful world of azo-compounds. Materials Horizons, 5(2), 162-183. https://doi.org/10.1039/C7MH00920H.
  • [8]. Li, X., Wu, Y., Gu, D., & Gan, F. (2010). Spectral, thermal and optical properties of metal(ІІ)-azo complexes for optical recording media. Dyes and Pigments, 86(2), 182- 189. https://doi.org/10.1016/j.dyepig.2010.01.002.
  • [9]. Arab, P., Rabbani, M. G., Sekizkardes, A. K., İslamoğlu, T., & El-Kaderi, H. M. (2014). Copper(I)-catalyzedsynthesis of nanoporous azo-linked polymers: Impact of textural properties on gas storage and selective carbon dioxide capture. Chemistry of Materials, 26(3), 1385-1392. https://doi.org/10.1021/cm403161e
  • [10]. Hodgson, H. H. (1947). The sandmeyer reaction. Chemical Reviews, 40(2), 251-277. https://doi. org/10.1021/cr60126a003. [11]. Balz, G., & Schiemann, G. (1927). Über aromatische fluorverbindungen, I.: Ein neues verfahren zu ihrer darstellung. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 60(5), 1186-1190. https://doi.org/10.1002/cber.19270600539.
  • [12]. Pschorr, R. (1896). Neue synthese des phenanthrens und seiner derivate. Berichte der Deutschen Chemischen Gesellschaft, 29(1), 496-501. https://doi.org/10.1002/cber.18960290198.
  • [13]. Meerwein, H., Büchner, E., & van Emster, K. (1939). Über die einwirkung aromatischer diazoverbindungen auf α,β-ungesättigte carbonylverbindungen. Journal für Praktische Chemie, 152(7-10), 237-266. https://doi.org/10.1002/prac.19391520705.
  • [14]. Gomberg, M., & Bachmann, W. E. (1924). The synthesis of biaryl compounds by means of the diazo reaction. Journal of the American Chemical Society, 46(10), 2339-2343. https://doi.org/10.1021/ja01675a026.
  • [15]. Roglans, A., Pla-Quintana, A., & Moreno-Mañas, M. (2006). Diazonium salts as substrates in palladiumcatalyzed cross-coupling reactions. Chemical Reviews, 106(11), 4622-4643. https://doi.org/10.1021/cr0509861.
  • [16]. Mo, F., Dong, G., Zhang, Y., & Wang, J. (2013). Recent applications of arene diazonium salts in organic synthesis. Organic & Biomolecular Chemistry, 11(10), 1582. https://doi.org/10.1039/C3OB27366K.
  • [17]. Oger, N., d’Halluin, M., Le Grognec, E., & Felpin, F. X. (2014). Using aryl diazonium salts in palladiumcatalyzed reactions under safer conditions. Organic Process Research & Development, 18(12), 1786-1801.https://doi.org/10.1021/op500299t.
  • [18]. Felpin, F. X., & Sengupta, S. (2019). Biaryl synthesis with arenediazonium salts: Cross-coupling, CHarylation and annulation reactions. Chemical Society Reviews, 48(4), 1150-1193. https://doi.org/10.1039/C8CS00453F.
  • [19]. Naseem, H. A., Aziz, T., Shah, H. R., Ahmad, K., Parveen, S., & Ashfaq, M. (2021). Rational synthesis and characterization of medicinal phenyl diazenyl-3-hydroxy-1h-inden-1-one azo derivatives and their metal complexes. Journal of Molecular Structure, 1227, 129574. https://doi.org/10.1016/j.molstruc.2020.129574.
  • [20]. Oger, N., Le Grognec, E., & Felpin, F. X. (2015). Handling diazonium salts in flow for organic and material chemistry. Organic Chemistry Frontiers, 2(5), 590-614.https://doi.org/10.1039/c5qo00037h.
  • [21]. Hu, T., Baxendale, I., & Baumann, M. (2016). Exploring flow procedures for diazonium formation. Molecules, 21(7), 918. https://doi.org/10.3390/molecules21070918.
  • [22] Firth, J. D., & Fairlamb, I. J. S. (2020). A need for caution in the preparation and application of synthetically versatile aryl diazonium tetrafluoroborate salts. Organic Letters, 22(18), 7057-7059. https://doi.org/10.1021/acs.orglett.0c02685.
  • [23]. Filimonov, V. D., Trusova, M., Postnikov, P.,Krasnokutskaya, E. A., Lee, Y. M., Hwang, H. Y., & Chi, K. W. (2008). Unusually stable, versatile, and pure arenediazonium tosylates: Their preparation, structures, and synthetic applicability. Organic Letters, 10(18), 3961-3964. https://doi.org/10.1021/ol8013528.
  • [24]. Callonnec, F. L., Fouquet, E., & Felpin, F. X. (2021). Unprecedented substoichiometric use of hazardous aryl diazonium salts in the heck-matsuda reaction via a double catalytic. Cycle Organic Letters, 13(10), 2646-2649. https://doi.org/10.1021/ol200752x.
  • [25]. Susperregui, N., Miqueu, K., Sotiropoulos, J. M., Le Callonnec, F., Fouquet, E., & Felpin, F. X. (2012). Sustainable heck–matsuda reaction with catalytic amounts of diazonium salts: An experimental and theoretical study. Chemistry-A European Journal, 18(23), 7210-7218. https://doi.org/10.1002/chem.201200444.
  • [26]. Oger, N., Le Callonnec, F., Jacquemin, D., Fouquet, E., Le Grognec, E., & Felpin, F. X. (2014). Heck–matsuda arylation of olefins through a bicatalytic approach: Improved procedures and rationalization. Advanced Synthesis & Catalysis, 356(5), 1065-1071. https://doi.org/10.1002/adsc.201301144.
  • [27]. Mihelac, M., Siljanovska, A., & Kosmrlj, J. (2021). A convenient approach to arenediazonium tosylates. Dyes and Pigments, 184, 108726. https://doi.org/10.1016/j. dyepig.2020.108726.
  • [28]. Honraedt, A., Raux, M. A., Grognec, E. L., Jacquemin, D., & Felpin, F. X. (2014). Copper-catalyzed free-radical C-H arylation of pyrroles. Chemical Communications, 50(40), 5236-5238.https://doi.org/10.1039/C3CC45240A.
  • [29]. Bonin, H., Fouquet, E., & Felpin, F. X. (2011). Aryl diazonium versus iodonium salts: Preparation, applications and mechanisms for the suzuki–miyaura cross-coupling reaction. Advanced Synthesis & Catalysis, 353(17), 3063-3084. https://doi.org/10.1002/ adsc.201100531.
  • [30]. Reed, C. A. (2009). H+, CH3+, and R3Si+ Carborane reagents: When triflates fail. Accounts of Chemical Research, 43(1), 121-128. https://doi.org/10.1021/ ar900159e.
  • [31]. Reed, C. A. (2000) Taming superacids: Stabilization of the fullerene cations HC60+ and C60·+. Science, 289(5476), 101-104. https://doi.org/10.1126/science.289.5476.101.
  • [32]. Geis, V., Guttsche, K., Knapp, C., Scherer, H., &Uzun, R. (2009). Synthesis and characterization of synthetically useful salts of the weakly-coordinating dianion [B12Cl12]2-. Dalton Transactions, 2009(15),2687-2694. https://doi.org/10.1039/b821030f.
  • [33]. Knoth, W. H., Miller, H. C., Sauer, J. C., Balthis, J. H.,Chia, Y. T., & Muetterties, E. L. (1964). Chemistry of boranes. IX. Halogenation of B10H10-2 and B12H12-2. Inorganic Chemistry, 3(2), 159-167. https://doi.org/10.1021/ic50012a002.
  • [34]. Gu, W., & Ozerov, O. V. (2011). Exhaustive chlorination of [B12H12]2- without chlorine gas and the use of [B12Cl12]2- as a supporting anion in catalytic hydrodefluorination of aliphatic C-F bonds. Inorganic Chemistry, 50(7), 2726-2728. https://doi.org/10.1021/ ic200024u.
  • [35]. Rempala, P., & Michl, J. (2003). A proposed mechanism of [closo-CB11H12]- formation by dichlorocarbene insertion into [nido-B11H14]-. A computational study by density functional theory. Collection of Czechoslovak Chemical Communications, 68(3), 644-662. https://doi.org/10.1135/cccc20030644.
  • [36]. Mueller, L.O. (2008). Weakly coordinating anions and lewis superacidity [Doctoral dissertation, Albert Ludwig University of Freiburg]. Retrieved from https://d-nb.info/988804875/34.
  • [37]. Pecyna, J., Rončević, I., & Michl, J. (2019). Insertion of carbenes into deprotonated nidoundecaborane, B11H13(2-). Molecules, 24(20), 3779. https://doi.org/10.3390/molecules24203779.
  • [38]. Douvris, C., & Michl, J. (2013). Update 1 of: Chemistry of the carba-closo-dodecaborate(-) Anion, CB11H12-.Chemical Reviews, 113(10), PR179-PR233. https://doi.org/10.1021/cr400059k.
There are 36 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Research Article
Authors

Ozan Ünver This is me 0000-0002-5557-7021

Akın Akdağ 0000-0002-0058-905X

Project Number 2018-30-06-30-004
Publication Date December 29, 2023
Acceptance Date October 15, 2023
Published in Issue Year 2023 Volume: 8 Issue: 4

Cite

APA Ünver, O., & Akdağ, A. (2023). Isolation and stabilization of aryldiazonium cations with boron clusters. Journal of Boron, 8(4), 135-143. https://doi.org/10.30728/boron.1338235