Research Article
BibTex RIS Cite

Thermal decomposition behaviors, kinetics and thermodynamics of colemanite

Year 2024, Volume: 9 Issue: 3, 97 - 103, 30.09.2024
https://doi.org/10.30728/boron.1452576

Abstract

Colemanite, the most significant commercially available borate mineral with calcium content, exhibits versatile applications and is widely used in glass, textiles, ceramics, detergents, and other industries. Investigating the dehydration characteristics, kinetics, and thermodynamics of this borate mineral is important to improve its performance because of its usage in different industries. This study involves a combination of characterization and thermal dehydration kinetics of colemanite results. First, colemanite is analyzed structurally and morphologically through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Then, different heating rates were applied to investigate the thermal behavior of the colemanite using thermogravimetric analysis (TGA). Based on the obtained thermograms, the dehydration zone was selected for kinetic and thermodynamic analysis using conversional kinetic methods. The average activation energies were calculated as 64.1±4.3, 59.6±3.9, 59.9±3.7, and 60.0±4.1 kJ/mol for Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink, and Tang models, respectively. Through the thermodynamic analysis, it was found that the dehydration of colemanite was a non-spontaneous and endothermic process.

References

  • [1] Rusen, A. (2018). Investigation of structural behaviour of colemanite depending on temperature. Revista Română de Materiale/Romanian Journal of Materials, 48(2), 245-251. Retrieved from https://solacolu.chim.upb.ro/p245-250.pdf
  • [2] Celik, A. G., & Cakal, G. O. (2016). Characterization of espey colemanite and variation of its physical properties with temperature. Physicochemical Problems of Mineral Processing, 52(1), 66-76. https://doi.org/10.5277/ppmp160106
  • [3] Terzi, E. (2018). Thermal degradation of particleboards incorporated with colemanite and common boron-based fire retardants. BioResources, 13(2), 4239-4251. https://doi.org/10.15376/biores.13.2.4239-4251
  • [4] Kizilca, M., & Copur, M. (2017). Thermal dehydration of colemanite: kinetics and mechanism determined using the master plots method. Canadian Metallurgical Quarterly, 56(3), 259-271. https://doi.org/10.1080/00084433.2017.1349023
  • [5] Yıldız, Ö. (2004). The effect of heat treatment on colemanite processing: A ceramics application. Powder Technology, 142, 7-12. https://doi.org/10.1016/j.powtec.2004.03.006
  • [6] Lotti, P., Gatta, D., Demitri, N., Guastella, G., Rizzato, S., Ortenzi, M. A., … & Fernandez‑Diaz M. T. (2018). Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron. Physics and Chemistry of Minerals, 45, 405-422. https://doi.org/10.1007/s00269-017-0929-7
  • [7] Lotti, P., Comboni, D., Gigli, L., Carlucci, L., Mossini, E., Macerata, E., … & Gatta, G. D. (2019) Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials, 203, 679-686. https://doi.org/10.1016/j.conbuildmat.2019.01.123
  • [8] Frost, R. L., Scholz, R., Ruan, X., Malena, R., & Lima, F. (2016). Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3H2O). Journal of Thermal Analysis and Calorimetry, 124, 131-135. https://doi.org/10.1007/s10973-015-5128-5
  • [9] Uysal, T., Mutlu, H. S., & Erdemoğlu, M. (2016). Effects of mechanical activation of colemanite (Ca2B6O11·5H2O) on its thermal transformations. International Journal of Mineral Processing, 151, 51-58. https://doi.org/10.1016/j.minpro.2016.04.006
  • [10] Ozawa, T. (2000). Thermal analysis-review and prospect. Thermochimica Acta, 355, 35-42. https://doi.org/10.1016/S0040-6031(00)00435-4
  • [11] Waclawska, I., Stoch, L., Paulik, J., & Paulik, F. (1988). Thermal decomposition of colemanite. Thermochimica Acta, 126, 307-318. https://doi.org/10.1016/0040-6031(88)87276-9
  • [12] Waclawska, I. (1997). Thermal behaviour of mechanically amorphized colemanite. Journal of Thermal Analysis, 48, 145-154. https://doi.org/10.1007/BF01978975
  • [13] Kutuk, S. (2024). Morphology, crystal structure and thermal properties of nano-sized amorphous colemanite synthesis. Arabian Journal for Science and Engineering, 49, 11699-11716. https://doi.org/10.1007/s13369-024-08801-4
  • [14] Kalita, J. M., Kaya-Keleş, Ş., Çakal, G. Ö., Meriç N., & Polymeris, G. S. (2022) Thermoluminescence and optically stimulated luminescence of colemanite-rich borate mineral. Journal of Luminescence, 242, 118580. https://doi.org/10.1016/j.jlumin.2021.118580
  • [15] Ozawa, T., (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881-1886. https://doi.org/10.1246/bcsj.38.1881
  • [16] Flynn, J. H., & Wall, L. A. (1966). General treatment of the thermogravimetry of polymers. Journal of Research of the National Institute of Standards and Technology, 70, 487-523. https://doi.org/10.6028%2Fjres.070A.043
  • [17] Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702-1706. https://doi.org/10.1021/ac60131a045
  • [18] Koga N., Vyazovkin S., Burnham A. K., Favergeon L., Muravyev N. V., Pérez-Maqueda L. A., … & Sánchez-Jiménez P. E. (2023). ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochimica Acta, 719, 179384. https://doi.org/10.1016/j.tca.2022.179384
  • [19] Starink, M. (1996). A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta, 288, 97-104. https://doi.org/10.1016/S0040-6031(96)03053-5
  • [20] Tang, W., Liu, Y., Zhang, H., & Wan, C., (2003). New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43. https://doi.org/10.1016/S0040-6031(03)00310-1
  • [21] Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Institute of Standards and Technology, 7, 217-221. http://dx.doi.org/10.6028/jres.057.026
  • [22] Eyring, H. (1935). The activated complex in chemical reactions. The Journal of Chemical Physics, 3, 107-115. https://doi.org/10.1063/1.1749604
  • [23] Evans, M. G., & Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities especially in solution. Transactions of the Faraday Society, 31, 875-894. https://doi.org/10.1039/TF9353100875
  • [24] Jun, L., Shuping, X., & Shiyang, G. (1995). FT-IR and Raman spectroscopic study of hydrated borates. Spectrochimica Acta, 51A, 519-532. https://doi.org/10.1016/0584-8539(94)00183-C
  • [25] Budak, A., & Gönen, M. (2014). Extraction of boric acid from colemanite mineral by supercritical carbon dioxide. The Journal of Supercritical Fluids, 92, 183-189. https://doi.org/10.1016/j.supflu.2014.05.016
  • [26] Morova, N., & Terzi S. (2015). Evaluation of colemanite waste as aggregate hot mix asphalt concrete. Suleyman Demirel University Journal of Natural and Applied Science, 19(2), 8-15. Retrieved from https://dergipark.org.tr/en/download/article-file/193981

Thermal decomposition behaviors, kinetics and thermodynamics of colemanite

Year 2024, Volume: 9 Issue: 3, 97 - 103, 30.09.2024
https://doi.org/10.30728/boron.1452576

Abstract

Colemanite, the most significant commercially available borate mineral with calcium content, exhibits versatile applications and is widely used in glass, textiles, ceramics, detergents, and other industries. Investigating the dehydration characteristics, kinetics, and thermodynamics of this borate mineral is important to improve its performance because of its usage in different industries. This study involves a combination of characterization and thermal dehydration kinetics of colemanite results. First, colemanite is analyzed structurally and morphologically through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Then, different heating rates were applied to investigate the thermal behavior of the colemanite using thermogravimetric analysis (TGA). Based on the obtained thermograms, the dehydration zone was selected for kinetic and thermodynamic analysis using conversional kinetic methods. The average activation energies were calculated as 64.1±4.3, 59.6±3.9, 59.9±3.7, and 60.0±4.1 kJ/mol for Flynn-Wall-Ozawa, Kissinger-Akahira-Sunose, Starink, and Tang models, respectively. Through the thermodynamic analysis, it was found that the dehydration of colemanite was a non-spontaneous and endothermic process.

References

  • [1] Rusen, A. (2018). Investigation of structural behaviour of colemanite depending on temperature. Revista Română de Materiale/Romanian Journal of Materials, 48(2), 245-251. Retrieved from https://solacolu.chim.upb.ro/p245-250.pdf
  • [2] Celik, A. G., & Cakal, G. O. (2016). Characterization of espey colemanite and variation of its physical properties with temperature. Physicochemical Problems of Mineral Processing, 52(1), 66-76. https://doi.org/10.5277/ppmp160106
  • [3] Terzi, E. (2018). Thermal degradation of particleboards incorporated with colemanite and common boron-based fire retardants. BioResources, 13(2), 4239-4251. https://doi.org/10.15376/biores.13.2.4239-4251
  • [4] Kizilca, M., & Copur, M. (2017). Thermal dehydration of colemanite: kinetics and mechanism determined using the master plots method. Canadian Metallurgical Quarterly, 56(3), 259-271. https://doi.org/10.1080/00084433.2017.1349023
  • [5] Yıldız, Ö. (2004). The effect of heat treatment on colemanite processing: A ceramics application. Powder Technology, 142, 7-12. https://doi.org/10.1016/j.powtec.2004.03.006
  • [6] Lotti, P., Gatta, D., Demitri, N., Guastella, G., Rizzato, S., Ortenzi, M. A., … & Fernandez‑Diaz M. T. (2018). Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron. Physics and Chemistry of Minerals, 45, 405-422. https://doi.org/10.1007/s00269-017-0929-7
  • [7] Lotti, P., Comboni, D., Gigli, L., Carlucci, L., Mossini, E., Macerata, E., … & Gatta, G. D. (2019) Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials, 203, 679-686. https://doi.org/10.1016/j.conbuildmat.2019.01.123
  • [8] Frost, R. L., Scholz, R., Ruan, X., Malena, R., & Lima, F. (2016). Thermal analysis and infrared emission spectroscopy of the borate mineral colemanite (CaB3O4(OH)3H2O). Journal of Thermal Analysis and Calorimetry, 124, 131-135. https://doi.org/10.1007/s10973-015-5128-5
  • [9] Uysal, T., Mutlu, H. S., & Erdemoğlu, M. (2016). Effects of mechanical activation of colemanite (Ca2B6O11·5H2O) on its thermal transformations. International Journal of Mineral Processing, 151, 51-58. https://doi.org/10.1016/j.minpro.2016.04.006
  • [10] Ozawa, T. (2000). Thermal analysis-review and prospect. Thermochimica Acta, 355, 35-42. https://doi.org/10.1016/S0040-6031(00)00435-4
  • [11] Waclawska, I., Stoch, L., Paulik, J., & Paulik, F. (1988). Thermal decomposition of colemanite. Thermochimica Acta, 126, 307-318. https://doi.org/10.1016/0040-6031(88)87276-9
  • [12] Waclawska, I. (1997). Thermal behaviour of mechanically amorphized colemanite. Journal of Thermal Analysis, 48, 145-154. https://doi.org/10.1007/BF01978975
  • [13] Kutuk, S. (2024). Morphology, crystal structure and thermal properties of nano-sized amorphous colemanite synthesis. Arabian Journal for Science and Engineering, 49, 11699-11716. https://doi.org/10.1007/s13369-024-08801-4
  • [14] Kalita, J. M., Kaya-Keleş, Ş., Çakal, G. Ö., Meriç N., & Polymeris, G. S. (2022) Thermoluminescence and optically stimulated luminescence of colemanite-rich borate mineral. Journal of Luminescence, 242, 118580. https://doi.org/10.1016/j.jlumin.2021.118580
  • [15] Ozawa, T., (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881-1886. https://doi.org/10.1246/bcsj.38.1881
  • [16] Flynn, J. H., & Wall, L. A. (1966). General treatment of the thermogravimetry of polymers. Journal of Research of the National Institute of Standards and Technology, 70, 487-523. https://doi.org/10.6028%2Fjres.070A.043
  • [17] Kissinger, H. E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry, 29, 1702-1706. https://doi.org/10.1021/ac60131a045
  • [18] Koga N., Vyazovkin S., Burnham A. K., Favergeon L., Muravyev N. V., Pérez-Maqueda L. A., … & Sánchez-Jiménez P. E. (2023). ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochimica Acta, 719, 179384. https://doi.org/10.1016/j.tca.2022.179384
  • [19] Starink, M. (1996). A new method for the derivation of activation energies from experiments performed at constant heating rate. Thermochimica Acta, 288, 97-104. https://doi.org/10.1016/S0040-6031(96)03053-5
  • [20] Tang, W., Liu, Y., Zhang, H., & Wan, C., (2003). New approximate formula for Arrhenius temperature integral. Thermochimica Acta, 408, 39-43. https://doi.org/10.1016/S0040-6031(03)00310-1
  • [21] Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Institute of Standards and Technology, 7, 217-221. http://dx.doi.org/10.6028/jres.057.026
  • [22] Eyring, H. (1935). The activated complex in chemical reactions. The Journal of Chemical Physics, 3, 107-115. https://doi.org/10.1063/1.1749604
  • [23] Evans, M. G., & Polanyi, M. (1935). Some applications of the transition state method to the calculation of reaction velocities especially in solution. Transactions of the Faraday Society, 31, 875-894. https://doi.org/10.1039/TF9353100875
  • [24] Jun, L., Shuping, X., & Shiyang, G. (1995). FT-IR and Raman spectroscopic study of hydrated borates. Spectrochimica Acta, 51A, 519-532. https://doi.org/10.1016/0584-8539(94)00183-C
  • [25] Budak, A., & Gönen, M. (2014). Extraction of boric acid from colemanite mineral by supercritical carbon dioxide. The Journal of Supercritical Fluids, 92, 183-189. https://doi.org/10.1016/j.supflu.2014.05.016
  • [26] Morova, N., & Terzi S. (2015). Evaluation of colemanite waste as aggregate hot mix asphalt concrete. Suleyman Demirel University Journal of Natural and Applied Science, 19(2), 8-15. Retrieved from https://dergipark.org.tr/en/download/article-file/193981
There are 26 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Research Article
Authors

Sevgi Polat 0000-0002-0934-2125

Publication Date September 30, 2024
Submission Date March 14, 2024
Acceptance Date July 14, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Polat, S. (2024). Thermal decomposition behaviors, kinetics and thermodynamics of colemanite. Journal of Boron, 9(3), 97-103. https://doi.org/10.30728/boron.1452576