Research Article
BibTex RIS Cite

Design and operation of an electrochemical separation process for boron removal from aqueous solutions under continuous flow conditions

Year 2024, Volume: 9 Issue: 4, 135 - 142, 31.12.2024
https://doi.org/10.30728/boron.1524438

Abstract

Boron mineral, which has strategic importance for Türkiye, is widely used in many fields from space technology to the defense industry, from the glass industry to the textile industry. Boron, which is generally found in nature as boric acid and borate ion, can cause pollution by mixing with surface and groundwater and cause environmental pollution. Considering the dwindling sources of water and the possibility of the world population experiencing water scarcity in the near future, effective and innovative technologies need to be developed to separate and to remove pollutants such as boron ions from other ions in the water stream as well as the conventional water treatment process. In this study, the removal and recovery of borate ions in aqueous solutions using the electrochemical separation technique under continuous flow conditions were investigated. In this context, firstly, electrodes coated with activated carbon were prepared and their electrochemical and morphological characterization was performed. Then, a flow cell was designed to perform boron ion removal under continuous flow conditions and its integration into the electrochemical separation system was provided. The system was operated for at least 5 cycles under +1.0/-1.0 V adsorption and desorption conditions and the boron ion removal efficiency was determined as 90.3%. In addition, different voltage values were studied in this study and it was determined that the amount of adsorbed boron ion increased from 11.5 mg/g to 25.7 mg/g by increasing the applied potential value from 0.75 to 1.5 V.

Supporting Institution

TUBİTAK

Project Number

123M952

Thanks

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) tarafından 123M952 numaralı proje ile desteklenmiştir. Projeye verdiği destekten ötürü TÜBİTAK’a teşekkürlerimi sunarım.

References

  • Çelen, Y. Y., Evcin, A., Akkurt, I., Bezir, N. Ç., Günoğlu, K., & Kutu, N. (2019). Evaluation of boron waste and barite against radiation. International Journal of Environmental Science and Technology, 16, 5267-5274. https://doi.org/10.1007/s13762-019-02333-3
  • Eti Maden. (2024, October). Boron as the rising value of Turkey. https://www.etimaden.gov.tr/en/boron-in-turkey
  • Yu, N., Jiang, H., Luo, Z., Geng, W., & Zhu, J. (2023). Boron adsorption using NMDG-modified polypropylene melt-blown fibers induced by ultraviolet grafting. Polymers, 15(10), 2252. https://doi.org/10.3390/polym15102252
  • Altınbaş, B. F., & Yüksel, A. (2024). Synthesis of a novel cellulose-based adsorbent from olive tree pruning waste for removal of boron from aqueous solution. Biomass Conversion and Biorefinery, 14, 20117-20127. https://doi.org/10.1007/s13399-023-04147-3
  • Kim, K. C., Kim, N., Jiang, T., Kim, J. C., & Kang, C. I. (2023). Boron recovery from saltlake brine, seawater, and wastewater-A review. Hydrometallurgy, 218, 106062. https://doi.org/10.1016/j.hydromet.2023.106062
  • Vasudevan, S. & Lakshmi, J. (2012). Electrochemical removal of boron from water: Adsorption and thermodynamic studies. The Canadian Journal of Chemical Engineering, 90(4), 1017-1026. https://doi.org/10.1002/cjce.20585
  • Avraham, E., Noked, M., Soffer, A., & Aurbach, D. (2011). The feasibility of boron removal from water by capacitive deionization. Electrochimica Acta, 56(18), 6312-6317. https://doi.org/10.1016/j.electacta.2011.05.037
  • Goren, A. Y., Recepoglu, Y. K., Karagunduz, A., Khataee, A., & Yoon, Y. (2022). A review of boron removal from aqueous solution using carbon-based materials: An assessment of health risks. Chemosphere, 293, 133587. https://doi.org/10.1016/j.chemosphere.2022.133587
  • Bryjak, M., Wolska, J., & Kabay, N. (2008). Removal of boron from seawater by adsorption-membrane hybrid process: Implementation and challenges. Desalination, 223(1-3), 57-62. https://doi.org/10.1016/j.desal.2007.01.202
  • Bilen, M., Ateş, Ç., & Bayraktar, B. (2018). Determination of optimal conditions in boron factory wastewater chemical treatment process via response surface methodology. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 267-278. https://doi.org/10.17341/gazimmfd.406798
  • Tanaka, Y. (2007). Electro-deionization. Membrane Science and Technology, 12, 437-460. https://doi.org/10.1016/S0927-5193(07)12018-0
  • Meng, X., Luo, R., Guo, G., Li, Y., Fang, H., Bai, P., … & Guo, X. (2022). Boron adsorption and isotopic separation from water by isostructural metal-organic frameworks MIL-100(M). Desalination, 541, 116038. https://doi.org/10.1016/j.desal.2022.116038
  • Guo, Z., Wang, R., Ren, W., Cheng, M., Wang, Z., Li, W., & Zhang, M. (2022). Synthesis of distorted octahedral C-doped nickel nanocrystals encapsulated in CNTs: A highly active and stable catalyst for water pollutions treatment. Chemical Engineering Journal, 446, 136805. https://doi.org/10.1016/j.cej.2022.136805
  • Zhu, W., Li, Y., Dai, L., Li, J., Li, X., Li, W., … & Chen, T. (2018). Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal, 339, 214-222. https://doi.org/10.1016/j.cej.2018.01.134
  • Lin, J. Y., Mahasti, N. N., & Huang, Y. H. (2021). Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. Journal of Hazardous Materials, 407, 124401. https://doi.org/10.1016/j.jhazmat.2020.124401
  • Xia, N. N., Zhang, H. Y., Hu, Z. H., Kong, F., & He, F. (2021). A functionalized bio-based material with abundant mesopores and catechol groups for efficient removal of boron. Chemosphere, 263, 12820. https://doi.org/10.1016/j.chemosphere.2020.128202
  • Qiu, X., Sasaki, K., Hirajima, T., Ideta, K., & Miyawaki, J. (2014). One-step synthesis of layered double hydroxideintercalated gluconate for removal of borate. Separation and Purification Technology, 123, 114-123. https://doi.org/10.1016/j.seppur.2013.12.031
  • Wolska, J., & Bryjak, M. (2013). Methods for boron removal from aqueous solutions-A review. Desalination, 310, 18-24. https://doi.org/10.1016/j.desal.2012.08.003
  • Lin, J. Y., Mahasti, N. N. N., & Huan, Y. H. (2021). Fluidized-bed crystallization of barium perborate for continuous boron removal from concentrated solution: Supersaturation as a master variable. Separation and Purification Technology, 278, 119588. https://doi.org/10.1016/j.seppur.2021.119588
  • Biçak, N. Bulutçu, N. Şenkal, B. F. & Gazi, M. (2001). Modification of crosslinked glycidyl methacrylate-based polymers for boron-specific column extraction. Reactive & Functional Polymers, 47(3), 175-184. https://doi.org/10.1016/S1381-5148(01)00025-6
  • Wang, S., Bing, S., Zhang, H., Zhou, Y., Zhang, L., & Gao, C. (2022). Surface engineering design of polyamide membranes for enhanced boron removal in seawater desalination. Journal of Membrane Science, 651, 120425. https://doi.org/10.1016/j.memsci.2022.120425
  • Ghiasi, S., Mohammadi, T., & Tofighy, M. A. (2022). Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal. Journal of Membrane Science, 655, 120576. https://doi.org/10.1016/j.memsci.2022.120576
  • Tang, Y. P., Luo, L., Thong, Z., & Chung, T. S. (2017). Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 541, 434-446. https://doi.org/10.1016/j.memsci.2017.07.015
  • Guesmi, F., Louati, I., Hannachi, C., & Hamrouni, B. (2020). Optimization of boron removal from water by electrodialysis using response surface methodology. Water Science and Technology, 81(2), 293-300. https://doi.org/10.2166/wst.2020.105
  • Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., & Kutty, S. R. M. (2014). Boron removal by electrocoagulation and recovery. Water Research, 51, 113-123. https://doi.org/10.1016/j.watres.2013.12.024
  • Ezechi, E. H., Isa, M. H., Kutty, S. R. M., & Yaqub, A. (2014). Boron removal from produced water using electrocoagulation. Process Safety and Environmental Protection, 92(6), 509-514. https://doi.org/10.1016/j.psep.2014.08.003
  • Haddadi, E., Gujar, J. G., & Sonawane, S. S. (2023). Kinetics and isotherm studies for the adsorption of boron from water using titanium dioxide. The Canadian Journal of Chemical Engineering, 101(3), 1335-1344. https://doi.org/10.1002/cjce.24429
  • Su, X., Kushima, A., Halliday, C., Zhou, J., Li, J., & Hatton, T. A. (2018). Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nature Communications, 9, 4701. https://doi.org/10.1038/s41467-018-07159-0
  • Dash, A., & Chakravarty, R. (2014). Electrochemical separation: Promises, opportunities, and challenges to develop next-generation radionuclide generators to meet clinical demands. Industrial & Engineering Chemistry Research, 53, 3766-3777. https://doi.org/10.1021/ie404369y
  • Su, X. (2020). Electrochemical interfaces for chemical and biomolecular separations. Current Opinion in Colloid and Interface Science, 46, 77-93. https://doi.org/10.1016/j.cocis.2020.04.005
  • Su, X., & Hatton, T. A. (2017). Redox-electrodes for selective electrochemical separations. Advances in Colloid and Interface Science, 244, 6-20. https://doi.org/10.1016/j.cis.2016.09.001
  • Porada, S., Zhao, R., Van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442. https://doi.org/10.1016/j.pmatsci.2013.03.005
  • Anderson, M. A., Cudero, A. L. & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856. https://doi.org/10.1016/j.electacta.2010.02.012
  • Subramani, A., Badruzzaman, M., Oppenheimer, J., & Jacangelo, J. G. (2011). Energy minimization strategies and renewable energy utilization for desalination: a review. Water Research, 45(5), 1907-1920. https://doi.org/10.1016/j.watres.2010.12.032
  • Shabeebaa, P., Thayyila, M. S., Pillaic, M. P., Soufeenaa, P. P., & Niveditha, C. V. (2018). Electrochemical investigation of activated carbon electrode supercapacitors. Russian Journal of Electrochemistry, 54, 302-308. https://doi.org/10.1134/S1023193517120096 [36] Gurten Inal, I. I., & Aktas, Z. (2020). Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Science, 514, 145895. https://doi.org/10.1016/j.apsusc.2020.145895
  • Kluczka, J., Pudło, W., & Krukiewicz, K. (2019). Boron adsorption removal by commercial and modified activated carbons. Chemical Engineering Research and Design, 147, 30-42. https://doi.org/10.1016/j.cherd.2019.04.021
  • Halim, A. A., Roslan, N. A., Yaacub, N. S., & Latif, M. T. (2013). Boron removal from aqueous solution using curcumin-impregnated activated carbon. Sains Malaysiana, 42(9), 1293-1300. Retrieved from https://www.ukm.my/jsm/pdf_files/SM-PDF-42-9-2013/13%20Azhar%20Abdul%20Halim.pdf

Sürekli akış koşullarında sulu çözeltilerden bor giderimi için elektrokimyasal ayırma prosesi tasarlanması ve işletilmesi

Year 2024, Volume: 9 Issue: 4, 135 - 142, 31.12.2024
https://doi.org/10.30728/boron.1524438

Abstract

Ülkemiz açısından stratejik öneme sahip olan bor minerali, uzay teknolojisinden savunma endüstrisine, cam sektöründen tekstil endüstrisine pek çok alanda yaygın olarak kullanılmaktadır. Doğada genel olarak borik asit ve borat iyonu olarak bulunan bor, yüzey ve yeraltı sularına karışarak kirlenmeye yol açabilmekte ve çevre kirliliğine sebep olmaktadır. Su kaynaklarının kısıtlı olması ve yakın gelecekte dünya nüfusunun su sıkıntısı yaşama olasılığının yüksek olduğu göz önüne alındığında, su arıtımında geleneksel yöntemlerin yanı sıra bor ve borat iyonu gibi kirleticilerin sularda bulunan diğer iyonlar arasından uzaklaştırılmasını sağlayan etkili ve yenilikçi teknolojilerin geliştirilmesi gerekmektedir. Bu çalışmada, sulu çözeltilerde bulunan borat iyonlarının elektrokimyasal ayırma yöntemi kullanılarak sürekli akış koşullarında ayrılması ve geri kazanımı incelenmiştir. Bu kapsamda, öncelikle aktif karbon ile kaplı elektrotlar hazırlanmış, elektrokimyasal ve morfolojik açıdan karakterizasyonu yapılmıştır. Daha sonra sürekli akış koşullarında bor iyon gideriminin yapılabilmesi için akış hücresi tasarlanmış ve elektrokimyasal ayırma prosesine entegrasyonu sağlanmıştır. +1,0/-1,0 V adsorpsiyon ve desorpsiyon koşullarında sistem en az 5 döngü olacak şekilde çalıştırılmış ve bor iyonu giderim verimi %90,3 olarak belirlenmiştir. Ayrıca, bu çalışmada farklı voltaj değerlerinde çalışılmış ve uygulanan potansiyel değerinin 0,75’ten 1,5 V’a artırılmasıyla tutunan bor iyonu miktarını 11,5 mg/g’dan 25,7 mg/g’a çıktığı tespit edilmiştir.

Project Number

123M952

References

  • Çelen, Y. Y., Evcin, A., Akkurt, I., Bezir, N. Ç., Günoğlu, K., & Kutu, N. (2019). Evaluation of boron waste and barite against radiation. International Journal of Environmental Science and Technology, 16, 5267-5274. https://doi.org/10.1007/s13762-019-02333-3
  • Eti Maden. (2024, October). Boron as the rising value of Turkey. https://www.etimaden.gov.tr/en/boron-in-turkey
  • Yu, N., Jiang, H., Luo, Z., Geng, W., & Zhu, J. (2023). Boron adsorption using NMDG-modified polypropylene melt-blown fibers induced by ultraviolet grafting. Polymers, 15(10), 2252. https://doi.org/10.3390/polym15102252
  • Altınbaş, B. F., & Yüksel, A. (2024). Synthesis of a novel cellulose-based adsorbent from olive tree pruning waste for removal of boron from aqueous solution. Biomass Conversion and Biorefinery, 14, 20117-20127. https://doi.org/10.1007/s13399-023-04147-3
  • Kim, K. C., Kim, N., Jiang, T., Kim, J. C., & Kang, C. I. (2023). Boron recovery from saltlake brine, seawater, and wastewater-A review. Hydrometallurgy, 218, 106062. https://doi.org/10.1016/j.hydromet.2023.106062
  • Vasudevan, S. & Lakshmi, J. (2012). Electrochemical removal of boron from water: Adsorption and thermodynamic studies. The Canadian Journal of Chemical Engineering, 90(4), 1017-1026. https://doi.org/10.1002/cjce.20585
  • Avraham, E., Noked, M., Soffer, A., & Aurbach, D. (2011). The feasibility of boron removal from water by capacitive deionization. Electrochimica Acta, 56(18), 6312-6317. https://doi.org/10.1016/j.electacta.2011.05.037
  • Goren, A. Y., Recepoglu, Y. K., Karagunduz, A., Khataee, A., & Yoon, Y. (2022). A review of boron removal from aqueous solution using carbon-based materials: An assessment of health risks. Chemosphere, 293, 133587. https://doi.org/10.1016/j.chemosphere.2022.133587
  • Bryjak, M., Wolska, J., & Kabay, N. (2008). Removal of boron from seawater by adsorption-membrane hybrid process: Implementation and challenges. Desalination, 223(1-3), 57-62. https://doi.org/10.1016/j.desal.2007.01.202
  • Bilen, M., Ateş, Ç., & Bayraktar, B. (2018). Determination of optimal conditions in boron factory wastewater chemical treatment process via response surface methodology. Journal of the Faculty of Engineering and Architecture of Gazi University, 33(1), 267-278. https://doi.org/10.17341/gazimmfd.406798
  • Tanaka, Y. (2007). Electro-deionization. Membrane Science and Technology, 12, 437-460. https://doi.org/10.1016/S0927-5193(07)12018-0
  • Meng, X., Luo, R., Guo, G., Li, Y., Fang, H., Bai, P., … & Guo, X. (2022). Boron adsorption and isotopic separation from water by isostructural metal-organic frameworks MIL-100(M). Desalination, 541, 116038. https://doi.org/10.1016/j.desal.2022.116038
  • Guo, Z., Wang, R., Ren, W., Cheng, M., Wang, Z., Li, W., & Zhang, M. (2022). Synthesis of distorted octahedral C-doped nickel nanocrystals encapsulated in CNTs: A highly active and stable catalyst for water pollutions treatment. Chemical Engineering Journal, 446, 136805. https://doi.org/10.1016/j.cej.2022.136805
  • Zhu, W., Li, Y., Dai, L., Li, J., Li, X., Li, W., … & Chen, T. (2018). Bioassembly of fungal hyphae/carbon nanotubes composite as a versatile adsorbent for water pollution control. Chemical Engineering Journal, 339, 214-222. https://doi.org/10.1016/j.cej.2018.01.134
  • Lin, J. Y., Mahasti, N. N., & Huang, Y. H. (2021). Recent advances in adsorption and coagulation for boron removal from wastewater: A comprehensive review. Journal of Hazardous Materials, 407, 124401. https://doi.org/10.1016/j.jhazmat.2020.124401
  • Xia, N. N., Zhang, H. Y., Hu, Z. H., Kong, F., & He, F. (2021). A functionalized bio-based material with abundant mesopores and catechol groups for efficient removal of boron. Chemosphere, 263, 12820. https://doi.org/10.1016/j.chemosphere.2020.128202
  • Qiu, X., Sasaki, K., Hirajima, T., Ideta, K., & Miyawaki, J. (2014). One-step synthesis of layered double hydroxideintercalated gluconate for removal of borate. Separation and Purification Technology, 123, 114-123. https://doi.org/10.1016/j.seppur.2013.12.031
  • Wolska, J., & Bryjak, M. (2013). Methods for boron removal from aqueous solutions-A review. Desalination, 310, 18-24. https://doi.org/10.1016/j.desal.2012.08.003
  • Lin, J. Y., Mahasti, N. N. N., & Huan, Y. H. (2021). Fluidized-bed crystallization of barium perborate for continuous boron removal from concentrated solution: Supersaturation as a master variable. Separation and Purification Technology, 278, 119588. https://doi.org/10.1016/j.seppur.2021.119588
  • Biçak, N. Bulutçu, N. Şenkal, B. F. & Gazi, M. (2001). Modification of crosslinked glycidyl methacrylate-based polymers for boron-specific column extraction. Reactive & Functional Polymers, 47(3), 175-184. https://doi.org/10.1016/S1381-5148(01)00025-6
  • Wang, S., Bing, S., Zhang, H., Zhou, Y., Zhang, L., & Gao, C. (2022). Surface engineering design of polyamide membranes for enhanced boron removal in seawater desalination. Journal of Membrane Science, 651, 120425. https://doi.org/10.1016/j.memsci.2022.120425
  • Ghiasi, S., Mohammadi, T., & Tofighy, M. A. (2022). Hybrid nanofiltration thin film hollow fiber membranes with adsorptive supports containing bentonite and LDH nanoclays for boron removal. Journal of Membrane Science, 655, 120576. https://doi.org/10.1016/j.memsci.2022.120576
  • Tang, Y. P., Luo, L., Thong, Z., & Chung, T. S. (2017). Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 541, 434-446. https://doi.org/10.1016/j.memsci.2017.07.015
  • Guesmi, F., Louati, I., Hannachi, C., & Hamrouni, B. (2020). Optimization of boron removal from water by electrodialysis using response surface methodology. Water Science and Technology, 81(2), 293-300. https://doi.org/10.2166/wst.2020.105
  • Isa, M. H., Ezechi, E. H., Ahmed, Z., Magram, S. F., & Kutty, S. R. M. (2014). Boron removal by electrocoagulation and recovery. Water Research, 51, 113-123. https://doi.org/10.1016/j.watres.2013.12.024
  • Ezechi, E. H., Isa, M. H., Kutty, S. R. M., & Yaqub, A. (2014). Boron removal from produced water using electrocoagulation. Process Safety and Environmental Protection, 92(6), 509-514. https://doi.org/10.1016/j.psep.2014.08.003
  • Haddadi, E., Gujar, J. G., & Sonawane, S. S. (2023). Kinetics and isotherm studies for the adsorption of boron from water using titanium dioxide. The Canadian Journal of Chemical Engineering, 101(3), 1335-1344. https://doi.org/10.1002/cjce.24429
  • Su, X., Kushima, A., Halliday, C., Zhou, J., Li, J., & Hatton, T. A. (2018). Electrochemically-mediated selective capture of heavy metal chromium and arsenic oxyanions from water. Nature Communications, 9, 4701. https://doi.org/10.1038/s41467-018-07159-0
  • Dash, A., & Chakravarty, R. (2014). Electrochemical separation: Promises, opportunities, and challenges to develop next-generation radionuclide generators to meet clinical demands. Industrial & Engineering Chemistry Research, 53, 3766-3777. https://doi.org/10.1021/ie404369y
  • Su, X. (2020). Electrochemical interfaces for chemical and biomolecular separations. Current Opinion in Colloid and Interface Science, 46, 77-93. https://doi.org/10.1016/j.cocis.2020.04.005
  • Su, X., & Hatton, T. A. (2017). Redox-electrodes for selective electrochemical separations. Advances in Colloid and Interface Science, 244, 6-20. https://doi.org/10.1016/j.cis.2016.09.001
  • Porada, S., Zhao, R., Van der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442. https://doi.org/10.1016/j.pmatsci.2013.03.005
  • Anderson, M. A., Cudero, A. L. & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856. https://doi.org/10.1016/j.electacta.2010.02.012
  • Subramani, A., Badruzzaman, M., Oppenheimer, J., & Jacangelo, J. G. (2011). Energy minimization strategies and renewable energy utilization for desalination: a review. Water Research, 45(5), 1907-1920. https://doi.org/10.1016/j.watres.2010.12.032
  • Shabeebaa, P., Thayyila, M. S., Pillaic, M. P., Soufeenaa, P. P., & Niveditha, C. V. (2018). Electrochemical investigation of activated carbon electrode supercapacitors. Russian Journal of Electrochemistry, 54, 302-308. https://doi.org/10.1134/S1023193517120096 [36] Gurten Inal, I. I., & Aktas, Z. (2020). Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Science, 514, 145895. https://doi.org/10.1016/j.apsusc.2020.145895
  • Kluczka, J., Pudło, W., & Krukiewicz, K. (2019). Boron adsorption removal by commercial and modified activated carbons. Chemical Engineering Research and Design, 147, 30-42. https://doi.org/10.1016/j.cherd.2019.04.021
  • Halim, A. A., Roslan, N. A., Yaacub, N. S., & Latif, M. T. (2013). Boron removal from aqueous solution using curcumin-impregnated activated carbon. Sains Malaysiana, 42(9), 1293-1300. Retrieved from https://www.ukm.my/jsm/pdf_files/SM-PDF-42-9-2013/13%20Azhar%20Abdul%20Halim.pdf
There are 37 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Article
Authors

Sevgi Polat 0000-0002-0934-2125

Project Number 123M952
Publication Date December 31, 2024
Submission Date July 29, 2024
Acceptance Date September 30, 2024
Published in Issue Year 2024 Volume: 9 Issue: 4

Cite

APA Polat, S. (2024). Sürekli akış koşullarında sulu çözeltilerden bor giderimi için elektrokimyasal ayırma prosesi tasarlanması ve işletilmesi. Journal of Boron, 9(4), 135-142. https://doi.org/10.30728/boron.1524438