Research Article
BibTex RIS Cite

A Novel Boron Nitride Quantum Dots-based Fluorescent Sensing Platform for Selective Detection of Fe3+

Year 2025, Volume: 10 Issue: 1, 10 - 18, 01.04.2025

Abstract

In this study, boron nitride quantum dots (BNQDs) and polymethyl methacrylate (PMMA) nanocomposite films were produced to be used as a metal sensing material. BNQDs were synthesized from boric acid and urea using the hydrothermal method. The selectivity of PMMA/BNQDs nanocomposite films as fluorescent sensing platforms was tested for different metal ions (Fe3+, Na+ Zn2+, Mg2+, and Ca2+). The morphological, structural, and chemical properties of the produced films were determined by scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR) spectroscopy, and atomic force microscopy (AFM) analyses. The optical properties of the films were determined by ultraviolet-visible spectrophotometer (UV-Vis). Fluorescence and sensing properties were determined using photoluminescence (PL) spectroscopy analysis. SEM and transmission electron microscopy (TEM) analyses confirmed the strong bonding and homogeneous distribution between the BNQDs and the PMMA. FT-IR and TEM analyses proved the formation of BNQDs. PMMA-BNQDs nanocomposite film showed selective fluorescence quenching properties for Fe3+ ions. The fluorescence intensity of the nanocomposite films showed a good linear relationship between 0-60 μM for Fe3+. In addition, it showed good sensitivity to detect Fe3+ ions in drinking water. Thus, this fluorescent sensing platform can be selective and sensitive in the 0-60 μM concentration range with a limit of detection (LOD) of 4.06 μM.

Ethical Statement

I hereby declare that this study is an original study; that I have acted in accordance with scientific ethical principles and rules in all stages of the study, including preparation, data collection, analysis and presentation of information; that I have cited all data and information not obtained within the scope of this study and included these sources in the bibliography; that I have not made any changes to the data used, and that I have accepted all terms and conditions of the Committee on Publication Ethics (COPE) and have complied with ethical duties and responsibilities.

References

  • [1] Dawoud, H. D., Saleem, H., Alnuaimi, N. A., & Zaidi, S. J. (2021). Characterization and treatment technologies applied for produced water in Qatar. Water, 13(24), 3573. https://doi.org/10.3390/w13243573
  • [2] Soliman, M.N., Guen, F.Z., Ahmed, S.A., Saleem, H., & Zaidi, S.J. (2002) Environmental impact assessment of desalination plants in the gulf region. In V. Naddeo, K. H. Choo, M. Ksibi (Eds.), Water-energy-nexus in the ecological transition. Advances in science, technology & innovation (pp. 173-177). Springer, Cham.. https://doi.org/10.1007/978-3-031-00808-5_41
  • [3] Saleem, H., Zaidi, S. J., Ismail, A. F., Goh, P. S., & Vinu, A. (2022). Recent advances in the application of carbon nitrides for advanced water treatment and desalination technology. Desalination, 542, 116061. https://doi.org/10.1016/j.desal.2022.116061
  • [4] Saud, A., Saleem, H., Munira, N., Shahab, A. A., Siddiqui, H. R., & Zaidi, S. J. (2023). Sustainable preparation of graphene quantum dots for metal ion sensing application. Nanomaterials, 13(1), 148. https://doi.org/10.3390/nano13010148
  • [5] Li, Q., Zhou, W., Yu, L., Lian, S., & Xie, Q. (2021). Perovskite quantum dots as a fluorescent probe for metal ion detection in aqueous solution via phase transfer. Materials Letters, 282, 128654. https://doi.org/10.1016/j.matlet.2020.128654
  • [6] Bian, S., Shen, C., Hua, H., Zhou, L., Zhu, H., Xi, F., … & Dong, X. (2016). One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(II). RSC Advances, 6(74), 69977-69983. https://doi.org/10.1039/C6RA10836A
  • [7] Huo, B., Liu, B., Chen, T., Cui, L., Xu, G., Liu, M., & Liu, J. (2017). One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir, 33(40), 10673-10678. https://doi.org/10.1021/acs.langmuir.7b01699
  • [8] Liu, B., Yan, S., Song, Z., Liu, M., Ji, X., Yang, W., & Liu, J. (2016). One-step synthesis of boron nitride quantum dots: Simple chemistry meets delicate nanotechnology. Chemistry A European Journal, 22(52), 18899-18907. https://doi.org/10.1002/chem.201603935
  • [9] Peng, D., Zhang, L., Li, F., Cui, W., Liang, R., & Qui, J. (2018). Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Applied Materials Interfaces, 10(8), 7315-7323. https://doi.org/10.1021/acsami.7b15250
  • [10] Wang, L., Zhang, Q., Su, P., Yu, L., Bu, Y., Yuan, C., & Wang, S. (2022). Excitation-dependent ratiometric fluorescence response to mercury ion based on single hexagonal boron nitride quantum dots. Analytica Chimica Acta, 1236, 340585. https://doi.org/10.1016/j.aca.2022.340585
  • [11] Han, Y., Niu, Y., Liu, M., Niu, F., & Xu, Y. (2019). A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity. Journal of Materials Chemistry B, 7(6), 897-902. https://doi.org/10.1039/C8TB02948B
  • [12] Yu, X., Yang, L., Zhao, T., Zhang, R., Yang, L., Jiang, C., … & Zhang, Z. (2017). Multicolorful ratiometricfluorescent test paper for determination of fluoride ions in environmental water. RSC Advances, 7(5), 53379-53384. https://doi.org/10.1021/am506558d
  • [13] Cheng, Z., Liu, X., Zhao, B., Liu, X., Yang, X., Zhang, X., & Feng, X. (2024). A portable europium complex-loaded fluorescent test paper combined with smartphone analysis for the on-site and visual detection of mancozeb in food samples. Food Chemistry, 458, 140311. https://doi.org/10.1016/j.foodchem.2024.140311
  • [14] Huang, T., Xu, Y., Meng, M., & Li, C. (2022). PVDF based molecularly imprinted ratiometric fluorescent test paper with improved visualization effect for catechol monitoring. Microchemical Journal, 178, 107369. https://doi.org/10.1016/j.microc.2022.107369
  • [15] Wang, C., Sun, Y., Jin, J., Xiong, Z., Li, D., Yao, J., & Liu, Y. (2018). Highly selective, rapid-functioning and sensitive fluorescent test paper based on graphene quantum dots for on-line detection of metal ions. Analytical Methods, 10(10), 1163-1171. https://doi.org/10.1039/C7AY02995K
  • [16] Dalal, C., Garg, A. K., Mathur, M., & Sonkar, S. K. (2022). Fluorescent polymer carbon dots for the sensitive-selective sensing of Fe3+ metal ions and cellular imaging. ACS Applied Nano Materials, 5(9), 12699-12710. https://doi.org/10.1021/acsanm.2c02544
  • [17] Shirani, M. P., Rezaei, B., Ensafi, A. A., & Ramezani, M. (2021). Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chemistry, 339, 127920.https://doi.org/10.1016/j.foodchem.2020.127920
  • [18] Ma, Y., Cao, X., Feng, X., Ma, Y., & Zou, H. (2007). Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90. Polymer, 48(26), 7455-7460. https://doi.org/10.1016/j.polymer.2007.10.038
  • [19] Cui, Z., Martinez, A. P., & Adamson, D. H. (2015). PMMA functionalized boron nitride sheets as nanofillers. Nanoscale, 7(22), 10193-10197.https://doi.org/10.1039/C5NR00936G
  • [20] Liu, F., Li, Q., Li, Z., Liu, Y., Dong, L., Xiong, C., & Wang, Q. (2017). Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Composites Science and Technology, 142, 139-144.https://doi.org/10.1016/j.compscitech.2017.02.006
  • [21] Wang, Y., Zhu, Y., Huang, J., Cai, J., Zhu, J., Yang, X., & Li, C. (2017). Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horizons, 2(4), 225-232. https://doi.org/10.1039/C7NH00057J
  • [22] Wang, Q., Sun, G., Wei, S., Hao, W., & Yang, W. (2021). HPAMAM/PMMA composite electrospun film for cobalt ion detection in water environments. Materials Letters, 299, 130115. https://doi.org/10.1016/j.matlet.2021.130115
  • [23] Tajik, S., Beitollahi, H., Nejad, F. G., Dourandish, Z., Khalilzadeh, M. A., Jang, H. W., … & Shokouhimehr, M. (2021). Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Industrial & Engineering Chemistry Research, 60(3), 1112-1136. https://doi.org/10.1021/acs.iecr.0c04952
  • [24] Emir, P., & Kuru, D. (2024). Boron nitride quantum dots/polyvinyl butyral nanocomposite films for the enhanced photoluminescence and UV shielding properties. Journal of Applied Polymer Science, 141(13), e55171. https://doi.org/10.1002/app.55171
  • [25] Yang, Y., Zhang, C., Huang, D., Zeng, G., Huang, J., Lai, C., … & Xiong, W. (2019). Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 245, 87-99. https://doi.org/10.1016/j.apcatb.2018.12.049
  • [26] Liu, M., Xu, Y., Wang, Y., Chen, X., Ji, X., Niu, F., Song, Z., & Liu, J. (2017). Boron nitride quantum dots with solvent-regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications. Advanced Optical Materials, 5(3), 1600661. https://doi.org/10.1002/adom.201600661
  • [27] Abdelsalam, H., & Zhang, Q. F. (2022). Properties and applications of quantum dots derived from two dimensional materials. Advances in Physics: X, 7(1), 2048966. https://doi.org/10.1080/23746149.2022.2048966
  • [28] Lv, G., Dai, X., Lu, G., Ye, L., Wang, G., & Zhou, L. (2023). Facile fabrication of portable electrospun poly(vinyl alcohol)/sulfur quantum dots film sensor for sensitive and selective detection of Fe3+. Optical Materials, 135, 113227.https://doi.org/10.1016/j.optmat.2022.113227
  • [29] Sekar, A., Yadav, R., & Basavaraj, N. (2021). Fluorescence quenching mechanism and the application of green carbon nanodots in the detection of heavy metal ions: A review. New Journal of Chemistry, 45(5), 2326-2360. https://doi.org/10.1039/D0NJ04878J
  • [30] Mohan Babu, M., Syam Prasad, P., Venkateswara Rao, P., Hima Bindu, S., Prasad, A., Veeraiah, N., & Özcan, M. (2020). Influence of ZrO2 addition on structural and biological activity of phosphate glasses for bone regeneration. Materials, 13(18), 4058.https://doi.org/10.3390/ma13184058
  • [31] Mthethwa, T. P., Moloto, M. J., Vries, A. D., & Matabola, K. P. (2011). Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres. Materials Research Bulletin, 46(4), 569-575. https://doi.org/10.1016/j.materresbull.2010.12.022
  • [32] Alqahtani, M. (2020). Effect of hexagonal boron nitride nanopowder reinforcement and mixing methods on physical and mechanical properties of self-cured PMMA for dental applications. Materials, 13(10), 2323. https://doi.org/10.3390/ma13102323
  • [33] Khan, F. A., Akhtar, S., Almohazey, D., Alomari, M., Almofty, S. A., Badr, I., & Elaissari, A. (2019). Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1533-1542. https://doi.org/10.1080/21691401.2019.1577886
  • [34] Meng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., … & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1, 9469-9476. https://doi.org/10.1039/C3TA10306D
  • [35] Pawar S., Rzeczkowski P. P., Pötschke P., Krause B., & Bose S. (2018). Does the processing method resulting in different states of an interconnected network of multiwalled carbon nanotubes in polymeric blend nanocomposites affect EMI shielding properties? ACS Omega, 3(5), 5771-5782. https://doi.org/10.1021/acsomega.8b00575
  • [36] Yoon, C., Yang, K. P., Kim, J., & Shin, K. (2020). Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots. Chemical Engineering Journal, 382, 122792. https://doi.org/10.1016/j.cej.2019.122792
  • [37] Lin, L., Xu, Y., Zhang, S., Ross, I. M., Ong, A. C. M., & Allwood, D. A. (2014). Fabrication and luminescence of monolayered boron nitride quantum dots. Small, 10(1), 60-65. https://doi.org/10.1002/smll.201301001
  • [38] Poderys, V., Matulionyte, M., Selskis, A., & Rotomskis, R. (2011). Interaction of water-soluble cdte quantum dots with bovine serum albumin. Nanoscale Research Letters, 6(9). https://doi.org/10.1007/s11671-010-9740-9
  • [39] Wu, F., Tong, H., Wang, K., Wang, Z., Li, Z., Zhu, X., … & Wong, W. K. (2016). Synthesis, structural characterization and photophysical studies of luminescent Cu(I) heteroleptic complexes based on dipyridylamine. Journal of Photochemistry and Photobiology A: Chemistry, 318, 97-103. https://doi.org/10.1016/j.jphotochem.2015.12.003
  • [40] Upadhyay, P. K., Marpu, S. B., Benton, E. N., Williams, C. L., Telang, A., & Omary, M. A. (2018). A phosphorescent trinuclear gold(I) pyrazolate chemosensor for silver ion detection and remediation in aqueous media. Analytical Chemistry, 90(8), 4999-5006. https://doi.org/10.1021/acs.analchem.7b04334
  • [41] Yao, Q., Feng, Y., Rong, M., He, S., & Chen, X. (2017). Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Mikrochima Acta, 184, 4217-4223. https://doi.org/10.1007/s00604-017-2496-5
  • [42] Chen, Y., Wu, Y., Bo, W., Wang, B., & Li, C. (2016). Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sensors and Actuators B: Chemical, 223, 689-696. https://doi.org/10.1016/j.snb.2015.09.081
  • [43] Ahmadian-Fard-Fini, S., Ghanbari, D., Amiri, O., & Salavati-Niasari, M. (2020). Electro-spinning of cellulose acetate nanofibers/fe/carbon dot as photoluminescence sensor for mercury (ii) and lead (ii) ions. Carbohydrate Polymers, 229, 115428-115428. https://doi.org/10.1016/j.carbpol.2019.115428
  • [44] Islam, N. U., Amin, R., Shahid, M., Amin, M., Zaib, S., & Iqbal, J. (2017). A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, ureaseinhibition, anti-inflammatory and analgesic properties. BMC Complementary and Alternative Medicine, 17(1), 276. https://doi.org/10.1186/s12906-017-1791-3
  • [45] Zhao, L., Wang, Y., Zhao, X., Deng, Y., & Xia, Y. (2019). Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+. Polymers, 11(11), 1731. https://doi.org/10.3390/polym11111731
  • [46] Rajaković, L. V., Marković, D. D., Rajaković-Ognjanović, V. N., & Antanasijević, D. Z. (2012). The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic. Talanta, 102, 79-87. https://doi.org/10.1016/j.talanta.2012.08.016
  • [47] Armbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews, 29(Suppl 1), 49-52. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18852857/
  • [48] Khairy, G. M., Amin, A. S., Moalla, S. M. N., Medhat, A., & Hassan, N. (2022). Fluorescence determination of Fe(III) in drinking water using a new fluorescence chemosensor. RSC Advances, 12(42), 27679-27686. https://doi.org/10.1039/d2ra05144c
  • [49] Liu, X., Li, N., Xu, M., Wang, J., Jiang, C., Song, G., & Wang, Y. (2018). Specific colorimetric detection of Fe3+ ions in aqueous solution by squaraine-based chemosensor. RSC Advances, 8(61), 34860-34866. https://doi.org/10.1039/C8RA07345G
  • [50] Gogoi, N., Barooah, M., Majumdar, G., & Chowdhury, D. (2015). Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Applied Materials & Interfaces, 7(5), 3058-3067.https://doi.org/10.1021/am506558d

Fe3+'nin Seçici Tespiti için Yeni Bir Bor Nitrür Kuantum Noktaları Esaslı Floresan Algılama Platformu

Year 2025, Volume: 10 Issue: 1, 10 - 18, 01.04.2025

Abstract

Bu çalışmada, metal sensör malzemesi olarak kullanılmak üzere bor nitrür kuantum noktaları (BNQDs) ve polimetil metakrilat (PMMA) nanokompozit filmleri üretilmiştir. BNQD’ler borik asit ve üre kullanılarak hidrotermal yöntemle sentezlenmiştir. PMMA/BNQDs nanokompozit filmleri floresan algılama platformu olarak seçiciliği farklı metal iyonları (Fe3+, Na+ Zn2+, Mg2+ ve Ca2+) için test edilmiştir. Üretilen filmlerin morfolojik, yapısal ve kimyasal özellikleri taramalı elektron mikroskobu (SEM), yüksek çözünürlüklü geçirimli elektron mikroskobu (HRTEM), fourier dönüşümlü kızılötesi (FT-IR) ve atomik kuvvet mikroskobu (AFM) analizleri ile belirlenmiştir. Filmlerin optik özellikleri ultraviyole görünür bölge spektrofotometresi (UV-Vis) ile gerçekleştirilmiştir. Floresan ve algılama özellikleri fotolüminesans (PL) spektroskopisi analizi ile gerçekleştirilmiştir. SEM ve TEM analizleri, BNQD'ler ve PMMA arasındaki güçlü bağlanmayı ve homojen dağılımı doğrulamıştır. FT-IR ve TEM analizleri, BNQD’lerin oluşumunu kanıtlamıştır. PMMA-BNQD nanokompozit filmi, Fe3+ iyonları için seçici floresan söndürme özellikleri göstermiştir. Nanokompozit filmlerin floresan yoğunluğu, Fe3+ için 0-60 µM arasında iyi bir doğrusal ilişki göstermiştir. Ayrıca, içme suyundaki Fe3+ iyonlarını tespit etmede iyi bir hassasiyet sunmuştur. Bu nedenle, bu floresan algılama platformu, 4,06 µM’lik bir sınır tespiti (LOD) ile 0-60 µM konsantrasyon aralığında seçici ve hassas olabilmektedir.

References

  • [1] Dawoud, H. D., Saleem, H., Alnuaimi, N. A., & Zaidi, S. J. (2021). Characterization and treatment technologies applied for produced water in Qatar. Water, 13(24), 3573. https://doi.org/10.3390/w13243573
  • [2] Soliman, M.N., Guen, F.Z., Ahmed, S.A., Saleem, H., & Zaidi, S.J. (2002) Environmental impact assessment of desalination plants in the gulf region. In V. Naddeo, K. H. Choo, M. Ksibi (Eds.), Water-energy-nexus in the ecological transition. Advances in science, technology & innovation (pp. 173-177). Springer, Cham.. https://doi.org/10.1007/978-3-031-00808-5_41
  • [3] Saleem, H., Zaidi, S. J., Ismail, A. F., Goh, P. S., & Vinu, A. (2022). Recent advances in the application of carbon nitrides for advanced water treatment and desalination technology. Desalination, 542, 116061. https://doi.org/10.1016/j.desal.2022.116061
  • [4] Saud, A., Saleem, H., Munira, N., Shahab, A. A., Siddiqui, H. R., & Zaidi, S. J. (2023). Sustainable preparation of graphene quantum dots for metal ion sensing application. Nanomaterials, 13(1), 148. https://doi.org/10.3390/nano13010148
  • [5] Li, Q., Zhou, W., Yu, L., Lian, S., & Xie, Q. (2021). Perovskite quantum dots as a fluorescent probe for metal ion detection in aqueous solution via phase transfer. Materials Letters, 282, 128654. https://doi.org/10.1016/j.matlet.2020.128654
  • [6] Bian, S., Shen, C., Hua, H., Zhou, L., Zhu, H., Xi, F., … & Dong, X. (2016). One-pot synthesis of sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of lead(II). RSC Advances, 6(74), 69977-69983. https://doi.org/10.1039/C6RA10836A
  • [7] Huo, B., Liu, B., Chen, T., Cui, L., Xu, G., Liu, M., & Liu, J. (2017). One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir, 33(40), 10673-10678. https://doi.org/10.1021/acs.langmuir.7b01699
  • [8] Liu, B., Yan, S., Song, Z., Liu, M., Ji, X., Yang, W., & Liu, J. (2016). One-step synthesis of boron nitride quantum dots: Simple chemistry meets delicate nanotechnology. Chemistry A European Journal, 22(52), 18899-18907. https://doi.org/10.1002/chem.201603935
  • [9] Peng, D., Zhang, L., Li, F., Cui, W., Liang, R., & Qui, J. (2018). Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Applied Materials Interfaces, 10(8), 7315-7323. https://doi.org/10.1021/acsami.7b15250
  • [10] Wang, L., Zhang, Q., Su, P., Yu, L., Bu, Y., Yuan, C., & Wang, S. (2022). Excitation-dependent ratiometric fluorescence response to mercury ion based on single hexagonal boron nitride quantum dots. Analytica Chimica Acta, 1236, 340585. https://doi.org/10.1016/j.aca.2022.340585
  • [11] Han, Y., Niu, Y., Liu, M., Niu, F., & Xu, Y. (2019). A rational strategy to develop a boron nitride quantum dot-based molecular logic gate and fluorescent assay of alkaline phosphatase activity. Journal of Materials Chemistry B, 7(6), 897-902. https://doi.org/10.1039/C8TB02948B
  • [12] Yu, X., Yang, L., Zhao, T., Zhang, R., Yang, L., Jiang, C., … & Zhang, Z. (2017). Multicolorful ratiometricfluorescent test paper for determination of fluoride ions in environmental water. RSC Advances, 7(5), 53379-53384. https://doi.org/10.1021/am506558d
  • [13] Cheng, Z., Liu, X., Zhao, B., Liu, X., Yang, X., Zhang, X., & Feng, X. (2024). A portable europium complex-loaded fluorescent test paper combined with smartphone analysis for the on-site and visual detection of mancozeb in food samples. Food Chemistry, 458, 140311. https://doi.org/10.1016/j.foodchem.2024.140311
  • [14] Huang, T., Xu, Y., Meng, M., & Li, C. (2022). PVDF based molecularly imprinted ratiometric fluorescent test paper with improved visualization effect for catechol monitoring. Microchemical Journal, 178, 107369. https://doi.org/10.1016/j.microc.2022.107369
  • [15] Wang, C., Sun, Y., Jin, J., Xiong, Z., Li, D., Yao, J., & Liu, Y. (2018). Highly selective, rapid-functioning and sensitive fluorescent test paper based on graphene quantum dots for on-line detection of metal ions. Analytical Methods, 10(10), 1163-1171. https://doi.org/10.1039/C7AY02995K
  • [16] Dalal, C., Garg, A. K., Mathur, M., & Sonkar, S. K. (2022). Fluorescent polymer carbon dots for the sensitive-selective sensing of Fe3+ metal ions and cellular imaging. ACS Applied Nano Materials, 5(9), 12699-12710. https://doi.org/10.1021/acsanm.2c02544
  • [17] Shirani, M. P., Rezaei, B., Ensafi, A. A., & Ramezani, M. (2021). Development of an eco-friendly fluorescence nanosensor based on molecularly imprinted polymer on silica-carbon quantum dot for the rapid indoxacarb detection. Food Chemistry, 339, 127920.https://doi.org/10.1016/j.foodchem.2020.127920
  • [18] Ma, Y., Cao, X., Feng, X., Ma, Y., & Zou, H. (2007). Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90. Polymer, 48(26), 7455-7460. https://doi.org/10.1016/j.polymer.2007.10.038
  • [19] Cui, Z., Martinez, A. P., & Adamson, D. H. (2015). PMMA functionalized boron nitride sheets as nanofillers. Nanoscale, 7(22), 10193-10197.https://doi.org/10.1039/C5NR00936G
  • [20] Liu, F., Li, Q., Li, Z., Liu, Y., Dong, L., Xiong, C., & Wang, Q. (2017). Poly(methyl methacrylate)/boron nitride nanocomposites with enhanced energy density as high temperature dielectrics. Composites Science and Technology, 142, 139-144.https://doi.org/10.1016/j.compscitech.2017.02.006
  • [21] Wang, Y., Zhu, Y., Huang, J., Cai, J., Zhu, J., Yang, X., & Li, C. (2017). Perovskite quantum dots encapsulated in electrospun fiber membranes as multifunctional supersensitive sensors for biomolecules, metal ions and pH. Nanoscale Horizons, 2(4), 225-232. https://doi.org/10.1039/C7NH00057J
  • [22] Wang, Q., Sun, G., Wei, S., Hao, W., & Yang, W. (2021). HPAMAM/PMMA composite electrospun film for cobalt ion detection in water environments. Materials Letters, 299, 130115. https://doi.org/10.1016/j.matlet.2021.130115
  • [23] Tajik, S., Beitollahi, H., Nejad, F. G., Dourandish, Z., Khalilzadeh, M. A., Jang, H. W., … & Shokouhimehr, M. (2021). Recent developments in polymer nanocomposite-based electrochemical sensors for detecting environmental pollutants. Industrial & Engineering Chemistry Research, 60(3), 1112-1136. https://doi.org/10.1021/acs.iecr.0c04952
  • [24] Emir, P., & Kuru, D. (2024). Boron nitride quantum dots/polyvinyl butyral nanocomposite films for the enhanced photoluminescence and UV shielding properties. Journal of Applied Polymer Science, 141(13), e55171. https://doi.org/10.1002/app.55171
  • [25] Yang, Y., Zhang, C., Huang, D., Zeng, G., Huang, J., Lai, C., … & Xiong, W. (2019). Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Applied Catalysis B: Environmental, 245, 87-99. https://doi.org/10.1016/j.apcatb.2018.12.049
  • [26] Liu, M., Xu, Y., Wang, Y., Chen, X., Ji, X., Niu, F., Song, Z., & Liu, J. (2017). Boron nitride quantum dots with solvent-regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications. Advanced Optical Materials, 5(3), 1600661. https://doi.org/10.1002/adom.201600661
  • [27] Abdelsalam, H., & Zhang, Q. F. (2022). Properties and applications of quantum dots derived from two dimensional materials. Advances in Physics: X, 7(1), 2048966. https://doi.org/10.1080/23746149.2022.2048966
  • [28] Lv, G., Dai, X., Lu, G., Ye, L., Wang, G., & Zhou, L. (2023). Facile fabrication of portable electrospun poly(vinyl alcohol)/sulfur quantum dots film sensor for sensitive and selective detection of Fe3+. Optical Materials, 135, 113227.https://doi.org/10.1016/j.optmat.2022.113227
  • [29] Sekar, A., Yadav, R., & Basavaraj, N. (2021). Fluorescence quenching mechanism and the application of green carbon nanodots in the detection of heavy metal ions: A review. New Journal of Chemistry, 45(5), 2326-2360. https://doi.org/10.1039/D0NJ04878J
  • [30] Mohan Babu, M., Syam Prasad, P., Venkateswara Rao, P., Hima Bindu, S., Prasad, A., Veeraiah, N., & Özcan, M. (2020). Influence of ZrO2 addition on structural and biological activity of phosphate glasses for bone regeneration. Materials, 13(18), 4058.https://doi.org/10.3390/ma13184058
  • [31] Mthethwa, T. P., Moloto, M. J., Vries, A. D., & Matabola, K. P. (2011). Properties of electrospun CdS and CdSe filled poly(methyl methacrylate) (PMMA) nanofibres. Materials Research Bulletin, 46(4), 569-575. https://doi.org/10.1016/j.materresbull.2010.12.022
  • [32] Alqahtani, M. (2020). Effect of hexagonal boron nitride nanopowder reinforcement and mixing methods on physical and mechanical properties of self-cured PMMA for dental applications. Materials, 13(10), 2323. https://doi.org/10.3390/ma13102323
  • [33] Khan, F. A., Akhtar, S., Almohazey, D., Alomari, M., Almofty, S. A., Badr, I., & Elaissari, A. (2019). Targeted delivery of poly (methyl methacrylate) particles in colon cancer cells selectively attenuates cancer cell proliferation. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1533-1542. https://doi.org/10.1080/21691401.2019.1577886
  • [34] Meng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., … & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1, 9469-9476. https://doi.org/10.1039/C3TA10306D
  • [35] Pawar S., Rzeczkowski P. P., Pötschke P., Krause B., & Bose S. (2018). Does the processing method resulting in different states of an interconnected network of multiwalled carbon nanotubes in polymeric blend nanocomposites affect EMI shielding properties? ACS Omega, 3(5), 5771-5782. https://doi.org/10.1021/acsomega.8b00575
  • [36] Yoon, C., Yang, K. P., Kim, J., & Shin, K. (2020). Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots. Chemical Engineering Journal, 382, 122792. https://doi.org/10.1016/j.cej.2019.122792
  • [37] Lin, L., Xu, Y., Zhang, S., Ross, I. M., Ong, A. C. M., & Allwood, D. A. (2014). Fabrication and luminescence of monolayered boron nitride quantum dots. Small, 10(1), 60-65. https://doi.org/10.1002/smll.201301001
  • [38] Poderys, V., Matulionyte, M., Selskis, A., & Rotomskis, R. (2011). Interaction of water-soluble cdte quantum dots with bovine serum albumin. Nanoscale Research Letters, 6(9). https://doi.org/10.1007/s11671-010-9740-9
  • [39] Wu, F., Tong, H., Wang, K., Wang, Z., Li, Z., Zhu, X., … & Wong, W. K. (2016). Synthesis, structural characterization and photophysical studies of luminescent Cu(I) heteroleptic complexes based on dipyridylamine. Journal of Photochemistry and Photobiology A: Chemistry, 318, 97-103. https://doi.org/10.1016/j.jphotochem.2015.12.003
  • [40] Upadhyay, P. K., Marpu, S. B., Benton, E. N., Williams, C. L., Telang, A., & Omary, M. A. (2018). A phosphorescent trinuclear gold(I) pyrazolate chemosensor for silver ion detection and remediation in aqueous media. Analytical Chemistry, 90(8), 4999-5006. https://doi.org/10.1021/acs.analchem.7b04334
  • [41] Yao, Q., Feng, Y., Rong, M., He, S., & Chen, X. (2017). Determination of nickel(II) via quenching of the fluorescence of boron nitride quantum dots. Mikrochima Acta, 184, 4217-4223. https://doi.org/10.1007/s00604-017-2496-5
  • [42] Chen, Y., Wu, Y., Bo, W., Wang, B., & Li, C. (2016). Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe(III) ions detection and cell imaging. Sensors and Actuators B: Chemical, 223, 689-696. https://doi.org/10.1016/j.snb.2015.09.081
  • [43] Ahmadian-Fard-Fini, S., Ghanbari, D., Amiri, O., & Salavati-Niasari, M. (2020). Electro-spinning of cellulose acetate nanofibers/fe/carbon dot as photoluminescence sensor for mercury (ii) and lead (ii) ions. Carbohydrate Polymers, 229, 115428-115428. https://doi.org/10.1016/j.carbpol.2019.115428
  • [44] Islam, N. U., Amin, R., Shahid, M., Amin, M., Zaib, S., & Iqbal, J. (2017). A multi-target therapeutic potential of Prunus domestica gum stabilized nanoparticles exhibited prospective anticancer, antibacterial, ureaseinhibition, anti-inflammatory and analgesic properties. BMC Complementary and Alternative Medicine, 17(1), 276. https://doi.org/10.1186/s12906-017-1791-3
  • [45] Zhao, L., Wang, Y., Zhao, X., Deng, Y., & Xia, Y. (2019). Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+. Polymers, 11(11), 1731. https://doi.org/10.3390/polym11111731
  • [46] Rajaković, L. V., Marković, D. D., Rajaković-Ognjanović, V. N., & Antanasijević, D. Z. (2012). The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic. Talanta, 102, 79-87. https://doi.org/10.1016/j.talanta.2012.08.016
  • [47] Armbruster, D. A., & Pry, T. (2008). Limit of blank, limit of detection and limit of quantitation. The Clinical Biochemist Reviews, 29(Suppl 1), 49-52. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18852857/
  • [48] Khairy, G. M., Amin, A. S., Moalla, S. M. N., Medhat, A., & Hassan, N. (2022). Fluorescence determination of Fe(III) in drinking water using a new fluorescence chemosensor. RSC Advances, 12(42), 27679-27686. https://doi.org/10.1039/d2ra05144c
  • [49] Liu, X., Li, N., Xu, M., Wang, J., Jiang, C., Song, G., & Wang, Y. (2018). Specific colorimetric detection of Fe3+ ions in aqueous solution by squaraine-based chemosensor. RSC Advances, 8(61), 34860-34866. https://doi.org/10.1039/C8RA07345G
  • [50] Gogoi, N., Barooah, M., Majumdar, G., & Chowdhury, D. (2015). Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Applied Materials & Interfaces, 7(5), 3058-3067.https://doi.org/10.1021/am506558d
There are 50 citations in total.

Details

Primary Language English
Subjects Material Production Technologies
Journal Section Articles
Authors

Duygu Kuru 0000-0002-9727-5785

Publication Date April 1, 2025
Submission Date September 25, 2024
Acceptance Date January 15, 2025
Published in Issue Year 2025 Volume: 10 Issue: 1

Cite

APA Kuru, D. (2025). A Novel Boron Nitride Quantum Dots-based Fluorescent Sensing Platform for Selective Detection of Fe3+. Journal of Boron, 10(1), 10-18. https://doi.org/10.30728/boron.1556075