Boron as a hydrogen storage method and its environmental impacts
Year 2025,
Volume: 10 Issue: 2, 85 - 94, 30.06.2025
Ömer Faruk Tunçbilek
,
İrem Nas
Abstract
Increasing industrialization in parallel with the rapid development of technology, increasing electrification due to population growth and other factors such as mobility are increasing the need for energy. The limited availability of fossil fuels and their environmental impacts make clean energy sources more important in energy supply. In this context, hydrogen, as an alternative energy source, stands out as a clean, sustainable and easily accessible source and energy carrier. However, efficient and safe storage and transportation of hydrogen is one of the biggest obstacles to the widespread use of this energy source. At this point, boron is an element that attracts attention in the field of hydrogen storage thanks to its high hydrogen storage capacity and low cost. Considering that Türkiye is at the top in terms of boron reserves, the use of boron in hydrogen storage will become more important. In this study, hydrogen, hydrogen storage methods and one of these methods, borohydrides, will be discussed and then information will be given about the environmental effects of hydrogen, boron and borohydrides.
Supporting Institution
Türkiye Enerji, Nükleer ve Maden Araştırma Kurumu (TENMAK)- Temiz Enerji Araştırma Enstitüsü (TEMEN)
Thanks
Hydrogen storage activities carried out at the Clean Energy Research Institute of the Turkish Energy, Nuclear and Mining Research Organization (TENMAK) lights on this study.
References
- [1] Fakıoğlu, E. (2004). A review of hydrogen storage systems based on boron and its compounds. International Journal of Hydrogen Energy, 29(13), 1371- 1376. https://doi.org/10.1016/j.ijhydene.2003.12.010
- [2] Akay, R. G., Gürün, Z., Çavdar, I., Dilaver, M., Ercan, N., Gezerman, A. O., Kızıltaş R. (2022). Hydrogen in Energy Conversion. TMMOB Chamber of Chemical Engineers, Ankara.
- [3] Republic of Türkiye Ministry of Energy and Natural Resources. (2023). Türkiye Hydrogen Technologies Strategy and Roadmap.
- [4] Gürü, M., Çakanyıldırım, Ç., Bilen, M., Boynueğri, T., Karabulut, A. F. (2022). Synthesis and Dehydrogenation of Metal Boron Hydrides. Kutem Publishing
- [5] Eti Maden Operations General Directorate. (2018). Boron Sector Report. https://www.etimaden.gov.tr/storage/2021/Bor_Sektor_Raporu_2020.pdf
- [6] Dürrü, Z., & Kaya, S. K. (2022). Sağlık ve çevre ekonomisi alanında akademik araştırmalar. Ekin Publishing. ISBN: 9786258235999
- [7] Altınsoy, Y. (2024). Hidrojen depolama ve taşıma. Mühendislik alanında uluslararası araştırma ve değerlendirmeler (pp.429-444). Serüven Publishing
- [8] Dinçer, İ., Eroğlu, İ., Öztürk, M. (2021). Hydrogen Technologies Roadmap for Türkiye. Hydrogen Technologies Association. ISBN: 978-605-66381-9-0
- [9] Tarhan, C., & Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
- [10] Züttel, A. (2004). Hydrogen storage methods. Die Naturwissenschaften, 91(4), 157-172. https://doi. org/10.1007/s00114-004-0516-x
- [11] Koşar, C. (2021). Hydrogen storage methods. Open Journal of Nano, 6(1), 1-10. https://dergipark.org.tr/en/pub/ojn/issue/64190/938243
- [12] Zohuri, B. (2018). Cryogenics and liquid hydrogen storage. Hydrogen Energy, 121-139. https://doi.org/10.1007/978-3-319-93461-7_4
- [13] AlZohbi, G., Almoaikel, A., & AlShuhail, L. (2023). An overview on the technologies used to store hydrogen. Energy Reports. 9, 28-34. http://dx.doi.org/10.1016/j.egyr.2023.08.072
- [14] Mohan, M., Sharma, V. K., Kumar, E. A., & Gayathri, V. (2019). Hydrogen storage in carbon materials - A review. Energy Storage. http://dx.doi.org/10.1002/est2.35
- [15] Zhou, M. J., Miao, Y., Gu, Y., & Xie, Y. (2024). Recent advances in reversible liquid organic hydrogen carrier systems: From hydrogen carriers to catalysts. Advanced Materials (Deerfield Beach, Fla.), 36(37), e2311355. https://doi.org/10.1002/adma.202311355
- [16] Akiba, E. (2016). Solid hydrogen storage materials: Interstitial hydrides. Hydrogen Energy Engineering, 191- 206. https://doi.org/10.1007/978-4-431-56042-5_14
- [17] Ley, M. B., Jepsen, L. H., Lee, Y.-S., Cho, Y. W., Bellosta von Colbe, J. M., … & Jensen, T. R. (2014). Complex hydrides for hydrogen storage - New perspectives. Materials Today, 17(3), 122-128. https://doi.org/10.1016/j.mattod.2014.02.01393
- [18] Usman, M. R. (2022). Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 112743. https://doi.org/10.1016/j.rser.2022.112743
- [19] Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126. https://doi.org/10.1016/j.ijhydene.2016.05.244
- [20] Soloveichik, G. L. (2007). Metal borohydrides as hydrogen storage materials. Material Matters, 2(11).
- [21] Zhang, W., Zhang, X., Huang, Z., Li, H. W., Gao, M., Pan, H., & Liu, Y. (2021). Recent development of lithium borohydride-based materials for hydrogen storage. Advanced Energy and Sustainability Research, 2(10), 2100073. https://doi.org/10.1002/aesr.202100073
- [22] Yılmaz, A., Şevik, S., & Yakut, R. (2019). Cell-based experimental analysis of a proton exchange membrane fuel cell (PEMFC). Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(4), 1446-1457. https://doi.org/10.17798/ bitlisfen.544205
- [23] Lv, Y., & Wu, Y. (2021). Current research progress in magnesium borohydride for hydrogen storage (A review). Progress in Natural Science: Materials International, 31(6), 809-820. https://doi.org/10.1016/j.pnsc.2021.11.001
- [24] Rönnebro, E., & Majzoub, E. H. (2007). Calcium borohydride for hydrogen storage: Catalysis and reversibility. The Journal of Physical Chemistry B, 111(42), 12045-12047. https://doi.org/10.1021/ jp0764541
- [25] Gu, Q., Gao, L., Guo, Y., Tan, Y., Tang, Z., Wallwork, K. S., & Yu, X. (2012). Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release. Energy & Environmental Science, 5(6), 7590- 7600. https://doi.org/10.1039/C2EE02485C
- [26] Dovgaliuk, I., Safin, D. A., Tumanov, N. A., Morelle, F., Moulai, A., Černý, R., & Filinchuk, Y. (2017). Solid aluminum borohydrides for prospective hydrogen storage. ChemSusChem, 10(23), 4725-4734. https://doi.org/10.1002/cssc.201701629
- [27] Wang, J., Chen, Y., Yuan, L., Zhang, M., & Zhang, C. (2019). Scandium decoration of boron doped porous graphene for high-capacity hydrogen storage. Molecules, 24(13), 2382. https://doi.org/10.3390/molecules24132382
- [28] Cerny, R., Severa, G., Ravnsbæk, D. B., Filinchuk, Y., D’Anna, V., Hagemann, H., & Jensen, T. R. (2010). NaSc (BH4) 4: A novel scandium-based borohydride. The Journal of Physical Chemistry C, 114(2), 1357- 1364. https://doi.org/10.1021/jp908397w
- [29] Akbayrak, S., & Özkar, S. (2018). Ammonia borane as hydrogen storage materials. International Journal of Hydrogen Energy, 43(40), 18592-18606. https://doi.org/10.1016/j.ijhydene.2018.02.190
- [30] Reddy, A. L. M., Tanur, A. E., & Walker, G. C. (2010). Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. International Journal of Hydrogen Energy, 35(9), 4138-4143. https://doi.org/10.1016/j.ijhydene.2010.01.072
- [31] Bonnetot, B., & Laversenne, B. (2006). Hydrogen Storage Using Borohydrides. 16th World Hydrogen Energy Conference: WHEC 2006, France, 1-8. https:// www.cder.dz/A2H2/Medias/Download/Proc%20PDF/PARALLEL%20SESSIONS/%5BS15%5D%20 Advanced%20Materials%20Storage/15-06-06/181.pdf
- [32] Celik, F. A., Karabulut, E., Onat, E., Izgi, M. S., Yilmaz, Y., (2024). Molecular dynamics approach to efficient hydrogen generation process of Co-B catalysts decorating lanthanides (La, Ce, Pr, Nd) supported by flat-sheet and twisted ThMoB4-type graphene from NaBH4 hydrolysis: Insights from non-self-consistent GFN1-xTB method. Diamond and Related Materials, 149, 111632. https://doi.org/10.1016/j.diamond.2024.111632
- [33] Onat, E., Celik, F. A., Karabulut, E., & Izgi, M. S. (2024). High availability and outstanding catalytic activity in sodium borohydride hydrolytic dehydrogenation of CQD/ GO@ Co catalyst by green synthesis: experimental and computational perspective. International Journal of Hydrogen Energy, 83, 903-915. https://doi.org/10.1016/j.ijhydene.2024.08.160
- [34] Onat, E. (2024). Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride. Synthetic Metals, 306, 117621. https://doi.org/10.1016/j.synthmet.2024.117621
- [35] Ekinci, S., & Onat, E. (2024). Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 455-471. https://doi.org/10.25092/baunfbed.1297146
- [36] Onat, E., & Ekinci, S. (2024). Study of the sodium borohydride hydrolysis reaction's performance via a kaolin-supported co-cr bimetallic catalyst. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 24(5), 1061-1070. https://doi.org/10.35414/ akufemubid.1398395
- [37] Izgi, M. S., Ece, M. Ş., Kazici, H. Ç., Şahi̇n, Ö., & Onat, E. (2020). Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2-NH2 core-shell microspheres. International Journal of Hydrogen Energy, 45(55), 30415-30430. https://doi.org/10.1016/j.ijhydene.2020.08.043
- [38] Tunçbilek, Ö. F. (2021). Environmental impacts of renewable energy sources and social acceptance: The case of geothermal energy in Efeler District of Aydın Province (Publication No. 715297) [Doctoral dissertation, Ankara University].
- [39] Tunçbilek, Ö. F. (2024). Evaluations on Hydrogen Energy and Its Environmental Effects. Ankara University Journal of Social Sciences, 15(2), 189-197. https:// dergipark.org.tr/tr/download/article-file/3769521
- [40] Umar, S. A., & Tasduq, S. A. (2022). Ozone layer depletion and emerging public health concerns - An update on epidemiological perspective of the ambivalent effects of ultraviolet radiation exposure. Frontiers in Oncology, 12, 866733. https://doi.org/10.3389/fonc.2022.866733
- [41] Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: A review. Environmental Chemistry Letters, 20, 153-188. https://doi.org/10.1007/ s10311-021-01322-8
- [42] Parks, J. L., & Edwards, M. (2005). Boron in the environment. Critical Reviews in Environmental Science and Technology, 35(2), 81-114. https://doi.org/10.1080/10643380590900200
- [43] Schoderboeck, L., Mühlegger, S., Losert, A., Gausterer, C., & Hornek, R. (2011). Effects assessment: Boron compounds in the aquatic environment. Chemosphere, 82(3), 483-487. https://doi.org/10.1016/j.chemosphere.2010.10.031
- [44] Shibli, A., & Srebnik, M. (2005). Environmental aspects of boron. Studies in Inorganic Chemistry, 551-598. https://doi.org/10.1016/s0169-3158(06)80010-1
- [45] Howe, P. D. (1998). A review of boron effects in the environment. Biological Trace Element Research, 66(1- 3), 153-166. https://doi.org/10.1007/bf02783135
- [46] Biyik, S., Arslan, F., & Aydin, M. (2014). Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. Journal of Electronic Materials, 44(1), 457-466. https://doi.org/10.1007/s11664-014-3399-4
- [47] Bıyık, S. (2024). Influence of polyethylene glycol and methanol additions on the properties of ball-milled Cu4B4C composite powders. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.317
Hidrojen depolama yöntemi olarak bor ve çevresel etkileri
Year 2025,
Volume: 10 Issue: 2, 85 - 94, 30.06.2025
Ömer Faruk Tunçbilek
,
İrem Nas
Abstract
Teknolojinin hızla gelişmesine paralel olarak artan sanayileşme, nüfus artışına bağlı olarak artan elektriklenme ve mobilite gibi diğer faktörler enerjiye olan ihtiyacı artırmaktadır. Fosil yakıtların sınırlı bulunabilirliği ve çevresel etkileri, enerji tedarikinde temiz enerji kaynaklarını daha da önemli hale getirmektedir. Bu bağlamda alternatif bir enerji kaynağı olarak hidrojen, temiz, sürdürülebilir ve kolay ulaşılabilir bir kaynak ve enerji taşıyıcısı olarak öne çıkmaktadır. Ancak hidrojenin verimli ve güvenli bir şekilde depolanması ve taşınması bu enerji kaynağının yaygın olarak kullanılmasının önündeki en büyük engellerden biridir. Bu noktada bor, yüksek hidrojen depolama kapasitesi ve düşük maliyeti sayesinde hidrojen depolama alanında dikkat çeken bir elementtir. Türkiye'nin bor rezervleri açısından zirvede olduğu düşünüldüğünde, borun hidrojen depolamada kullanımı daha da önemli hale gelecektir. Bu çalışmada hidrojen, hidrojen depolama yöntemleri ve bu yöntemlerden biri olan borhidrürler ele alınacak, ardından hidrojen, bor ve borhidrürlerin çevresel etkileri hakkında bilgi verilecektir.
References
- [1] Fakıoğlu, E. (2004). A review of hydrogen storage systems based on boron and its compounds. International Journal of Hydrogen Energy, 29(13), 1371- 1376. https://doi.org/10.1016/j.ijhydene.2003.12.010
- [2] Akay, R. G., Gürün, Z., Çavdar, I., Dilaver, M., Ercan, N., Gezerman, A. O., Kızıltaş R. (2022). Hydrogen in Energy Conversion. TMMOB Chamber of Chemical Engineers, Ankara.
- [3] Republic of Türkiye Ministry of Energy and Natural Resources. (2023). Türkiye Hydrogen Technologies Strategy and Roadmap.
- [4] Gürü, M., Çakanyıldırım, Ç., Bilen, M., Boynueğri, T., Karabulut, A. F. (2022). Synthesis and Dehydrogenation of Metal Boron Hydrides. Kutem Publishing
- [5] Eti Maden Operations General Directorate. (2018). Boron Sector Report. https://www.etimaden.gov.tr/storage/2021/Bor_Sektor_Raporu_2020.pdf
- [6] Dürrü, Z., & Kaya, S. K. (2022). Sağlık ve çevre ekonomisi alanında akademik araştırmalar. Ekin Publishing. ISBN: 9786258235999
- [7] Altınsoy, Y. (2024). Hidrojen depolama ve taşıma. Mühendislik alanında uluslararası araştırma ve değerlendirmeler (pp.429-444). Serüven Publishing
- [8] Dinçer, İ., Eroğlu, İ., Öztürk, M. (2021). Hydrogen Technologies Roadmap for Türkiye. Hydrogen Technologies Association. ISBN: 978-605-66381-9-0
- [9] Tarhan, C., & Çil, M. A. (2021). A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. https://doi.org/10.1016/j.est.2021.102676
- [10] Züttel, A. (2004). Hydrogen storage methods. Die Naturwissenschaften, 91(4), 157-172. https://doi. org/10.1007/s00114-004-0516-x
- [11] Koşar, C. (2021). Hydrogen storage methods. Open Journal of Nano, 6(1), 1-10. https://dergipark.org.tr/en/pub/ojn/issue/64190/938243
- [12] Zohuri, B. (2018). Cryogenics and liquid hydrogen storage. Hydrogen Energy, 121-139. https://doi.org/10.1007/978-3-319-93461-7_4
- [13] AlZohbi, G., Almoaikel, A., & AlShuhail, L. (2023). An overview on the technologies used to store hydrogen. Energy Reports. 9, 28-34. http://dx.doi.org/10.1016/j.egyr.2023.08.072
- [14] Mohan, M., Sharma, V. K., Kumar, E. A., & Gayathri, V. (2019). Hydrogen storage in carbon materials - A review. Energy Storage. http://dx.doi.org/10.1002/est2.35
- [15] Zhou, M. J., Miao, Y., Gu, Y., & Xie, Y. (2024). Recent advances in reversible liquid organic hydrogen carrier systems: From hydrogen carriers to catalysts. Advanced Materials (Deerfield Beach, Fla.), 36(37), e2311355. https://doi.org/10.1002/adma.202311355
- [16] Akiba, E. (2016). Solid hydrogen storage materials: Interstitial hydrides. Hydrogen Energy Engineering, 191- 206. https://doi.org/10.1007/978-4-431-56042-5_14
- [17] Ley, M. B., Jepsen, L. H., Lee, Y.-S., Cho, Y. W., Bellosta von Colbe, J. M., … & Jensen, T. R. (2014). Complex hydrides for hydrogen storage - New perspectives. Materials Today, 17(3), 122-128. https://doi.org/10.1016/j.mattod.2014.02.01393
- [18] Usman, M. R. (2022). Hydrogen storage methods: Review and current status. Renewable and Sustainable Energy Reviews, 167, 112743. https://doi.org/10.1016/j.rser.2022.112743
- [19] Rusman, N. A. A., & Dahari, M. (2016). A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. International Journal of Hydrogen Energy, 41(28), 12108-12126. https://doi.org/10.1016/j.ijhydene.2016.05.244
- [20] Soloveichik, G. L. (2007). Metal borohydrides as hydrogen storage materials. Material Matters, 2(11).
- [21] Zhang, W., Zhang, X., Huang, Z., Li, H. W., Gao, M., Pan, H., & Liu, Y. (2021). Recent development of lithium borohydride-based materials for hydrogen storage. Advanced Energy and Sustainability Research, 2(10), 2100073. https://doi.org/10.1002/aesr.202100073
- [22] Yılmaz, A., Şevik, S., & Yakut, R. (2019). Cell-based experimental analysis of a proton exchange membrane fuel cell (PEMFC). Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(4), 1446-1457. https://doi.org/10.17798/ bitlisfen.544205
- [23] Lv, Y., & Wu, Y. (2021). Current research progress in magnesium borohydride for hydrogen storage (A review). Progress in Natural Science: Materials International, 31(6), 809-820. https://doi.org/10.1016/j.pnsc.2021.11.001
- [24] Rönnebro, E., & Majzoub, E. H. (2007). Calcium borohydride for hydrogen storage: Catalysis and reversibility. The Journal of Physical Chemistry B, 111(42), 12045-12047. https://doi.org/10.1021/ jp0764541
- [25] Gu, Q., Gao, L., Guo, Y., Tan, Y., Tang, Z., Wallwork, K. S., & Yu, X. (2012). Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release. Energy & Environmental Science, 5(6), 7590- 7600. https://doi.org/10.1039/C2EE02485C
- [26] Dovgaliuk, I., Safin, D. A., Tumanov, N. A., Morelle, F., Moulai, A., Černý, R., & Filinchuk, Y. (2017). Solid aluminum borohydrides for prospective hydrogen storage. ChemSusChem, 10(23), 4725-4734. https://doi.org/10.1002/cssc.201701629
- [27] Wang, J., Chen, Y., Yuan, L., Zhang, M., & Zhang, C. (2019). Scandium decoration of boron doped porous graphene for high-capacity hydrogen storage. Molecules, 24(13), 2382. https://doi.org/10.3390/molecules24132382
- [28] Cerny, R., Severa, G., Ravnsbæk, D. B., Filinchuk, Y., D’Anna, V., Hagemann, H., & Jensen, T. R. (2010). NaSc (BH4) 4: A novel scandium-based borohydride. The Journal of Physical Chemistry C, 114(2), 1357- 1364. https://doi.org/10.1021/jp908397w
- [29] Akbayrak, S., & Özkar, S. (2018). Ammonia borane as hydrogen storage materials. International Journal of Hydrogen Energy, 43(40), 18592-18606. https://doi.org/10.1016/j.ijhydene.2018.02.190
- [30] Reddy, A. L. M., Tanur, A. E., & Walker, G. C. (2010). Synthesis and hydrogen storage properties of different types of boron nitride nanostructures. International Journal of Hydrogen Energy, 35(9), 4138-4143. https://doi.org/10.1016/j.ijhydene.2010.01.072
- [31] Bonnetot, B., & Laversenne, B. (2006). Hydrogen Storage Using Borohydrides. 16th World Hydrogen Energy Conference: WHEC 2006, France, 1-8. https:// www.cder.dz/A2H2/Medias/Download/Proc%20PDF/PARALLEL%20SESSIONS/%5BS15%5D%20 Advanced%20Materials%20Storage/15-06-06/181.pdf
- [32] Celik, F. A., Karabulut, E., Onat, E., Izgi, M. S., Yilmaz, Y., (2024). Molecular dynamics approach to efficient hydrogen generation process of Co-B catalysts decorating lanthanides (La, Ce, Pr, Nd) supported by flat-sheet and twisted ThMoB4-type graphene from NaBH4 hydrolysis: Insights from non-self-consistent GFN1-xTB method. Diamond and Related Materials, 149, 111632. https://doi.org/10.1016/j.diamond.2024.111632
- [33] Onat, E., Celik, F. A., Karabulut, E., & Izgi, M. S. (2024). High availability and outstanding catalytic activity in sodium borohydride hydrolytic dehydrogenation of CQD/ GO@ Co catalyst by green synthesis: experimental and computational perspective. International Journal of Hydrogen Energy, 83, 903-915. https://doi.org/10.1016/j.ijhydene.2024.08.160
- [34] Onat, E. (2024). Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride. Synthetic Metals, 306, 117621. https://doi.org/10.1016/j.synthmet.2024.117621
- [35] Ekinci, S., & Onat, E. (2024). Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 455-471. https://doi.org/10.25092/baunfbed.1297146
- [36] Onat, E., & Ekinci, S. (2024). Study of the sodium borohydride hydrolysis reaction's performance via a kaolin-supported co-cr bimetallic catalyst. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 24(5), 1061-1070. https://doi.org/10.35414/ akufemubid.1398395
- [37] Izgi, M. S., Ece, M. Ş., Kazici, H. Ç., Şahi̇n, Ö., & Onat, E. (2020). Hydrogen production by using Ru nanoparticle decorated with Fe3O4@ SiO2-NH2 core-shell microspheres. International Journal of Hydrogen Energy, 45(55), 30415-30430. https://doi.org/10.1016/j.ijhydene.2020.08.043
- [38] Tunçbilek, Ö. F. (2021). Environmental impacts of renewable energy sources and social acceptance: The case of geothermal energy in Efeler District of Aydın Province (Publication No. 715297) [Doctoral dissertation, Ankara University].
- [39] Tunçbilek, Ö. F. (2024). Evaluations on Hydrogen Energy and Its Environmental Effects. Ankara University Journal of Social Sciences, 15(2), 189-197. https:// dergipark.org.tr/tr/download/article-file/3769521
- [40] Umar, S. A., & Tasduq, S. A. (2022). Ozone layer depletion and emerging public health concerns - An update on epidemiological perspective of the ambivalent effects of ultraviolet radiation exposure. Frontiers in Oncology, 12, 866733. https://doi.org/10.3389/fonc.2022.866733
- [41] Osman, A. I., Mehta, N., Elgarahy, A. M., Hefny, M., Al-Hinai, A., Al-Muhtaseb, A. A. H., & Rooney, D. W. (2022). Hydrogen production, storage, utilisation and environmental impacts: A review. Environmental Chemistry Letters, 20, 153-188. https://doi.org/10.1007/ s10311-021-01322-8
- [42] Parks, J. L., & Edwards, M. (2005). Boron in the environment. Critical Reviews in Environmental Science and Technology, 35(2), 81-114. https://doi.org/10.1080/10643380590900200
- [43] Schoderboeck, L., Mühlegger, S., Losert, A., Gausterer, C., & Hornek, R. (2011). Effects assessment: Boron compounds in the aquatic environment. Chemosphere, 82(3), 483-487. https://doi.org/10.1016/j.chemosphere.2010.10.031
- [44] Shibli, A., & Srebnik, M. (2005). Environmental aspects of boron. Studies in Inorganic Chemistry, 551-598. https://doi.org/10.1016/s0169-3158(06)80010-1
- [45] Howe, P. D. (1998). A review of boron effects in the environment. Biological Trace Element Research, 66(1- 3), 153-166. https://doi.org/10.1007/bf02783135
- [46] Biyik, S., Arslan, F., & Aydin, M. (2014). Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying. Journal of Electronic Materials, 44(1), 457-466. https://doi.org/10.1007/s11664-014-3399-4
- [47] Bıyık, S. (2024). Influence of polyethylene glycol and methanol additions on the properties of ball-milled Cu4B4C composite powders. International Journal of Computational and Experimental Science and Engineering, 10(3). https://doi.org/10.22399/ijcesen.317