Review
BibTex RIS Cite

Applications of additive manufacturing technologies in the production of boron-based ceramics

Year 2025, Volume: 10 Issue: 3, 95 - 110, 30.09.2025

Abstract

Boron-based refractory ceramics, particularly boron carbide (B4C) and boron nitride (BN), play a critical role in applications such as nuclear energy, defense, and aerospace due to their exceptional properties, including high hardness, thermal stability, and chemical inertness. While traditional manufacturing methods limit the potential of these materials, additive manufacturing (AM) technologies offer innovative solutions to overcome these constraints. Methods such as stereolithography (SLA), binder jetting, and selective laser sintering (SLS) enable the production of high-performance parts with complex geometries, reducing material waste and increasing design flexibility. This review examines the recent advancements in the AM production of boron-based ceramics and highlights future research directions and industrial potential. Furthermore, the development of sustainable and cost-effective manufacturing methods will facilitate broader use of these materials in high-performance applications.

References

  • Domnich, V., Reynaud, S., Haber, R.A., & Chhowalla, M. (2011). Boron carbide: Structure, properties, and stability under stress. Journal of the American Ceramic Society, 94(11), 3605-3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x
  • Zhang, W., Yamashita, S., & Kita, H. (2019). Progress in pressureless sintering of boron carbide ceramics-a review. Advances in Applied Ceramics, 118(4), 222-239. https://doi.org/10.1080/17436753.2019.1574285
  • Ly, M., Spinelli, S., Hays, S., & Zhu, D. (2022). 3D printing of ceramic biomaterials. Engineered Regeneration, 3(1), 41-52. https://doi.org/10.1016/j.engreg.2022.01.006
  • Mansfield, B., Torres, S., Yu, T., & Wu, D. (2019). A review on additive manufacturing of ceramics. Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. ASME. https://doi.org/10.1115/MSEC2019-2886
  • Velu Kaliyannan, G., Rathanasamy, R., Gunasekaran, R., Sivaraj, S., Kandasamy, S., & Krishna Rao, S. (2024). Preparation of ceramics: Different approaches. Engineering Materials, 53-86. https://doi.org/10.1007/978-981-97-9018-0_3
  • Costakis Jr., W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. https://doi.org/10.1016/j.jeurceramsoc.2016.06.002
  • Nazari, K., Tran, P., Tan, P., Ghazlan, A., Ngo, T. D., & Xie, Y. M. (2023). Advanced manufacturing methods for ceramic and bioinspired ceramic composites: A review. Open Ceramics, 15, 100399. https://doi.org/10.1016/j.oceram.2023.100399
  • Martínez-García, A., Monzón, M. & Paz, R. (2021). Standards for additive manufacturing technologies: Structure and impact. In J. Pou, A. Riveiro, & J. P. Davim (Eds.), Additive Manufacturing (pp. 395-408). Elsevier. https://doi.org/10.1016/B978-0-12-818411-0.00013-6
  • Suri, A., Subramanian, C., Sonber, J., & Murthy, T. C. (2010). Synthesis and consolidation of boron carbide: A review. International Materials Reviews, 55(1), 4-40. https://doi.org/10.1179/095066009X12506721665211
  • Zhang, F., Li, Z., Xu, M., Wang, S., Li, N., & Yang, J. (2022). A review of 3D printed porous ceramics. Journal of the European Ceramic Society, 42(8), 3351-3373. https://doi.org/10.1016/j.jeurceramsoc.2022.02.039
  • Das, S., Sozal, M. S. I., Li, W., & John, D. (2023). Ultra-high-temperature ceramic coatings ZrC, ZrB2, HfC, and HfB2. In A. Pakseresht, K. Kirubaharan, & A. Mosas (Eds.), Ceramic Coatings for High-Temperature Environments: From Thermal Barrier to Environmental Barrier Applications (pp. 441-469). Springer. https://doi.org/10.1007/978-3-031-40809-0_14
  • Kuliiev, R. (2020). Mechanical properties of boron carbide (B4C). [Master's Thesis, University of Central Florida]. https://doi.org/10.13140/RG.2.2.32343.24483
  • Sola, A., & Trinchi, A. (2023). Boron-induced microstructural manipulation of titanium and titanium alloys in additive manufacturing. Virtual and Physical Prototyping, 18(1), e2230467. https://doi.org/10.1080/17452759.2023.2230467
  • Vozárová, M., Neubauer, E., Bača, Ľ., Kitzmantel, M., Feranc, J., Trembošová, V., … & Janek, M. (2023). Preparation of fully dense boron carbide ceramics by Fused Filament Fabrication (FFF). Journal of the European Ceramic Society, 43(5), 1751-1761. https://doi.org/10.1016/j.jeurceramsoc.2022.12.018
  • Eichler, J., & Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28(5), 1105-1109. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  • Bai, S., Lee, H. J., & Liu, J. (2020). 3D printing with mixed powders of boron carbide and Al alloy. Applied Sciences, 10(9), 3055. https://doi.org/10.3390/app10093055
  • Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert- Demut, I., Schlier, L., … & Greil, P. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729-754. https://doi.org/10.1002/adem.201400097
  • Zocca, A., Colombo, P., Gomes, C. M., & Günster, J. (2015). Additive manufacturing of ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98(7), 1983-2001. https://doi.org/10.1111/jace.13700
  • Liu, G., Chen, S., Zhao, Y., Fu, Y., & Wang, Y. (2020). The effects of transition metal oxides (Me= Ti, Zr, Nb, and Ta) on the mechanical properties and interfaces of B4C ceramics fabricated via pressureless sintering. Coatings, 10(12), 1253. https://doi.org/10.3390/coatings10121253
  • Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O., Gachechiladze, A., Oakley, A., & Margiev, B. (2018). Boron-containing nanocrystalline ceramic and metal-ceramic materials. In C. M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications (pp. 13-35). Elsevier. https://doi.org/10.1016/B978-0-12-813351-4.00002-X
  • Bauman, Z. (2019). hBN-acrylate composite printing:Stereolithography and UV-assisted direct write. [Master's thesis, University of Connecticut]
  • Lakusta, M. (2024). Processing-microstructure-properties relationships in additively manufactured Zrb2- Sic ceramics. [Doctoral dissertation, Missouri University of Science and Technolog]
  • Stewart, D. M. (2016). Zirconium diboride, hexagonal boron nitride, and amorphous alumina thin films for high temperature applications. [Doctoral dissertation, University of Maine]
  • Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., … & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661-687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  • Wahl, L., Schmiedeke, S., Knorr, M., Schneider, I., & Travitzky, N. (2022). Fabrication of reaction-bonded boron carbide-based composites by binder jetting 3D printing. Ceramics, 5(4), 1167-1173. https://doi.org/10.3390/ceramics5040082
  • Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., … & Chmielus, M. (2021). Binder jet 3D printing-Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707. https://doi.org/10.1016/j.pmatsci.2020.100707
  • Sharma, S. (2022). Boron nitride nanostructures: Synthesis, characterization, and application in photovoltaics and biomedicine. [Doctoral dissertation, Michigan Technological University]
  • Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., & Golberg, D. (2009). Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials, 19(12), 1857-1862. https://doi.org/10.1002/adfm.200801435
  • Liu, Y., Jiang, D., Hessien, M. M., Mahmoud, M., Xu, M., & El-Bahy, Z. M. (2024). Enhanced thermal and mechanical properties of boron-modified phenolic resin composites with multifiller system for aerospace applications. Advanced Composites and Hybrid Materials, 7, 180. https://doi.org/10.1007/s42114-024-00961-z
  • Luo, W., Wang, Y., Hitz, E., Lin, Y., Yang, B., & Hu, L. (2017). Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Advanced Functional Materials, 27(31), 1701450. https://doi.org/10.1002/adfm.201701450
  • Terao, T., Bando, Y., Mitome, M., Zhi, C., Tang, C., & Golberg, D. (2009). Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes. The Journal of Physical Chemistry C, 113(31), 13605-13609. https://doi.org/10.1021/jp903159s
  • Ciofani, G., Raffa, V., Yu, J., Chen, Y., Obata, Y., Takeoka, S., … & Cuschieri, A. (2009). Boron nitride nanotubes: A novel vector for targeted magnetic drug delivery. Current Nanoscience, 5(1), 33-38. https://doi.org/10.2174/157341309787314557
  • Huang, Y., Lin, J., Bando, Y., Tang, C., Zhi, C., Shi, Y., … & Golberg, D. (2010). BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: Novel magneto-operable nanocomposites. Journal of Materials Chemistry, 20(5), 1007-1011. https://doi.org/10.1039/B916971G
  • Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., & Bertozzi, C. R. (2009). Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society, 131(3), 890-891. https://doi.org/10.1021/ja807334b
  • Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., & Zhi, C. (2010). Boron nitride nanotubes and nanosheets. ACS Nano, 4(6), 2979-2993. https://doi.org/10.1021/nn1006495
  • Wang, Y., Liu, Q., Zhang, B., Wang, H., Hazell, P.J., Li, B., … & Ye, F. (2023). Improved ballistic performance of a continuous-gradient B4C/Al composite inspired by nacre. Materials Science and Engineering: A, 874, 145071. https://doi.org/10.1016/j.msea.2023.145071
  • Tammana, S. M., Sonber, J., Sairam, K., Majumdar, S., & Kain, V. (2019). Boron-based ceramics and composites for nuclear and space applications: Synthesis and consolidation. In M. Y, & R. J (Eds.), Handbook of advanced ceramics and composites (pp. 1-36). Springer Nature. https://doi.org/10.1007/978-3-319-73255-8_22-1
  • Tului, M., Lionetti, S., Pulci, G., Marra, F., Tirillò, J., & Valente, T. (2010). Zirconium diboride based coatings for thermal protection of re entry vehicles: Effect of MoSi2 addition. Surface and Coatings Technology, 205(4), 1065-1069. https://doi.org/10.1016/j.surfcoat.2010.07.120
  • Raju, G., Basu, B., Tak, N., & Cho, S. (2009). Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid. Journal of the European Ceramic Society, 29(10), 2119-2128. https://doi.org/10.1016/j.jeurceramsoc.2008.11.018
  • Padamata, S. K., Singh, K., Haarberg, G. M., & Saevarsdottir, G. (2022). Wettable TiB2 cathode for aluminum electrolysis: A review. Journal of Sustainable Metallurgy, 8(2), 613-624. https://doi.org/10.1007/s40831-022-00526-8
  • Moghadamian, S. R., Esfahani, H., Lin, N., & Nouri, M. (2024). Development of high hard TiB-TiB2 coatings on Ti implants for bio-tribological applications; Applying Box- Behnken design and actual wear analyzing in simulated body fluids. Results in Surfaces and Interfaces, 16, 100276. https://doi.org/10.1016/j.rsurfi.2024.100276
  • Chen, W., Wenhui, H., Zhao, Z., He, N., Xiuqing, L., & Li, H. (2021). Mechanical properties and tribological characteristics of B4C-SiC ceramic composite in artificial seawater. Journal of Asian Ceramic Societies, 9(4), 1495-1505. https://doi.org/10.1080/21870764.202 1.1986202
  • da Rocha, R. M., & de Melo, F. C. (2009). Pressureless sintering of B4C-SiC composites for armor applications. Ceramic Engineering and Science Proceedings, 30(5), 113-119. https://doi.org/10.1002/9780470584330.ch11
  • Savio, S., Rao, A. S., Reddy, P. R. S., & Madhu, V. (2019). Microstructure and ballistic performance of hot pressed & reaction bonded boron carbides against an armour piercing projectile. Advances in Applied Ceramics, 118(5), 264-273. https://doi.org/10.1080/17436753.2018.1564416
  • Wang, T., Ni, C., & Karandikar, P. (2016). Microstructural characteristics of reaction-bonded B4C/SiC composite. In S. J. Ikhmayies, B. Li, J. S. Carpenter, J.-Y. Hwang, S. N. Monteiro, J Li, D. Firrao, M. Zhang, Z. Peng, J. P. Escobedo-Diaz, & C. Bai (Eds.) Characterization of Minerals, Metals, and Materials 2016 (pp. 279-286). Springer Nature. https://doi.org/10.1007/978-3-319-48210-1_34
  • Innocent, J.-L., Portehault, D., Gouget, G., Maruyama, S., Ohkubo, I., & Mori, T. (2017). Thermoelectric properties of boron carbide/HfB 2 composites. Materials for Renewable and Sustainable Energy, 6(6). https://doi.org/10.1007/s40243-017-0090-8
  • Feng, B., Martin, H. P., Börner, F. D., Lippmann, W., Schreier, M., Vogel, K., … & Richter, C. (2014). Manufacture and testing of thermoelectric modules consisting of BxC and TiOx elements. Advanced Engineering Materials, 16(10), 1252-1263. https://doi.org/10.1002/adem.201400183
  • Kakiage, M., Tahara, N., Yanase, I. & Kobayashi, H. (2011). Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product. Materials Letters, 65(12), 1839-1841. https://doi.org/10.1016/j.matlet.2011.03.046
  • Khasanov, O. L., Dvilis, E. S., Bikbaeva, Z. G., Polisadova, V. V., Khasanov, A. O., Petukevich, М. S., & Milovanova, T. V. (2015). Influence of physical properties of B4C powder on the strength properties of the ceramics manufactured by SPS sintering. Advanced Materials Research, 1085, 312-315. https://doi.org/10.12794/metadc1538698
  • Aizenshtein, M., Froumin, N., & Frage, N. (2014). Experimental study and thermodynamic analysis of high temperature interactions between boron carbide and liquid metals. Engineering, 6(13), 849. https://doi.org/10.4236/eng.2014.613079
  • Basu, B., Raju, G., & Suri, A. (2006). Processing and properties of monolithic TiB2 based materials. International Materials Reviews, 51(6), 352-374. https://doi.org/10.1179/174328006X102529
  • Königshofer, R., Fürnsinn, S., Steinkellner, P., Lengauer, W., Haas, R., Rabitsch, K., & Scheerer, M. (2005). Solid-state properties of hot-pressed TiB2 ceramics. International Journal of Refractory Metals and Hard Materials, 23(4-6), 350-357. https://doi.org/10.1016/j.ijrmhm.2005.05.006
  • Ferber, M. K., Becher, P. F. & Finch, C. B. (1983). Effect of microstructure on the properties of TiB2 ceramics. Journal of the American Ceramic Society, 66(1), C-2-C-3. https://doi.org/10.1111/j.1151-2916.1983.tb09974.x
  • Asl, M. S., Nayebi, B., Ahmadi, Z., Zamharir, M. J. &, Shokouhimehr, M. (2018). Effects of carbon additives on the properties of ZrB2-based composites: A review. Ceramics International, 44(7), 7334-7348. https://doi.org/10.1016/j.ceramint.2018.01.214
  • Zhang, L., Pejaković, D. A., Marschall, J., & Gasch, M. (2011). Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. Journal of the American Ceramic Society, 94(8), 2562-2570. https://doi.org/10.1111/j.1551-2916.2011.04411.x
  • Zimmermann, J. W., Hilmas, G. E., Fahrenholtz, W. G., Dinwiddie, R. B., Porter, W. D., & Wang, H. (2008). Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. Journal of the American Ceramic Society, 91(5), 1405-1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x
  • Kaufman, S. (1964). Fabrication development of boron carbide and boron carbide + silicon carbide mixtures for possible application as lumped burnable poisons in PWR-2. Office of Scientific and Technical Information, U.S. Department of Energy. https://www.osti.gov/biblio/4055216
  • Dutto, M., Goeuriot, D., Saunier, S., Sao-Joao, S., Marinel, S., Frage, N., & Hayun, S. (2020). The effect of microwave heating on the microstructure and the mechanical properties of reaction-bonded boron carbide. International Journal of Applied Ceramic Technology, 17(2), 751-760. https://doi.org/10.1111/ijac.13379
  • Kaliyannan, G. V., Rathanasamy, R., Gunasekaran, R., Sivaraj, S., Kandasamy, S., & Rao, S. K. Preparation of ceramics: Different approaches. In: U. Kumar (Eds.), Defects engineering in electroceramics for energy applications, 53-86. https://doi.org/10.1007/978-981-97-9018-0_3
  • Haubner, R., Wilhelm, M., Weissenbacher, R., & Lux, B. (2002). Boron nitrides-properties, synthesis and applications. In M. Jansen (Eds.), High performance non-oxide ceramics II. Structure and bonding (Vol. 102). Springer. https://doi.org/10.1007/3-540-45623-6_1
  • Mirzayev, M., Abiyev, A., Samedov, O., Demir, E., Popov, E., & Samadov, S. (2024). Structural evolution of zirconium diboride under gamma irradiation and thermal annealing. Journal of Alloys and Compounds, 1005, 175970. https://doi.org/10.1016/j.jallcom.2024.175970
  • Zhang, J., Ke, W., Ji, W., Fan, Z., Wang, W., & Fu, Z. (2015). Microstructure and properties of insitu titanium boride (TiB)/titanium (TI) composites. Materials Science and Engineering: A, 648, 158-163. https://doi.org/10.1016/j.msea.2015.09.067
  • He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T., & Zerda, T. (2002). Boron suboxide: As hard as cubic boron nitride. Applied Physics Letters, 81(4), 643-645. https://doi.org/10.1063/1.1494860
  • Taniguchi, T., & Watanabe, K. (2007). Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. Journal of Crystal Growth, 303(2), 525-529. https://doi.org/10.1016/j.jcrysgro.2006.12.061
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. https://doi.org/10.1107/S0021889811038970
  • Wentorf, R. (1957). Cubic form of boron nitride. The Journal of Chemical Physics, 26(4), 956-956. https://doi.org/10.1063/1.1745964
  • Knittle, E., Kaner, R., Jeanloz, R., & Cohen, M. (1995). High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Physical Review B, 51(18), 12149. https://doi.org/10.1103/PhysRevB.51.12149
  • Thevenot, F. (1990). Boron carbide-a comprehensive review. Journal of the European Ceramic Society, 6(4), 205-225. https://doi.org/10.1016/0955-2219(90)90048-K
  • Amirsalar K., N.O. (2017). Novel nanocomposite ceramic scaffold fabricated via 3D printing for cancer therapy application, (523-524). 15th Conference & Exhibition of the European Ceramic Society. ECerS2017.
  • Yen, H. C. (2015). Experimental studying on development of slurry-layer casting system for additive manufacturing of ceramics. The International Journal of Advanced Manufacturing Technology, 77, 915-925. https://doi.org/10.1007/s00170-014-6534-8
  • Wang, Y., Bu, Y., & Wang, X. (2024). Advances in 3D printing of structural and functional ceramics: Technologies, properties, and applications. Journal of the European Ceramic Society, 44(14), 116653. https://doi.org/10.1016/j.jeurceramsoc.2024.05.075
  • Liu, X., Zou, B., Xing, H., & Huang, C. (2020). The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceramics International, 46(1), 937-944. https://doi.org/10.1016/j.ceramint.2019.09.054
  • Dadkhah, M., Tulliani, J. M., Saboori, A., & Iuliano, L. (2023). Additive manufacturing of ceramics: Advances, challenges, and outlook. Journal of the European Ceramic Society, 43(15), 6635-6664. https://doi.org/10.1016/j.jeurceramsoc.2023.07.033
  • Wakai, F., Okuma, G., & Nishiyama, N. (2019). Sintering mechanics of ceramics: A short review. Materials Today: Proceedings, 16(1), 4-13. https://doi.org/10.1016/j.matpr.2019.05.304
  • Rahaman, M. N. (2017). Ceramic processing and sintering (2nd. ed). CRC Press. https://doi.org/10.1201/9781315274126
  • German, R. M. (1996). Sintering theory and practice. Wiley
  • Lange, F. F. (1989). Powder processing science and technology for increased reliability. Journal of the American Ceramic Society, 72(1), 3-15. https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
  • Richerson, D. W., & Lee, W. E. (2018). Modern ceramic engineering: Properties, processing, and use in design (4th ed). CRC Press. https://doi.org/10.1201/9780429488245
  • Mühler, T., Gomes, C. M., Heinrich, J., & Günster, J. (2015). Slurry-based additive manufacturing of ceramics. International Journal of Applied Ceramic Technology, 12(1), 18-25. https://doi.org/10.1111/ijac.12113
  • Fedorchenko, I. (2009). Shrinkage of metal ceramic briquettes during sintering. Powder Metallurgy and Metal Ceramics, 48, 497-507. https://doi.org/10.1007/s11106-010-9159-y
  • Wang, K., Qiu, M., Jiao, C., Gu, J., Xie, D., Wang, C., … & Shen, L. (2020). Study on defect-free debinding green body of ceramic formed by DLP technology. Ceramics International, 46(2), 2438-2446. https://doi.org/10.1016/j.ceramint.2019.09.237
  • Liu, Q., & Zhai, W. (2022). Hierarchical porous ceramics with distinctive microstructures by emulsion-based direct ink writing. ACS Applied Materials & Interfaces, 14(28), 32196-32205. https://doi.org/10.1021/acsami.2c03245
  • Zirak, N., Shirinbayan, M., Benfriha, K., Deligant, M., & Tcharkhtchi, A. (2022). Stereolithography of (meth) acrylate-based photocurable resin: Thermal and mechanical properties. Journal of Applied Polymer Science, 139(22), 52248. https://doi.org/10.1002/app.52248
  • Corbin, S. F., Lee, J., & Qiao, X. (2001). Influence of green formulation and pyrolyzable particulates on the porous microstructure and sintering characteristics of tape cast ceramics. Journal of the American Ceramic Society, 84(1), 41-47. https://doi.org/10.1111/j.1151-2916.2001.tb00605.x
  • Belon, R., Antou, G., Pradeilles, N., Maître, A., & Gosset, D. (2017). Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics. Ceramics International, 43(8), 6631-6635. https://doi.org/10.1016/j.ceramint.2017.02.053
  • Liu, Y., Ge, S., Huang, Y., Huang, Z., & Zhang, D. (2021). Influence of sintering process conditions on microstructural and mechanical properties of boron carbide ceramics synthesized by spark plasma sintering. Materials, 14(5), 1100. https://doi.org/10.3390/ma14051100
  • Ji, W., Rehman, S. S., Wang, W., Wang, H., Wang, Y., Zhang, J., … & Fu, Z. (2015). Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism. Scientific Reports, 5, 15827. https://doi.org/10.1038/srep15827
  • Diaz-Cano, A., Trice, R. W., & Youngblood, J. P. (2017). Stabilization of highly-loaded boron carbide aqueous suspensions. Ceramics International, 43(12), 8572- 8578. https://doi.org/10.1016/j.ceramint.2017.03.111
  • Zeng, X., & Liu, W. (2016). Aqueous tape casting of B4C ceramics. Advances in Applied Ceramics, 115(4), 224- 228. https://doi.org/10.1080/17436753.2015.1126935
  • Zheng, J.-C., Zhang, L., Kretinin, A.V., Morozov, S.V., Wang, Y.B., Wang, T., … & Lu, C.-Y. (2016). High thermal conductivity of hexagonal boron nitride laminates. 2D Materials, 3(1), 011004. https://doi.org/10.1088/2053-1583/3/1/011004
  • Kruth, J.-P., Leu, M.-C., & Nakagawa, T. (1998). Progress in additive manufacturing and rapid prototyping. Cirp Annals, 47(2), 525-540. https://doi.org/10.1016/S0007-8506(07)63240-5
  • Deckers, J., Vleugels, J., & Kruth, J.-P. (2014). Additive manufacturing of ceramics: A review. Journal of Ceramic Science and Technology, 5(4), 245-260. https://doi.org/10.4416/JCST2014-00032
  • Liu, R., Chen, G., Qiu, Y., Chen, P., Shi, Y., Yan, C., & Tan, H. (2021). Fabrication of porous SiC by direct selective laser sintering effect of boron carbide. Metals, 11(5), 737. https://doi.org/10.3390/met11050737
  • Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M. (2021). Additive manufacturing technologies (3rd ed.). Springer Cham. https://doi.org/10.1007/978-3-030-56127-7
  • Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive manufacturing and its societal impact: A literature review. The International Journal of Advanced Manufacturing Technology, 67, 1191-1203. https://doi.org/10.1007/s00170-012-4558-5
  • Griffith, M. L., & Halloran, J.W. (1996). Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 79(10), 2601-2608. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
  • Lee, W. E. & Rainforth, M. (1994). Ceramic microstructures: Property control by processing. Springer Dordrecht. ISBN 978-0-412-43140-1
  • Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347-1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  • Ziaee, M., & Crane, N. B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031
  • Chen, L., Zhou, S., Li, M., Mo, F., Yu, S., & Wei, J. (2022). Catalytic materials by 3D printing: a mini review. Catalysts, 12(10), 1081. https://doi.org/10.3390/catal12101081
  • Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89(12), 3599-3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x
  • Wu, J., Zhang, L., Wang, W., Su, R., Gao, X., Li, S., … & He, R. (2023). Microstructures, mechanical properties and electromagnetic wave absorption performance of porous SiC ceramics by direct foaming combined with direct-ink-writing-based 3D printing. Materials, 16(7), 2861. https://doi.org/10.3390/ma16072861
  • Biçer, H. (2022). Reactive sintering of boron carbide based ceramics by SPS. Journal of Materials and Mechatronics: A, 3(1), 129-136. https://doi.org/10.55546/jmm.1072466
  • Zakaryan, M. K., Zurnachyan, A. R., Amirkhanyan, N. H., Kirakosyan, H. V., Antonov, M., Rodriguez, M. A., & Aydinyan, S. V. (2022). Novel pathway for the combustion synthesis and consolidation of boron carbide. Materials, 15(14), 5042. https://doi.org/10.3390/ma15145042
  • Martin, H. P., Feng, B., & Michaelis, A. (2020). Pressureless sintering and properties of boron carbide composite materials. International Journal of Applied Ceramic Technology, 17(2), 407-412. https://doi.org/10.1111/ijac.13423
  • Kazakova, V., & Grigoryev, E. (2018). Spark plasma sintering of boron carbide powder. KnE Materials Science, 4(1), 548. https://doi.org/ 10.18502/kms.v4i1.2209
  • Roumiguier, L., Jankowiak, A., Pradeilles, N., Antou, G., & Maître, A. (2019). Mechanical properties of submicronic and nanometric boron carbides obtained by spark plasma sintering: Influence of B/C ratio and oxygen content. Ceramics International, 45(8), 9912- 9918. https://doi.org/10.1016/j.ceramint.2019.02.033
  • Kozień, D., Czekaj, I., Ziąbka, M., Bik, M., Pasiut, K., Zientara, D., & Pędzich, Z. (2022). Effect of additives on the reactive sintering of ti-b4c composites consolidated by hot pressing and pressureless sintering. Advanced Engineering Materials, 24(9), 2101795. https://doi.org/10.1002/adem.202101795
  • Xuan, W., Ji, Y., Liu, B., Li, S., Chen, W., Li, Z., … & Long, F. (2023). Spark plasma sintering of boron nitride micron tubes reinforced boron carbide ceramics with excellent mechanical property. International Journal of Applied Ceramic Technology, 20(3), 1457-1469. https://doi.org/10.1111/ijac.14308
  • Eremeeva, Z. V., Kamali, S., Lizunov, A. I., & Ovchinnikov, V. A. (2022). Production of nanostructured boron carbide ceramics for industrial applications. Key Engineering Materials, 910, 1075-1080. https://doi.org/10.4028/p-dd4bb5
  • Hales, S., Tokita, E., Neupane, R., Ghosh, U., Elder, B., Wirthlin, D., & Kong, Y. L. (2020). 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 31(17), 172001. https://doi.org/10.1088/1361-6528/ab5f29
  • Sauerschnig, P., Watts, J., Vaney, J., Talbot, P., Alarco, J., Mackinnon, I., & Mori, T. (2020). Thermoelectric properties of phase pure boron carbide prepared by a solution-based method. Advances in Applied Ceramics, 119(2), 97-106. https://doi.org/10.1080/17436753.2019.1705017
  • Réjasse, F., Georges, M., Pradeilles, N., Antou, G., & Maître, A. (2018). Influence of chemical composition on mechanical properties of spark plasma sintered boron carbide monoliths. Journal of the American Ceramic Society, 101(9), 3767-3772. https://doi.org/10.1111/jace.15707
  • Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L., & Dizon, J. R. C. (2022). A comprehensive review on the application of 3D printing in the aerospace industry. Key Engineering Materials, 913, 27-34. https://doi.org/10.4028/p-94a9zb
  • Gao, S., Dong, K., Li, X., Kong, J., Wang, S., Xing, P., & Li, P. (2019). An economic and environment friendly way of recycling boron carbide waste to prepare B4C/ Al composite ceramic. International Journal of Applied Ceramic Technology, 16(3), 1032-1040. https://doi.org/10.1111/ijac.13129
  • Khasanov, O. L., Dvilis, E. S., Khasanov, A. O., Bikbaeva, Z. G., Polisadova, V. V., & Milovanova, T. V. (2014). Influence of ultradispersed fraction of boron carbide powder on strength properties of the ceramics manufactured by SPS method. Advanced Materials Research, 872, 45-51. https://doi.org/10.4028/www.scientific.net/AMR.872.45
  • Roy, T., Subramanian, C., & Suri, A. (2006). Pressureless sintering of boron carbide. Ceramics International, 32(3), 227-233. https://doi.org/10.1016/j.ceramint.2005.02.008

Bor tabanlı seramik üretiminde eklemeli üretim teknolojilerinin uygulamaları

Year 2025, Volume: 10 Issue: 3, 95 - 110, 30.09.2025

Abstract

Bor esaslı refrakter seramikler, özellikle bor karbür (B4C) ve bor nitrür (BN), yüksek sertlik, termal kararlılık ve kimyasal inertlik gibi olağanüstü özellikleri nedeniyle nükleer enerji, savunma ve havacılık gibi uygulamalarda kritik bir rol oynamaktadır. Geleneksel üretim yöntemleri bu malzemelerin potansiyelini sınırlarken, eklemeli imalat (Eİ) teknolojileri bu kısıtlamaların üstesinden gelmek için yenilikçi çözümler sunmaktadır. Stereolitografi (SLA), bağlayıcı püskürtme ve seçici lazer sinterleme (SLS) gibi yöntemler, karmaşık geometrilere sahip yüksek performanslı parçaların üretimini sağlayarak malzeme israfını azaltmakta ve tasarım esnekliğini artırmaktadır. Bu inceleme, bor esaslı seramiklerin Eİ ile üretimindeki son gelişmeleri incelemekte ve gelecekteki araştırma yönlerini ve endüstriyel potansiyeli vurgulamaktadır. Ayrıca, sürdürülebilir ve uygun maliyetli üretim yöntemlerinin geliştirilmesi, bu malzemelerin yüksek performanslı uygulamalarda daha yaygın kullanımını kolaylaştıracaktır.

References

  • Domnich, V., Reynaud, S., Haber, R.A., & Chhowalla, M. (2011). Boron carbide: Structure, properties, and stability under stress. Journal of the American Ceramic Society, 94(11), 3605-3628. https://doi.org/10.1111/j.1551-2916.2011.04865.x
  • Zhang, W., Yamashita, S., & Kita, H. (2019). Progress in pressureless sintering of boron carbide ceramics-a review. Advances in Applied Ceramics, 118(4), 222-239. https://doi.org/10.1080/17436753.2019.1574285
  • Ly, M., Spinelli, S., Hays, S., & Zhu, D. (2022). 3D printing of ceramic biomaterials. Engineered Regeneration, 3(1), 41-52. https://doi.org/10.1016/j.engreg.2022.01.006
  • Mansfield, B., Torres, S., Yu, T., & Wu, D. (2019). A review on additive manufacturing of ceramics. Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. ASME. https://doi.org/10.1115/MSEC2019-2886
  • Velu Kaliyannan, G., Rathanasamy, R., Gunasekaran, R., Sivaraj, S., Kandasamy, S., & Krishna Rao, S. (2024). Preparation of ceramics: Different approaches. Engineering Materials, 53-86. https://doi.org/10.1007/978-981-97-9018-0_3
  • Costakis Jr., W. J., Rueschhoff, L. M., Diaz-Cano, A. I., Youngblood, J. P., & Trice, R. W. (2016). Additive manufacturing of boron carbide via continuous filament direct ink writing of aqueous ceramic suspensions. Journal of the European Ceramic Society, 36(14), 3249-3256. https://doi.org/10.1016/j.jeurceramsoc.2016.06.002
  • Nazari, K., Tran, P., Tan, P., Ghazlan, A., Ngo, T. D., & Xie, Y. M. (2023). Advanced manufacturing methods for ceramic and bioinspired ceramic composites: A review. Open Ceramics, 15, 100399. https://doi.org/10.1016/j.oceram.2023.100399
  • Martínez-García, A., Monzón, M. & Paz, R. (2021). Standards for additive manufacturing technologies: Structure and impact. In J. Pou, A. Riveiro, & J. P. Davim (Eds.), Additive Manufacturing (pp. 395-408). Elsevier. https://doi.org/10.1016/B978-0-12-818411-0.00013-6
  • Suri, A., Subramanian, C., Sonber, J., & Murthy, T. C. (2010). Synthesis and consolidation of boron carbide: A review. International Materials Reviews, 55(1), 4-40. https://doi.org/10.1179/095066009X12506721665211
  • Zhang, F., Li, Z., Xu, M., Wang, S., Li, N., & Yang, J. (2022). A review of 3D printed porous ceramics. Journal of the European Ceramic Society, 42(8), 3351-3373. https://doi.org/10.1016/j.jeurceramsoc.2022.02.039
  • Das, S., Sozal, M. S. I., Li, W., & John, D. (2023). Ultra-high-temperature ceramic coatings ZrC, ZrB2, HfC, and HfB2. In A. Pakseresht, K. Kirubaharan, & A. Mosas (Eds.), Ceramic Coatings for High-Temperature Environments: From Thermal Barrier to Environmental Barrier Applications (pp. 441-469). Springer. https://doi.org/10.1007/978-3-031-40809-0_14
  • Kuliiev, R. (2020). Mechanical properties of boron carbide (B4C). [Master's Thesis, University of Central Florida]. https://doi.org/10.13140/RG.2.2.32343.24483
  • Sola, A., & Trinchi, A. (2023). Boron-induced microstructural manipulation of titanium and titanium alloys in additive manufacturing. Virtual and Physical Prototyping, 18(1), e2230467. https://doi.org/10.1080/17452759.2023.2230467
  • Vozárová, M., Neubauer, E., Bača, Ľ., Kitzmantel, M., Feranc, J., Trembošová, V., … & Janek, M. (2023). Preparation of fully dense boron carbide ceramics by Fused Filament Fabrication (FFF). Journal of the European Ceramic Society, 43(5), 1751-1761. https://doi.org/10.1016/j.jeurceramsoc.2022.12.018
  • Eichler, J., & Lesniak, C. (2008). Boron nitride (BN) and BN composites for high-temperature applications. Journal of the European Ceramic Society, 28(5), 1105-1109. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005
  • Bai, S., Lee, H. J., & Liu, J. (2020). 3D printing with mixed powders of boron carbide and Al alloy. Applied Sciences, 10(9), 3055. https://doi.org/10.3390/app10093055
  • Travitzky, N., Bonet, A., Dermeik, B., Fey, T., Filbert- Demut, I., Schlier, L., … & Greil, P. (2014). Additive manufacturing of ceramic-based materials. Advanced Engineering Materials, 16(6), 729-754. https://doi.org/10.1002/adem.201400097
  • Zocca, A., Colombo, P., Gomes, C. M., & Günster, J. (2015). Additive manufacturing of ceramics: Issues, potentialities, and opportunities. Journal of the American Ceramic Society, 98(7), 1983-2001. https://doi.org/10.1111/jace.13700
  • Liu, G., Chen, S., Zhao, Y., Fu, Y., & Wang, Y. (2020). The effects of transition metal oxides (Me= Ti, Zr, Nb, and Ta) on the mechanical properties and interfaces of B4C ceramics fabricated via pressureless sintering. Coatings, 10(12), 1253. https://doi.org/10.3390/coatings10121253
  • Chkhartishvili, L., Mikeladze, A., Tsagareishvili, O., Gachechiladze, A., Oakley, A., & Margiev, B. (2018). Boron-containing nanocrystalline ceramic and metal-ceramic materials. In C. M. Hussain (Ed.), Handbook of Nanomaterials for Industrial Applications (pp. 13-35). Elsevier. https://doi.org/10.1016/B978-0-12-813351-4.00002-X
  • Bauman, Z. (2019). hBN-acrylate composite printing:Stereolithography and UV-assisted direct write. [Master's thesis, University of Connecticut]
  • Lakusta, M. (2024). Processing-microstructure-properties relationships in additively manufactured Zrb2- Sic ceramics. [Doctoral dissertation, Missouri University of Science and Technolog]
  • Stewart, D. M. (2016). Zirconium diboride, hexagonal boron nitride, and amorphous alumina thin films for high temperature applications. [Doctoral dissertation, University of Maine]
  • Chen, Z., Li, Z., Li, J., Liu, C., Lao, C., Fu, Y., … & He, Y. (2019). 3D printing of ceramics: A review. Journal of the European Ceramic Society, 39(4), 661-687. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  • Wahl, L., Schmiedeke, S., Knorr, M., Schneider, I., & Travitzky, N. (2022). Fabrication of reaction-bonded boron carbide-based composites by binder jetting 3D printing. Ceramics, 5(4), 1167-1173. https://doi.org/10.3390/ceramics5040082
  • Mostafaei, A., Elliott, A. M., Barnes, J. E., Li, F., Tan, W., Cramer, C. L., … & Chmielus, M. (2021). Binder jet 3D printing-Process parameters, materials, properties, modeling, and challenges. Progress in Materials Science, 119, 100707. https://doi.org/10.1016/j.pmatsci.2020.100707
  • Sharma, S. (2022). Boron nitride nanostructures: Synthesis, characterization, and application in photovoltaics and biomedicine. [Doctoral dissertation, Michigan Technological University]
  • Zhi, C., Bando, Y., Terao, T., Tang, C., Kuwahara, H., & Golberg, D. (2009). Towards thermoconductive, electrically insulating polymeric composites with boron nitride nanotubes as fillers. Advanced Functional Materials, 19(12), 1857-1862. https://doi.org/10.1002/adfm.200801435
  • Liu, Y., Jiang, D., Hessien, M. M., Mahmoud, M., Xu, M., & El-Bahy, Z. M. (2024). Enhanced thermal and mechanical properties of boron-modified phenolic resin composites with multifiller system for aerospace applications. Advanced Composites and Hybrid Materials, 7, 180. https://doi.org/10.1007/s42114-024-00961-z
  • Luo, W., Wang, Y., Hitz, E., Lin, Y., Yang, B., & Hu, L. (2017). Solution processed boron nitride nanosheets: Synthesis, assemblies and emerging applications. Advanced Functional Materials, 27(31), 1701450. https://doi.org/10.1002/adfm.201701450
  • Terao, T., Bando, Y., Mitome, M., Zhi, C., Tang, C., & Golberg, D. (2009). Thermal conductivity improvement of polymer films by catechin-modified boron nitride nanotubes. The Journal of Physical Chemistry C, 113(31), 13605-13609. https://doi.org/10.1021/jp903159s
  • Ciofani, G., Raffa, V., Yu, J., Chen, Y., Obata, Y., Takeoka, S., … & Cuschieri, A. (2009). Boron nitride nanotubes: A novel vector for targeted magnetic drug delivery. Current Nanoscience, 5(1), 33-38. https://doi.org/10.2174/157341309787314557
  • Huang, Y., Lin, J., Bando, Y., Tang, C., Zhi, C., Shi, Y., … & Golberg, D. (2010). BN nanotubes coated with uniformly distributed Fe3O4 nanoparticles: Novel magneto-operable nanocomposites. Journal of Materials Chemistry, 20(5), 1007-1011. https://doi.org/10.1039/B916971G
  • Chen, X., Wu, P., Rousseas, M., Okawa, D., Gartner, Z., Zettl, A., & Bertozzi, C. R. (2009). Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society, 131(3), 890-891. https://doi.org/10.1021/ja807334b
  • Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., & Zhi, C. (2010). Boron nitride nanotubes and nanosheets. ACS Nano, 4(6), 2979-2993. https://doi.org/10.1021/nn1006495
  • Wang, Y., Liu, Q., Zhang, B., Wang, H., Hazell, P.J., Li, B., … & Ye, F. (2023). Improved ballistic performance of a continuous-gradient B4C/Al composite inspired by nacre. Materials Science and Engineering: A, 874, 145071. https://doi.org/10.1016/j.msea.2023.145071
  • Tammana, S. M., Sonber, J., Sairam, K., Majumdar, S., & Kain, V. (2019). Boron-based ceramics and composites for nuclear and space applications: Synthesis and consolidation. In M. Y, & R. J (Eds.), Handbook of advanced ceramics and composites (pp. 1-36). Springer Nature. https://doi.org/10.1007/978-3-319-73255-8_22-1
  • Tului, M., Lionetti, S., Pulci, G., Marra, F., Tirillò, J., & Valente, T. (2010). Zirconium diboride based coatings for thermal protection of re entry vehicles: Effect of MoSi2 addition. Surface and Coatings Technology, 205(4), 1065-1069. https://doi.org/10.1016/j.surfcoat.2010.07.120
  • Raju, G., Basu, B., Tak, N., & Cho, S. (2009). Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid. Journal of the European Ceramic Society, 29(10), 2119-2128. https://doi.org/10.1016/j.jeurceramsoc.2008.11.018
  • Padamata, S. K., Singh, K., Haarberg, G. M., & Saevarsdottir, G. (2022). Wettable TiB2 cathode for aluminum electrolysis: A review. Journal of Sustainable Metallurgy, 8(2), 613-624. https://doi.org/10.1007/s40831-022-00526-8
  • Moghadamian, S. R., Esfahani, H., Lin, N., & Nouri, M. (2024). Development of high hard TiB-TiB2 coatings on Ti implants for bio-tribological applications; Applying Box- Behnken design and actual wear analyzing in simulated body fluids. Results in Surfaces and Interfaces, 16, 100276. https://doi.org/10.1016/j.rsurfi.2024.100276
  • Chen, W., Wenhui, H., Zhao, Z., He, N., Xiuqing, L., & Li, H. (2021). Mechanical properties and tribological characteristics of B4C-SiC ceramic composite in artificial seawater. Journal of Asian Ceramic Societies, 9(4), 1495-1505. https://doi.org/10.1080/21870764.202 1.1986202
  • da Rocha, R. M., & de Melo, F. C. (2009). Pressureless sintering of B4C-SiC composites for armor applications. Ceramic Engineering and Science Proceedings, 30(5), 113-119. https://doi.org/10.1002/9780470584330.ch11
  • Savio, S., Rao, A. S., Reddy, P. R. S., & Madhu, V. (2019). Microstructure and ballistic performance of hot pressed & reaction bonded boron carbides against an armour piercing projectile. Advances in Applied Ceramics, 118(5), 264-273. https://doi.org/10.1080/17436753.2018.1564416
  • Wang, T., Ni, C., & Karandikar, P. (2016). Microstructural characteristics of reaction-bonded B4C/SiC composite. In S. J. Ikhmayies, B. Li, J. S. Carpenter, J.-Y. Hwang, S. N. Monteiro, J Li, D. Firrao, M. Zhang, Z. Peng, J. P. Escobedo-Diaz, & C. Bai (Eds.) Characterization of Minerals, Metals, and Materials 2016 (pp. 279-286). Springer Nature. https://doi.org/10.1007/978-3-319-48210-1_34
  • Innocent, J.-L., Portehault, D., Gouget, G., Maruyama, S., Ohkubo, I., & Mori, T. (2017). Thermoelectric properties of boron carbide/HfB 2 composites. Materials for Renewable and Sustainable Energy, 6(6). https://doi.org/10.1007/s40243-017-0090-8
  • Feng, B., Martin, H. P., Börner, F. D., Lippmann, W., Schreier, M., Vogel, K., … & Richter, C. (2014). Manufacture and testing of thermoelectric modules consisting of BxC and TiOx elements. Advanced Engineering Materials, 16(10), 1252-1263. https://doi.org/10.1002/adem.201400183
  • Kakiage, M., Tahara, N., Yanase, I. & Kobayashi, H. (2011). Low-temperature synthesis of boron carbide powder from condensed boric acid-glycerin product. Materials Letters, 65(12), 1839-1841. https://doi.org/10.1016/j.matlet.2011.03.046
  • Khasanov, O. L., Dvilis, E. S., Bikbaeva, Z. G., Polisadova, V. V., Khasanov, A. O., Petukevich, М. S., & Milovanova, T. V. (2015). Influence of physical properties of B4C powder on the strength properties of the ceramics manufactured by SPS sintering. Advanced Materials Research, 1085, 312-315. https://doi.org/10.12794/metadc1538698
  • Aizenshtein, M., Froumin, N., & Frage, N. (2014). Experimental study and thermodynamic analysis of high temperature interactions between boron carbide and liquid metals. Engineering, 6(13), 849. https://doi.org/10.4236/eng.2014.613079
  • Basu, B., Raju, G., & Suri, A. (2006). Processing and properties of monolithic TiB2 based materials. International Materials Reviews, 51(6), 352-374. https://doi.org/10.1179/174328006X102529
  • Königshofer, R., Fürnsinn, S., Steinkellner, P., Lengauer, W., Haas, R., Rabitsch, K., & Scheerer, M. (2005). Solid-state properties of hot-pressed TiB2 ceramics. International Journal of Refractory Metals and Hard Materials, 23(4-6), 350-357. https://doi.org/10.1016/j.ijrmhm.2005.05.006
  • Ferber, M. K., Becher, P. F. & Finch, C. B. (1983). Effect of microstructure on the properties of TiB2 ceramics. Journal of the American Ceramic Society, 66(1), C-2-C-3. https://doi.org/10.1111/j.1151-2916.1983.tb09974.x
  • Asl, M. S., Nayebi, B., Ahmadi, Z., Zamharir, M. J. &, Shokouhimehr, M. (2018). Effects of carbon additives on the properties of ZrB2-based composites: A review. Ceramics International, 44(7), 7334-7348. https://doi.org/10.1016/j.ceramint.2018.01.214
  • Zhang, L., Pejaković, D. A., Marschall, J., & Gasch, M. (2011). Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. Journal of the American Ceramic Society, 94(8), 2562-2570. https://doi.org/10.1111/j.1551-2916.2011.04411.x
  • Zimmermann, J. W., Hilmas, G. E., Fahrenholtz, W. G., Dinwiddie, R. B., Porter, W. D., & Wang, H. (2008). Thermophysical properties of ZrB2 and ZrB2-SiC ceramics. Journal of the American Ceramic Society, 91(5), 1405-1411. https://doi.org/10.1111/j.1551-2916.2008.02268.x
  • Kaufman, S. (1964). Fabrication development of boron carbide and boron carbide + silicon carbide mixtures for possible application as lumped burnable poisons in PWR-2. Office of Scientific and Technical Information, U.S. Department of Energy. https://www.osti.gov/biblio/4055216
  • Dutto, M., Goeuriot, D., Saunier, S., Sao-Joao, S., Marinel, S., Frage, N., & Hayun, S. (2020). The effect of microwave heating on the microstructure and the mechanical properties of reaction-bonded boron carbide. International Journal of Applied Ceramic Technology, 17(2), 751-760. https://doi.org/10.1111/ijac.13379
  • Kaliyannan, G. V., Rathanasamy, R., Gunasekaran, R., Sivaraj, S., Kandasamy, S., & Rao, S. K. Preparation of ceramics: Different approaches. In: U. Kumar (Eds.), Defects engineering in electroceramics for energy applications, 53-86. https://doi.org/10.1007/978-981-97-9018-0_3
  • Haubner, R., Wilhelm, M., Weissenbacher, R., & Lux, B. (2002). Boron nitrides-properties, synthesis and applications. In M. Jansen (Eds.), High performance non-oxide ceramics II. Structure and bonding (Vol. 102). Springer. https://doi.org/10.1007/3-540-45623-6_1
  • Mirzayev, M., Abiyev, A., Samedov, O., Demir, E., Popov, E., & Samadov, S. (2024). Structural evolution of zirconium diboride under gamma irradiation and thermal annealing. Journal of Alloys and Compounds, 1005, 175970. https://doi.org/10.1016/j.jallcom.2024.175970
  • Zhang, J., Ke, W., Ji, W., Fan, Z., Wang, W., & Fu, Z. (2015). Microstructure and properties of insitu titanium boride (TiB)/titanium (TI) composites. Materials Science and Engineering: A, 648, 158-163. https://doi.org/10.1016/j.msea.2015.09.067
  • He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T., & Zerda, T. (2002). Boron suboxide: As hard as cubic boron nitride. Applied Physics Letters, 81(4), 643-645. https://doi.org/10.1063/1.1494860
  • Taniguchi, T., & Watanabe, K. (2007). Synthesis of high-purity boron nitride single crystals under high pressure by using Ba-BN solvent. Journal of Crystal Growth, 303(2), 525-529. https://doi.org/10.1016/j.jcrysgro.2006.12.061
  • Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. https://doi.org/10.1107/S0021889811038970
  • Wentorf, R. (1957). Cubic form of boron nitride. The Journal of Chemical Physics, 26(4), 956-956. https://doi.org/10.1063/1.1745964
  • Knittle, E., Kaner, R., Jeanloz, R., & Cohen, M. (1995). High-pressure synthesis, characterization, and equation of state of cubic C-BN solid solutions. Physical Review B, 51(18), 12149. https://doi.org/10.1103/PhysRevB.51.12149
  • Thevenot, F. (1990). Boron carbide-a comprehensive review. Journal of the European Ceramic Society, 6(4), 205-225. https://doi.org/10.1016/0955-2219(90)90048-K
  • Amirsalar K., N.O. (2017). Novel nanocomposite ceramic scaffold fabricated via 3D printing for cancer therapy application, (523-524). 15th Conference & Exhibition of the European Ceramic Society. ECerS2017.
  • Yen, H. C. (2015). Experimental studying on development of slurry-layer casting system for additive manufacturing of ceramics. The International Journal of Advanced Manufacturing Technology, 77, 915-925. https://doi.org/10.1007/s00170-014-6534-8
  • Wang, Y., Bu, Y., & Wang, X. (2024). Advances in 3D printing of structural and functional ceramics: Technologies, properties, and applications. Journal of the European Ceramic Society, 44(14), 116653. https://doi.org/10.1016/j.jeurceramsoc.2024.05.075
  • Liu, X., Zou, B., Xing, H., & Huang, C. (2020). The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceramics International, 46(1), 937-944. https://doi.org/10.1016/j.ceramint.2019.09.054
  • Dadkhah, M., Tulliani, J. M., Saboori, A., & Iuliano, L. (2023). Additive manufacturing of ceramics: Advances, challenges, and outlook. Journal of the European Ceramic Society, 43(15), 6635-6664. https://doi.org/10.1016/j.jeurceramsoc.2023.07.033
  • Wakai, F., Okuma, G., & Nishiyama, N. (2019). Sintering mechanics of ceramics: A short review. Materials Today: Proceedings, 16(1), 4-13. https://doi.org/10.1016/j.matpr.2019.05.304
  • Rahaman, M. N. (2017). Ceramic processing and sintering (2nd. ed). CRC Press. https://doi.org/10.1201/9781315274126
  • German, R. M. (1996). Sintering theory and practice. Wiley
  • Lange, F. F. (1989). Powder processing science and technology for increased reliability. Journal of the American Ceramic Society, 72(1), 3-15. https://doi.org/10.1111/j.1151-2916.1989.tb05945.x
  • Richerson, D. W., & Lee, W. E. (2018). Modern ceramic engineering: Properties, processing, and use in design (4th ed). CRC Press. https://doi.org/10.1201/9780429488245
  • Mühler, T., Gomes, C. M., Heinrich, J., & Günster, J. (2015). Slurry-based additive manufacturing of ceramics. International Journal of Applied Ceramic Technology, 12(1), 18-25. https://doi.org/10.1111/ijac.12113
  • Fedorchenko, I. (2009). Shrinkage of metal ceramic briquettes during sintering. Powder Metallurgy and Metal Ceramics, 48, 497-507. https://doi.org/10.1007/s11106-010-9159-y
  • Wang, K., Qiu, M., Jiao, C., Gu, J., Xie, D., Wang, C., … & Shen, L. (2020). Study on defect-free debinding green body of ceramic formed by DLP technology. Ceramics International, 46(2), 2438-2446. https://doi.org/10.1016/j.ceramint.2019.09.237
  • Liu, Q., & Zhai, W. (2022). Hierarchical porous ceramics with distinctive microstructures by emulsion-based direct ink writing. ACS Applied Materials & Interfaces, 14(28), 32196-32205. https://doi.org/10.1021/acsami.2c03245
  • Zirak, N., Shirinbayan, M., Benfriha, K., Deligant, M., & Tcharkhtchi, A. (2022). Stereolithography of (meth) acrylate-based photocurable resin: Thermal and mechanical properties. Journal of Applied Polymer Science, 139(22), 52248. https://doi.org/10.1002/app.52248
  • Corbin, S. F., Lee, J., & Qiao, X. (2001). Influence of green formulation and pyrolyzable particulates on the porous microstructure and sintering characteristics of tape cast ceramics. Journal of the American Ceramic Society, 84(1), 41-47. https://doi.org/10.1111/j.1151-2916.2001.tb00605.x
  • Belon, R., Antou, G., Pradeilles, N., Maître, A., & Gosset, D. (2017). Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics. Ceramics International, 43(8), 6631-6635. https://doi.org/10.1016/j.ceramint.2017.02.053
  • Liu, Y., Ge, S., Huang, Y., Huang, Z., & Zhang, D. (2021). Influence of sintering process conditions on microstructural and mechanical properties of boron carbide ceramics synthesized by spark plasma sintering. Materials, 14(5), 1100. https://doi.org/10.3390/ma14051100
  • Ji, W., Rehman, S. S., Wang, W., Wang, H., Wang, Y., Zhang, J., … & Fu, Z. (2015). Sintering boron carbide ceramics without grain growth by plastic deformation as the dominant densification mechanism. Scientific Reports, 5, 15827. https://doi.org/10.1038/srep15827
  • Diaz-Cano, A., Trice, R. W., & Youngblood, J. P. (2017). Stabilization of highly-loaded boron carbide aqueous suspensions. Ceramics International, 43(12), 8572- 8578. https://doi.org/10.1016/j.ceramint.2017.03.111
  • Zeng, X., & Liu, W. (2016). Aqueous tape casting of B4C ceramics. Advances in Applied Ceramics, 115(4), 224- 228. https://doi.org/10.1080/17436753.2015.1126935
  • Zheng, J.-C., Zhang, L., Kretinin, A.V., Morozov, S.V., Wang, Y.B., Wang, T., … & Lu, C.-Y. (2016). High thermal conductivity of hexagonal boron nitride laminates. 2D Materials, 3(1), 011004. https://doi.org/10.1088/2053-1583/3/1/011004
  • Kruth, J.-P., Leu, M.-C., & Nakagawa, T. (1998). Progress in additive manufacturing and rapid prototyping. Cirp Annals, 47(2), 525-540. https://doi.org/10.1016/S0007-8506(07)63240-5
  • Deckers, J., Vleugels, J., & Kruth, J.-P. (2014). Additive manufacturing of ceramics: A review. Journal of Ceramic Science and Technology, 5(4), 245-260. https://doi.org/10.4416/JCST2014-00032
  • Liu, R., Chen, G., Qiu, Y., Chen, P., Shi, Y., Yan, C., & Tan, H. (2021). Fabrication of porous SiC by direct selective laser sintering effect of boron carbide. Metals, 11(5), 737. https://doi.org/10.3390/met11050737
  • Gibson, I., Rosen, D. W., Stucker, B., Khorasani, M. (2021). Additive manufacturing technologies (3rd ed.). Springer Cham. https://doi.org/10.1007/978-3-030-56127-7
  • Huang, S. H., Liu, P., Mokasdar, A., & Hou, L. (2013). Additive manufacturing and its societal impact: A literature review. The International Journal of Advanced Manufacturing Technology, 67, 1191-1203. https://doi.org/10.1007/s00170-012-4558-5
  • Griffith, M. L., & Halloran, J.W. (1996). Freeform fabrication of ceramics via stereolithography. Journal of the American Ceramic Society, 79(10), 2601-2608. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
  • Lee, W. E. & Rainforth, M. (1994). Ceramic microstructures: Property control by processing. Springer Dordrecht. ISBN 978-0-412-43140-1
  • Fahrenholtz, W. G., Hilmas, G. E., Talmy, I. G., & Zaykoski, J. A. (2007). Refractory diborides of zirconium and hafnium. Journal of the American Ceramic Society, 90(5), 1347-1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x
  • Ziaee, M., & Crane, N. B. (2019). Binder jetting: A review of process, materials, and methods. Additive Manufacturing, 28, 781-801. https://doi.org/10.1016/j.addma.2019.05.031
  • Chen, L., Zhou, S., Li, M., Mo, F., Yu, S., & Wei, J. (2022). Catalytic materials by 3D printing: a mini review. Catalysts, 12(10), 1081. https://doi.org/10.3390/catal12101081
  • Lewis, J. A., Smay, J. E., Stuecker, J., & Cesarano, J. (2006). Direct ink writing of three-dimensional ceramic structures. Journal of the American Ceramic Society, 89(12), 3599-3609. https://doi.org/10.1111/j.1551-2916.2006.01382.x
  • Wu, J., Zhang, L., Wang, W., Su, R., Gao, X., Li, S., … & He, R. (2023). Microstructures, mechanical properties and electromagnetic wave absorption performance of porous SiC ceramics by direct foaming combined with direct-ink-writing-based 3D printing. Materials, 16(7), 2861. https://doi.org/10.3390/ma16072861
  • Biçer, H. (2022). Reactive sintering of boron carbide based ceramics by SPS. Journal of Materials and Mechatronics: A, 3(1), 129-136. https://doi.org/10.55546/jmm.1072466
  • Zakaryan, M. K., Zurnachyan, A. R., Amirkhanyan, N. H., Kirakosyan, H. V., Antonov, M., Rodriguez, M. A., & Aydinyan, S. V. (2022). Novel pathway for the combustion synthesis and consolidation of boron carbide. Materials, 15(14), 5042. https://doi.org/10.3390/ma15145042
  • Martin, H. P., Feng, B., & Michaelis, A. (2020). Pressureless sintering and properties of boron carbide composite materials. International Journal of Applied Ceramic Technology, 17(2), 407-412. https://doi.org/10.1111/ijac.13423
  • Kazakova, V., & Grigoryev, E. (2018). Spark plasma sintering of boron carbide powder. KnE Materials Science, 4(1), 548. https://doi.org/ 10.18502/kms.v4i1.2209
  • Roumiguier, L., Jankowiak, A., Pradeilles, N., Antou, G., & Maître, A. (2019). Mechanical properties of submicronic and nanometric boron carbides obtained by spark plasma sintering: Influence of B/C ratio and oxygen content. Ceramics International, 45(8), 9912- 9918. https://doi.org/10.1016/j.ceramint.2019.02.033
  • Kozień, D., Czekaj, I., Ziąbka, M., Bik, M., Pasiut, K., Zientara, D., & Pędzich, Z. (2022). Effect of additives on the reactive sintering of ti-b4c composites consolidated by hot pressing and pressureless sintering. Advanced Engineering Materials, 24(9), 2101795. https://doi.org/10.1002/adem.202101795
  • Xuan, W., Ji, Y., Liu, B., Li, S., Chen, W., Li, Z., … & Long, F. (2023). Spark plasma sintering of boron nitride micron tubes reinforced boron carbide ceramics with excellent mechanical property. International Journal of Applied Ceramic Technology, 20(3), 1457-1469. https://doi.org/10.1111/ijac.14308
  • Eremeeva, Z. V., Kamali, S., Lizunov, A. I., & Ovchinnikov, V. A. (2022). Production of nanostructured boron carbide ceramics for industrial applications. Key Engineering Materials, 910, 1075-1080. https://doi.org/10.4028/p-dd4bb5
  • Hales, S., Tokita, E., Neupane, R., Ghosh, U., Elder, B., Wirthlin, D., & Kong, Y. L. (2020). 3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices. Nanotechnology, 31(17), 172001. https://doi.org/10.1088/1361-6528/ab5f29
  • Sauerschnig, P., Watts, J., Vaney, J., Talbot, P., Alarco, J., Mackinnon, I., & Mori, T. (2020). Thermoelectric properties of phase pure boron carbide prepared by a solution-based method. Advances in Applied Ceramics, 119(2), 97-106. https://doi.org/10.1080/17436753.2019.1705017
  • Réjasse, F., Georges, M., Pradeilles, N., Antou, G., & Maître, A. (2018). Influence of chemical composition on mechanical properties of spark plasma sintered boron carbide monoliths. Journal of the American Ceramic Society, 101(9), 3767-3772. https://doi.org/10.1111/jace.15707
  • Martinez, D. W., Espino, M. T., Cascolan, H. M., Crisostomo, J. L., & Dizon, J. R. C. (2022). A comprehensive review on the application of 3D printing in the aerospace industry. Key Engineering Materials, 913, 27-34. https://doi.org/10.4028/p-94a9zb
  • Gao, S., Dong, K., Li, X., Kong, J., Wang, S., Xing, P., & Li, P. (2019). An economic and environment friendly way of recycling boron carbide waste to prepare B4C/ Al composite ceramic. International Journal of Applied Ceramic Technology, 16(3), 1032-1040. https://doi.org/10.1111/ijac.13129
  • Khasanov, O. L., Dvilis, E. S., Khasanov, A. O., Bikbaeva, Z. G., Polisadova, V. V., & Milovanova, T. V. (2014). Influence of ultradispersed fraction of boron carbide powder on strength properties of the ceramics manufactured by SPS method. Advanced Materials Research, 872, 45-51. https://doi.org/10.4028/www.scientific.net/AMR.872.45
  • Roy, T., Subramanian, C., & Suri, A. (2006). Pressureless sintering of boron carbide. Ceramics International, 32(3), 227-233. https://doi.org/10.1016/j.ceramint.2005.02.008
There are 117 citations in total.

Details

Primary Language English
Subjects Ceramics in Materials Engineering, Material Production Technologies
Journal Section Review Articles
Authors

Ece Kalay 0000-0003-2470-7791

İskender Özkul 0000-0003-4255-0564

Publication Date September 30, 2025
Submission Date February 13, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Kalay, E., & Özkul, İ. (2025). Applications of additive manufacturing technologies in the production of boron-based ceramics. Journal of Boron, 10(3), 95-110. https://doi.org/10.30728/boron.1639273