Research Article
BibTex RIS Cite

Antimicrobial potential of boron-containing compounds: Antibacterial, antifungal, and antimycobacterial activities

Year 2025, Volume: 10 Issue: 3, 111 - 120, 30.09.2025

Abstract

The global rise in multidrug-resistant (MDR) pathogens necessitates the discovery of new antimicrobial agents. Boron-containing compounds (BCCs) are increasingly studied for their broad-spectrum biological activities. The current study aimed to investigate the antibacterial, antifungal, and antimycobacterial activities of four different BCCs (Zinc borate, boric acid, borax, and Etidot-67) by determining their minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentrations (MBC/MFC). For the first time, the antimycobacterial activity of BCCs was evaluated against both reference and clinical strains.
All tested compounds exhibited notable antimicrobial activity. Among them, boric acid and zinc borate showed strong antibacterial effects, particularly against Staphylococcus aureus and Salmonella typhimurium at 64 μg/mL. Borax displayed the most potent antimycobacterial activity, with a MIC of 64 μg/mL against Mycobacterium tuberculosis H37Ra (MT-H37Ra). Antifungal tests revealed boric acid to be highly effective against Candida albicans and Saccharomyces cerevisiae, with MIC values as low as 8-16 μg/ mL. These findings suggest that BCCs, especially borax and boric acid, may serve as viable candidates for the development of alternative antimicrobial therapies. However, further in vivo studies, toxicological assessments, and mechanistic investigations are necessary to support their clinical application.

Project Number

-

Thanks

We would like to thank Eti Maden Bandırma Boron and Acid Factory (Balıkesir, Türkiye) for the supply of boron compounds.

References

  • Sugden, R., Kelly, R., & Davies, S. (2016). Combatting antimicrobial resistance globally. Nature Microbiology, 1(10), 1-2. https://doi.org/10.1038/nmicrobiol.2016.187
  • Otter, J. A., Yezli, S., & French, G. L. (2011). The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infection Control & Hospital Epidemiology, 32(7), 687-699. https://doi.org/10.1086/660363
  • Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • World Health Organization. (2023). Global tuberculosis report 2023. https://www.who.int/publications/i/item/9789240083851
  • Sefton, A. M. (2002). Mechanisms of antimicrobial resistance: Their clinical relevance in the new millennium. Drugs, 62, 557-566. https://doi.org/10.2165/00003495-200262040-00001
  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., ... & Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9
  • Scorei, R. (2012). Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. Origins of Life and Evolution of Biospheres, 42, 3-17. https://doi.org/10.1007/s11084-012-9269-2
  • Ali, F. S., Hosmane, N., & Zhu, Y. (2020). Boron chemistry for medical applications. Molecules, 25(4), 828. https://doi.org/10.3390/molecules25040828
  • Nielsen, F. H. (2017). Historical and recent aspects of boron in human and animal health. Journal of Boron, 2(3), 153-160.
  • Song, S., Gao, P., Sun, L., Kang, D., Kongsted, J., Poongavanam, V., ... & Liu, X. (2021). Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharmaceutica Sinica B, 11(10), 3035-3059. https://doi.org/10.1016/j.apsb.2021.01.010
  • Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y. K., Hernandez, V., & Xia, Y. (2009). Therapeutic potential of boron-containing compounds. Future Medicinal Chemistry, 1(7), 1275-1288. https://doi.org/10.4155/fmc.09.71
  • Baker, S. J., Akama, T., Zhang, Y. K., Sauro, V., Pandit, C., Singh, R., ... & Maples, K. R. (2006). Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity, for the potential treatment of cutaneous diseases. Bioorganic & Medicinal Chemistry Letters, 16(23), 5963-5967. https://doi.org/10.1016/j.bmcl.2006.08.130
  • Celebi, O., Celebi, D., Baser, S., Aydın, E., Rakıcı, E., Uğraş, S., ... & Abd El-Aty, A. M. (2024). Antibacterial activity of boron compounds against biofilm-forming pathogens. Biological Trace Element Research, 202(1), 346-359. https://doi.org/10.1007/s12011-023-03768-z
  • Esposito, S., & De Simone, G. (2017). Update on the main MDR pathogens: Prevalence and treatment options. Le Infezioni in Medicina, 25(4), 301-310.
  • Messner, K., Vuong, B., & Tranmer, G. K. (2022). The boron advantage: The evolution and diversification of boron’s applications in medicinal chemistry. Pharmaceuticals, 15(3), 264. https://doi.org/10.3390/ph15030264
  • Silva, M. P., Saraiva, L., Pinto, M., & Sousa, M. E. (2020). Boronic acids and their derivatives in medicinal chemistry: synthesis and biological applications. Molecules, 25(18), 4323. https://doi.org/10.3390/molecules25184323
  • Jacobs, L. M., Consol, P., & Chen, Y. (2024). Drug discovery in the field of β-lactams: an academic perspective. Antibiotics, 13(1), 59. https://doi.org/10.3390/antibiotics13010059
  • Iqbal, Z., Sun, J., Yang, H., Ji, J., He, L., Zhai, L., ... & Yang, Z. (2022). Recent developments to cope the antibacterial resistance via β-lactamase inhibition. Molecules, 27(12), 3832.
  • Syvolos, Y., Salama, O. E., & Gerstein, A. C. (2024). Constraint on boric acid resistance and tolerance evolvability in Candida albicans. Canadian Journal of Microbiology, 70(9), 384-393. https://doi.org/10.1139/cjm-2023-0225
  • Iyigundogdu, Z. (2023). Synergistic effects of zinc borate and graphene on enhanced thermal stability and antimicrobial properties of poly(methyl methacrylate). Polymer Composites, 44(7), 3939-3951. https://doi.org/10.1002/pc.27367
  • Celebi, D., Celebi, O., Baser, S., & Taghizadehghalehjoughi, A. (2025). Investigation of the antibacterial, antibiofilm and cytotoxic effects of boron compounds in a Streptococcus mitis infection model on HepG2 liver cell. Journal of Research in Pharmacy, 27(6), 2277-2284. https://doi.org/10.29228/jrp.516
  • Zimmer, B. L., Carpenter, D. E., Esparza, G., Alby, K., Bhatnagar, A. Ferrel, A. L., … & Yee, R. (2024). Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (CLSI Standard No. M07). Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m07/
  • Alexander, B. D., Procop, G. W., Dufrense, P., Fuller, J., Ghannoum, M. A., Hanson, K. E., … & Zelanzy, A. M. (2017). Refence Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (CLSI Standard No. M27). Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m27/
  • Güner, P., Aşkun, T., & Er, A. (2023). Evaluation of Anti-bacterial Activity Induced by Penicillium mallochii in the Hemolymph of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). International Journal of Nature and Life Sciences, 7(2), 79-88. https://doi.org/10.47947/ijnls.1362362
  • El-Saadony, M. T., Sitohy, M. Z., Ramadan, M. F., & Saad, A. M. (2021). Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innovative Food Science & Emerging Technologies, 69, 102645. https://doi.org/10.1016/j.ifset.2021.102645
  • Celik, C., Kalin, G., Cetinkaya, Z., Ildiz, N., & Ocsoy, I. (2023). Recent advances in colorimetric tests for the detection of infectious diseases and antimicrobial resistance. Diagnostics, 13(14), 2427. https://doi.org/10.3390/diagnostics13142427
  • Güner, P., & Aşkun, T. (2023). Anti-bacterial, anti-mycobacterial and anti-fungal properties of Punica granatum as natural dye. European Journal of Biology, 82(1), 38-48. https://doi.org/10.26650/EurJBiol.2023.1239283
  • Woods, G. L., Wengenack, G. N., Lin, G., Brown-Elliott, B. A., Cirillo, D. M., Conville, P. S., … & Turnidge S. D. (2018). Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes (CLSI Standard No. M24). Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m24/
  • Goldbach, H. E., & Wimmer, M. A. (2007). Boron in plants and animals: Is there a role beyond cell-wall structure? Journal of Plant Nutrition and Soil Science, 170(1), 39-48. https://doi.org/10.1002/jpln.200625161
  • Reid, R. J., Hayes, J. E., Post, A., Stangoulis, J. R., & Graham, R. D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment, 27(11), 1405-1414. https://doi.org/10.1111/j.1365-3040.2004.01243.x
  • Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B. L., & Hughson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415(6871), 545-549. https://doi.org/10.1038/415545a
  • Lowery, C. A., Salzameda, N. T., Sawada, D., Kaufmann, G. F., & Janda, K. D. (2010). Medicinal chemistry as a conduit for the modulation of quorum sensing. Journal of Medicinal Chemistry, 53(21), 7467-7489. https://doi.org/10.1021/jm901742e
  • Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., ... & Römheld, V. (2002). Boron in plant biology. Plant Biology, 4(2), 205-223. https://doi.org/10.1055/s-2002-25740
  • Cakmak, I., Kurz, H., & Marschner, H. (1995). Short term effects of boron, germanium, and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum, 95(1), 11-8. https://doi.org/10.1111/j.1399-3054.1995.tb00801.x
  • Soares, M. M. S. R., & Cury, A. E. (2001). In vitro activity of antifungal and antiseptic agents against dermatophyte isolates from patients with tinea pedis. Brazilian Journal of Microbiology, 32(2), 130-134. https://doi.org/10.1590/S1517-83822001000200012
  • Yilmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences, 42(2), 1423-1429. https://doi.org/10.3906/sag-1205-83
  • Wang, Y., Ying, T., Li, J., Xu, Y., Wang, R., Ke, Q., ... & Lin, K. (2020). Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chemical Engineering Journal, 402, 126273. https://doi.org/10.1016/j.cej.2020.126273
  • Boran, R., Baygar, T., Saraç, N., Ayrıkçil, S., Yılmaz, D., & Uğur, A. (2023). Antimicrobial, antifibrinolytic, enzyme inhibitory and wound healing properties of zinc borate. Journal of Boron, 8(3), 99-104. https://doi.org/10.30728/boron.1180847
  • Anderson, T. M., Clay, M. C., Cioffi, A. G., Diaz, K. A., Hisao, G. S., Tuttle, M. D., ... & Burke, M. D. (2014). Amphotericin forms an extramembranous and fungicidal sterol sponge. Nature Chemical Biology, 10(5), 400- 406. https://doi.org/10.1038/nchembio.1496
  • Schmidt, M., Schaumberg, J. Z., Steen, C. M., & Boyer, M. P. (2010). Boric acid disturbs cell wall synthesis in Saccharomyces cerevisiae. International Journal of Microbiology, 2010(1), 930465. https://doi.org/10.1155/2010/930465
  • Ang, S. S., Salleh, A. B., Bakar, F. A., Yusof, N. A., Zaman, M. Z., & Heng, L. Y. (2011). Effect of boric acid on the growth and production of β-glucosidase in Paecilomyces variotii. African Journal of Microbiology Research, 5(17), 2451-2454. https://doi.org/10.5897/AJMR11.078
  • Del Palacio, A., Cuétara, M. S., Lopez-Suso, M. J., Amor, E., & Garau, M. (2002). Randomized prospective comparative study: Short-term treatment with ciclopiroxolamine (cream and solution) versus boric acid in the treatment of otomycosis. Mycoses, 45(7-8), 317- 328. https://doi.org/10.1046/j.1439-0507.2002.00737.x
  • Larsen, B., Petrovic, M., & De Seta, F. (2018). Boric acid and commercial organoboron products as inhibitors of drug-resistant Candida albicans. Mycopathologia, 183, 349-357. https://doi.org/10.1007/s11046-017-0209-6
  • Krajnc, A., Lang, P. A., Panduwawala, T. D., Brem, J., & Schofield, C. J. (2019). Will morphing boron-based inhibitors beat the β-lactamases? Current Opinion in Chemical Biology, 50, 101-110. https://doi.org/10.1016/j.cbpa.2019.03.001
  • Arnaud, J., Audfray, A., & Imberty, A. (2013). Binding sugars: From natural lectins to synthetic receptors and engineered neolectins. Chemical Society Reviews, 42(11), 4798-4813. https://doi.org/10.1039/c2cs35435g
  • Guy, C. S., Gibson, M. I., & Fullam, E. (2019). Targeting extracellular glycans: Tuning multimeric boronic acids for pathogen-selective killing of Mycobacterium tuberculosis. Chemical Science, 10(23), 5935-5942. https://doi.org/10.1039/c9sc00415g
  • Adamska, A., Rumijowska-Galewicz, A., Ruszczynska, A., Studzińska, M., Jabłońska, A., Paradowska, E., ... & Olejniczak, A. B. (2016). Anti-mycobacterial activity of thymine derivatives bearing boron clusters. European Journal of Medicinal Chemistry, 121, 71-81. https://doi.org/10.1016/j.ejmech.2016.05.030

Bor içeren bileşiklerin antimikrobiyal potansiyeli: Antibakteriyel, antifungal ve antimikobakteriyel aktiviteler

Year 2025, Volume: 10 Issue: 3, 111 - 120, 30.09.2025

Abstract

Çoklu ilaca dirençli (MDR) patojenlerdeki küresel artış, yeni antimikrobiyal ajanların keşfini zorunlu kılmaktadır. Bor içeren bileşikler (BİB'ler), geniş spektrumlu biyolojik aktiviteleri nedeniyle giderek daha fazla araştırılmaktadır. Bu çalışma, dört farklı BİB'in (Çinko borat, borik asit, boraks ve Etidot-67) minimum inhibitör konsantrasyonlarını (MİK) ve minimum bakterisidal/fungisidal konsantrasyonlarını (MBK/MFK) belirleyerek antibakteriyel, antifungal ve antimikobakteriyel aktivitelerini araştırmayı amaçlamaktadır. BİB'lerin antimikobakteriyel aktivitesi ilk kez hem referans hem de klinik suşlara karşı değerlendirilmiştir.
Test edilen tüm bileşikler anlamlı antimikrobiyal aktivite göstermiştir. Bunlar arasında borik asit ve çinko borat, özellikle 64 μg/mL'de Staphylococcus aureus ve Salmonella typhimurium'a karşı güçlü antibakteriyel etkiler göstermiştir. Boraks, Mycobacterium tuberculosis H37Ra'ya (MT-H37Ra) karşı 64 μg/mL'lik bir MİK ile en güçlü antimikobakteriyel aktiviteyi göstermiştir. Antifungal testler, borik asidin Candida albicans ve Saccharomyces cerevisiae'ye karşı oldukça etkili olduğunu ve MİK değerlerinin 8-16 μg/mL kadar düşük olduğunu göstermiştir. Bu bulgular, özellikle boraks ve borik asit olmak üzere BİB'lerin alternatif antimikrobiyal tedavilerin geliştirilmesi için uygun adaylar olabileceğini düşündürmektedir. Ancak, klinik uygulamalarını desteklemek için daha fazla in vivo çalışma, toksikolojik değerlendirme ve mekanik incelemeye ihtiyaç vardır.

Project Number

-

References

  • Sugden, R., Kelly, R., & Davies, S. (2016). Combatting antimicrobial resistance globally. Nature Microbiology, 1(10), 1-2. https://doi.org/10.1038/nmicrobiol.2016.187
  • Otter, J. A., Yezli, S., & French, G. L. (2011). The role played by contaminated surfaces in the transmission of nosocomial pathogens. Infection Control & Hospital Epidemiology, 32(7), 687-699. https://doi.org/10.1086/660363
  • Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399(10325), 629-655. https://doi.org/10.1016/S0140-6736(21)02724-0
  • World Health Organization. (2023). Global tuberculosis report 2023. https://www.who.int/publications/i/item/9789240083851
  • Sefton, A. M. (2002). Mechanisms of antimicrobial resistance: Their clinical relevance in the new millennium. Drugs, 62, 557-566. https://doi.org/10.2165/00003495-200262040-00001
  • Laxminarayan, R., Duse, A., Wattal, C., Zaidi, A. K., Wertheim, H. F., Sumpradit, N., ... & Cars, O. (2013). Antibiotic resistance-the need for global solutions. The Lancet Infectious Diseases, 13(12), 1057-1098. https://doi.org/10.1016/S1473-3099(13)70318-9
  • Scorei, R. (2012). Is boron a prebiotic element? A mini-review of the essentiality of boron for the appearance of life on earth. Origins of Life and Evolution of Biospheres, 42, 3-17. https://doi.org/10.1007/s11084-012-9269-2
  • Ali, F. S., Hosmane, N., & Zhu, Y. (2020). Boron chemistry for medical applications. Molecules, 25(4), 828. https://doi.org/10.3390/molecules25040828
  • Nielsen, F. H. (2017). Historical and recent aspects of boron in human and animal health. Journal of Boron, 2(3), 153-160.
  • Song, S., Gao, P., Sun, L., Kang, D., Kongsted, J., Poongavanam, V., ... & Liu, X. (2021). Recent developments in the medicinal chemistry of single boron atom-containing compounds. Acta Pharmaceutica Sinica B, 11(10), 3035-3059. https://doi.org/10.1016/j.apsb.2021.01.010
  • Baker, S. J., Ding, C. Z., Akama, T., Zhang, Y. K., Hernandez, V., & Xia, Y. (2009). Therapeutic potential of boron-containing compounds. Future Medicinal Chemistry, 1(7), 1275-1288. https://doi.org/10.4155/fmc.09.71
  • Baker, S. J., Akama, T., Zhang, Y. K., Sauro, V., Pandit, C., Singh, R., ... & Maples, K. R. (2006). Identification of a novel boron-containing antibacterial agent (AN0128) with anti-inflammatory activity, for the potential treatment of cutaneous diseases. Bioorganic & Medicinal Chemistry Letters, 16(23), 5963-5967. https://doi.org/10.1016/j.bmcl.2006.08.130
  • Celebi, O., Celebi, D., Baser, S., Aydın, E., Rakıcı, E., Uğraş, S., ... & Abd El-Aty, A. M. (2024). Antibacterial activity of boron compounds against biofilm-forming pathogens. Biological Trace Element Research, 202(1), 346-359. https://doi.org/10.1007/s12011-023-03768-z
  • Esposito, S., & De Simone, G. (2017). Update on the main MDR pathogens: Prevalence and treatment options. Le Infezioni in Medicina, 25(4), 301-310.
  • Messner, K., Vuong, B., & Tranmer, G. K. (2022). The boron advantage: The evolution and diversification of boron’s applications in medicinal chemistry. Pharmaceuticals, 15(3), 264. https://doi.org/10.3390/ph15030264
  • Silva, M. P., Saraiva, L., Pinto, M., & Sousa, M. E. (2020). Boronic acids and their derivatives in medicinal chemistry: synthesis and biological applications. Molecules, 25(18), 4323. https://doi.org/10.3390/molecules25184323
  • Jacobs, L. M., Consol, P., & Chen, Y. (2024). Drug discovery in the field of β-lactams: an academic perspective. Antibiotics, 13(1), 59. https://doi.org/10.3390/antibiotics13010059
  • Iqbal, Z., Sun, J., Yang, H., Ji, J., He, L., Zhai, L., ... & Yang, Z. (2022). Recent developments to cope the antibacterial resistance via β-lactamase inhibition. Molecules, 27(12), 3832.
  • Syvolos, Y., Salama, O. E., & Gerstein, A. C. (2024). Constraint on boric acid resistance and tolerance evolvability in Candida albicans. Canadian Journal of Microbiology, 70(9), 384-393. https://doi.org/10.1139/cjm-2023-0225
  • Iyigundogdu, Z. (2023). Synergistic effects of zinc borate and graphene on enhanced thermal stability and antimicrobial properties of poly(methyl methacrylate). Polymer Composites, 44(7), 3939-3951. https://doi.org/10.1002/pc.27367
  • Celebi, D., Celebi, O., Baser, S., & Taghizadehghalehjoughi, A. (2025). Investigation of the antibacterial, antibiofilm and cytotoxic effects of boron compounds in a Streptococcus mitis infection model on HepG2 liver cell. Journal of Research in Pharmacy, 27(6), 2277-2284. https://doi.org/10.29228/jrp.516
  • Zimmer, B. L., Carpenter, D. E., Esparza, G., Alby, K., Bhatnagar, A. Ferrel, A. L., … & Yee, R. (2024). Method for dilution antimicrobial susceptibility tests for bacteria that grow aerobically (CLSI Standard No. M07). Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m07/
  • Alexander, B. D., Procop, G. W., Dufrense, P., Fuller, J., Ghannoum, M. A., Hanson, K. E., … & Zelanzy, A. M. (2017). Refence Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts (CLSI Standard No. M27). Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m27/
  • Güner, P., Aşkun, T., & Er, A. (2023). Evaluation of Anti-bacterial Activity Induced by Penicillium mallochii in the Hemolymph of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). International Journal of Nature and Life Sciences, 7(2), 79-88. https://doi.org/10.47947/ijnls.1362362
  • El-Saadony, M. T., Sitohy, M. Z., Ramadan, M. F., & Saad, A. M. (2021). Green nanotechnology for preserving and enriching yogurt with biologically available iron (II). Innovative Food Science & Emerging Technologies, 69, 102645. https://doi.org/10.1016/j.ifset.2021.102645
  • Celik, C., Kalin, G., Cetinkaya, Z., Ildiz, N., & Ocsoy, I. (2023). Recent advances in colorimetric tests for the detection of infectious diseases and antimicrobial resistance. Diagnostics, 13(14), 2427. https://doi.org/10.3390/diagnostics13142427
  • Güner, P., & Aşkun, T. (2023). Anti-bacterial, anti-mycobacterial and anti-fungal properties of Punica granatum as natural dye. European Journal of Biology, 82(1), 38-48. https://doi.org/10.26650/EurJBiol.2023.1239283
  • Woods, G. L., Wengenack, G. N., Lin, G., Brown-Elliott, B. A., Cirillo, D. M., Conville, P. S., … & Turnidge S. D. (2018). Susceptibility Testing of Mycobacteria, Nocardia spp., and Other Aerobic Actinomycetes (CLSI Standard No. M24). Clinical and Laboratory Standards Institute. https://clsi.org/shop/standards/m24/
  • Goldbach, H. E., & Wimmer, M. A. (2007). Boron in plants and animals: Is there a role beyond cell-wall structure? Journal of Plant Nutrition and Soil Science, 170(1), 39-48. https://doi.org/10.1002/jpln.200625161
  • Reid, R. J., Hayes, J. E., Post, A., Stangoulis, J. R., & Graham, R. D. (2004). A critical analysis of the causes of boron toxicity in plants. Plant, Cell & Environment, 27(11), 1405-1414. https://doi.org/10.1111/j.1365-3040.2004.01243.x
  • Chen, X., Schauder, S., Potier, N., Van Dorsselaer, A., Pelczer, I., Bassler, B. L., & Hughson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415(6871), 545-549. https://doi.org/10.1038/415545a
  • Lowery, C. A., Salzameda, N. T., Sawada, D., Kaufmann, G. F., & Janda, K. D. (2010). Medicinal chemistry as a conduit for the modulation of quorum sensing. Journal of Medicinal Chemistry, 53(21), 7467-7489. https://doi.org/10.1021/jm901742e
  • Brown, P. H., Bellaloui, N., Wimmer, M. A., Bassil, E. S., Ruiz, J., Hu, H., ... & Römheld, V. (2002). Boron in plant biology. Plant Biology, 4(2), 205-223. https://doi.org/10.1055/s-2002-25740
  • Cakmak, I., Kurz, H., & Marschner, H. (1995). Short term effects of boron, germanium, and high light intensity on membrane permeability in boron deficient leaves of sunflower. Physiologia Plantarum, 95(1), 11-8. https://doi.org/10.1111/j.1399-3054.1995.tb00801.x
  • Soares, M. M. S. R., & Cury, A. E. (2001). In vitro activity of antifungal and antiseptic agents against dermatophyte isolates from patients with tinea pedis. Brazilian Journal of Microbiology, 32(2), 130-134. https://doi.org/10.1590/S1517-83822001000200012
  • Yilmaz, M. T. (2012). Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turkish Journal of Medical Sciences, 42(2), 1423-1429. https://doi.org/10.3906/sag-1205-83
  • Wang, Y., Ying, T., Li, J., Xu, Y., Wang, R., Ke, Q., ... & Lin, K. (2020). Hierarchical micro/nanofibrous scaffolds incorporated with curcumin and zinc ion eutectic metal organic frameworks for enhanced diabetic wound healing via anti-oxidant and anti-inflammatory activities. Chemical Engineering Journal, 402, 126273. https://doi.org/10.1016/j.cej.2020.126273
  • Boran, R., Baygar, T., Saraç, N., Ayrıkçil, S., Yılmaz, D., & Uğur, A. (2023). Antimicrobial, antifibrinolytic, enzyme inhibitory and wound healing properties of zinc borate. Journal of Boron, 8(3), 99-104. https://doi.org/10.30728/boron.1180847
  • Anderson, T. M., Clay, M. C., Cioffi, A. G., Diaz, K. A., Hisao, G. S., Tuttle, M. D., ... & Burke, M. D. (2014). Amphotericin forms an extramembranous and fungicidal sterol sponge. Nature Chemical Biology, 10(5), 400- 406. https://doi.org/10.1038/nchembio.1496
  • Schmidt, M., Schaumberg, J. Z., Steen, C. M., & Boyer, M. P. (2010). Boric acid disturbs cell wall synthesis in Saccharomyces cerevisiae. International Journal of Microbiology, 2010(1), 930465. https://doi.org/10.1155/2010/930465
  • Ang, S. S., Salleh, A. B., Bakar, F. A., Yusof, N. A., Zaman, M. Z., & Heng, L. Y. (2011). Effect of boric acid on the growth and production of β-glucosidase in Paecilomyces variotii. African Journal of Microbiology Research, 5(17), 2451-2454. https://doi.org/10.5897/AJMR11.078
  • Del Palacio, A., Cuétara, M. S., Lopez-Suso, M. J., Amor, E., & Garau, M. (2002). Randomized prospective comparative study: Short-term treatment with ciclopiroxolamine (cream and solution) versus boric acid in the treatment of otomycosis. Mycoses, 45(7-8), 317- 328. https://doi.org/10.1046/j.1439-0507.2002.00737.x
  • Larsen, B., Petrovic, M., & De Seta, F. (2018). Boric acid and commercial organoboron products as inhibitors of drug-resistant Candida albicans. Mycopathologia, 183, 349-357. https://doi.org/10.1007/s11046-017-0209-6
  • Krajnc, A., Lang, P. A., Panduwawala, T. D., Brem, J., & Schofield, C. J. (2019). Will morphing boron-based inhibitors beat the β-lactamases? Current Opinion in Chemical Biology, 50, 101-110. https://doi.org/10.1016/j.cbpa.2019.03.001
  • Arnaud, J., Audfray, A., & Imberty, A. (2013). Binding sugars: From natural lectins to synthetic receptors and engineered neolectins. Chemical Society Reviews, 42(11), 4798-4813. https://doi.org/10.1039/c2cs35435g
  • Guy, C. S., Gibson, M. I., & Fullam, E. (2019). Targeting extracellular glycans: Tuning multimeric boronic acids for pathogen-selective killing of Mycobacterium tuberculosis. Chemical Science, 10(23), 5935-5942. https://doi.org/10.1039/c9sc00415g
  • Adamska, A., Rumijowska-Galewicz, A., Ruszczynska, A., Studzińska, M., Jabłońska, A., Paradowska, E., ... & Olejniczak, A. B. (2016). Anti-mycobacterial activity of thymine derivatives bearing boron clusters. European Journal of Medicinal Chemistry, 121, 71-81. https://doi.org/10.1016/j.ejmech.2016.05.030
There are 47 citations in total.

Details

Primary Language English
Subjects Inorganic Chemistry (Other)
Journal Section Research Articles
Authors

Pınar Güner 0000-0001-6922-7009

Tülin Aşkun 0000-0002-2700-1965

Aylin Er 0000-0002-8108-8950

Project Number -
Publication Date September 30, 2025
Submission Date May 15, 2025
Acceptance Date July 23, 2025
Published in Issue Year 2025 Volume: 10 Issue: 3

Cite

APA Güner, P., Aşkun, T., & Er, A. (2025). Antimicrobial potential of boron-containing compounds: Antibacterial, antifungal, and antimycobacterial activities. Journal of Boron, 10(3), 111-120. https://doi.org/10.30728/boron.1693877