Research Article
BibTex RIS Cite

Effect of Variety on the Potential Nutritive Value of Oat Hays

Year 2024, , 429 - 433, 15.08.2024
https://doi.org/10.47115/bsagriculture.1419351

Abstract

This study was conducted to determine the differences in the chemical composition, in vitro gas production (GP), methane production (CH4), metabolizable energy (ME), and in vitro organic matter digestion (IVOMD) of oat hay varieties commonly used in ruminant feeding (Küçükyayla, Kahraman, Kırklar, ST-4, Yeniceri, Sebat, and Arslanbey). The oat hay varieties in the study were harvested during the flowering period in the 2019-2020 season in Kahramanmaras province. The in vitro findings of this study revealed significant differences among oat hay varieties in terms of their chemical composition, in vitro gas production, methane production, ME and IVOMD (P<0.001). The crude protein (CP) content of oat hays ranged from 7.61% to 9.57%, neutral detergent fiber (NDF) ranged from 64.46% to 72.96%, acid detergent fiber (ADF) ranged from 36.74% to 41.70%, crude ash (CA) ranged from 6.56% to 7.91%, metabolizable energy ranged from 6.96 to 7.98 MJ kg-1 DM, IVOMD ranged from 67.30% to 74.90%, and methane production rate ranged from 15.42% to 16.35%. The Yeniceri variety stood out with a NDF content of 64.46%, an ADF content of 36.74%, a ME of 7.98 MJ kg-1 DM, and an IVOMD of 74.90%. ST-4 had the highest in vitro gas production with 49.46 ml, while Sebat had the highest methane production rate with 15.42%. In conclusion, considering the chemical composition and fermentation parameters, the Yeniceri variety can be considered a potential source of forage, but further in vivo studies are needed to assess their effects on feed intake and animal production.

References

  • AOAC. 1990. Official method of analysis, 15th ed. Association of Official Analytical Chemists, Washington, US, pp: 66-88.
  • Balthrop J, Brand B, Cowie RA, Danier J, de Boever JL, de Jonge LH, Piotrowski C. 2011. Quality assurance for animal feed analysis laboratories (No. 14). FAO, pp: 152.
  • Biel W, Jacyno E, Kawecka M. 2014. Chemical composition of hulled, dehulled and naked oat grains. S Afr J Anim Sci, 44(2): 189-197.
  • Buerstmayr H, Krenn N, Stephan U, Grausgruber H, Zechner E. 2007. Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crops Res, 101: 341-351.8.
  • Cappellozza BI, Bohnert DW, Schauer CS, Falck SJ, Vanzant ES, Harmon DL, Cooke RF. 2013. Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Sci, 155(2-3): 214-222.
  • Doane PH, Schofield P, Pell AN. 1997. Neutral detergent fiber disappearance and gas and volatile fatty acid production during the in vitro fermentation of six forages. J Anim Sci, 75(12): 3342-3352.
  • Filya I, Karabulut A, Canbolat O, Degirmencioglu T, Kalkan H. 2002. Bursa bolgesinde yetistirilen yem hammaddelerinin besleme degeri ve hayvansal organizmada optimum degerlendirme kosullarının in vivo ve in vitro yontemlerle saptanması uzerinde arastırmalar. UU Ziraat Fak Bil Aras Inc Ser, 25: 1-16.
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Goel G, Makkar HP, Becker K. 2008. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Anim Feed Sci Technol, 147(1-3): 72-89.
  • Gursoy E. 2023. Samanların besin degeri ve sindirilebilirligini artırma yontemleri. Kadirli Uyg Bil Fak Derg, 3(1): 160-169.
  • IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change.
  • Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J Anim Sci, 73(8): 2483-2492.
  • López S, Makkar HP, Soliva CR. 2010. Screening Plants and Plant Products for Methane Inhibitors. In: Vercoe, P., Makkar, H., Schlink, A. (eds) In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer, Dordrecht, the Netherlands, pp: 191-231. https://doi.org/10.1007/978-90-481-3297-3_10
  • Martínez MF, Arelovich HM, Wehrhahne LN. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Res, 116(1-2): 92-100.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agri Sci (Camb), 93: 217-222.
  • Menke KH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev, 28: 7-55.
  • Naneli I, Sakin MA. 2017. Bazı yulaf çeşitlerinin (Avena Sativa L.) farklı lokasyonlarda verim ve kalite parametrelerinin belirlenmesi. Tarla Bitkileri Merkez Aras Enst Derg, 26: 37-45. https://doi.org/10.21566/tarbitderg.359057.
  • Norton BW. 2012. The nutritive value of tree legumes. URL: http://www.fao.org/ag/AGP/AGPC/doc/Pubicat/Guttshel/ x5556e0j.htm (Accesed date, November 07, 2022).
  • NRC. 2007. National Research Council: Nutrient requirements of small ruminants.
  • Ørskov ER, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agri Sci, 92(2): 499-503.
  • Peterson DM, Wesenberg DM, Burrup DE, Erickson CA. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci, 45: 1249-1255.
  • Redaelli R, Lagana P, Rizza F, Nicosia OLD, Cattivelli L. 2008. Genetic progress of oats in Italy. Euphytica, 164: 679-687.
  • Sagocak AT. 2011. Determination of potential nutritive value of leaves Arbutus adrachne. MSc Thesis, Kahramanmaras Sutcu Imam University, Institute of Science, Kahramanmaraş, Türkiye, pp: 63.
  • Sampath KT, Wood CD, Prasad CS. 1995. Effect of urea and by products on the in vitro fermentation of untreated and urea treated finger millet (Eleusine coracana) straw. J Sci Food Agri, 67(3): 323-328.
  • Sanderson R, Lister, SJ, Sargeant, A, Dhanoa MS. 1997. Effect of particle size on in vitro fermentation of silages differing in dry matter content. In Proceedings of the British Society of Animal Science Vol. 1997, Cambridge University Press, Cambridge, UK, pp: 197-197.
  • Sehu A, Yalçin S, Önol AG. Koçak D. 1998. Prediction of dry matter intake and live weight gain in lambs by some characteristics of roughages. Turkish J Vet Anim Sci, 22(6): 475-484.
  • Sterna V, Zute S, Brunava L. 2016. Oat grain composition and its nutrition benefice. Agri Agricultural Sci Proc, 8: 252-256.
  • Van Soest PJ. 2018. Nutritional ecology of the ruminant. Cornell University Press, New York, US, pp: 488.
  • Van Soest PV, Robertson JB, Lewis, BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74(10): 3583-3597.
  • Wolin MJ. 1960. A theoretical rumen fermentation balance. J Dairy Sci, 43(10): 1452-1459.
  • Yavuz M. 2005. Bazı ruminant yemlerinin nispi yem degeri ve in vitro sindirim degerlerinin belirlenmesi. J Agri Fac Gaziosmanpasa Univ, 22(1): 97-101.
Year 2024, , 429 - 433, 15.08.2024
https://doi.org/10.47115/bsagriculture.1419351

Abstract

References

  • AOAC. 1990. Official method of analysis, 15th ed. Association of Official Analytical Chemists, Washington, US, pp: 66-88.
  • Balthrop J, Brand B, Cowie RA, Danier J, de Boever JL, de Jonge LH, Piotrowski C. 2011. Quality assurance for animal feed analysis laboratories (No. 14). FAO, pp: 152.
  • Biel W, Jacyno E, Kawecka M. 2014. Chemical composition of hulled, dehulled and naked oat grains. S Afr J Anim Sci, 44(2): 189-197.
  • Buerstmayr H, Krenn N, Stephan U, Grausgruber H, Zechner E. 2007. Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crops Res, 101: 341-351.8.
  • Cappellozza BI, Bohnert DW, Schauer CS, Falck SJ, Vanzant ES, Harmon DL, Cooke RF. 2013. Daily and alternate day supplementation of urea or soybean meal to ruminants consuming low-quality cool-season forage: II. Effects on ruminal fermentation. Livestock Sci, 155(2-3): 214-222.
  • Doane PH, Schofield P, Pell AN. 1997. Neutral detergent fiber disappearance and gas and volatile fatty acid production during the in vitro fermentation of six forages. J Anim Sci, 75(12): 3342-3352.
  • Filya I, Karabulut A, Canbolat O, Degirmencioglu T, Kalkan H. 2002. Bursa bolgesinde yetistirilen yem hammaddelerinin besleme degeri ve hayvansal organizmada optimum degerlendirme kosullarının in vivo ve in vitro yontemlerle saptanması uzerinde arastırmalar. UU Ziraat Fak Bil Aras Inc Ser, 25: 1-16.
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Goel G, Makkar HP, Becker K. 2008. Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Anim Feed Sci Technol, 147(1-3): 72-89.
  • Gursoy E. 2023. Samanların besin degeri ve sindirilebilirligini artırma yontemleri. Kadirli Uyg Bil Fak Derg, 3(1): 160-169.
  • IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change.
  • Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J Anim Sci, 73(8): 2483-2492.
  • López S, Makkar HP, Soliva CR. 2010. Screening Plants and Plant Products for Methane Inhibitors. In: Vercoe, P., Makkar, H., Schlink, A. (eds) In vitro screening of plant resources for extra-nutritional attributes in ruminants: nuclear and related methodologies. Springer, Dordrecht, the Netherlands, pp: 191-231. https://doi.org/10.1007/978-90-481-3297-3_10
  • Martínez MF, Arelovich HM, Wehrhahne LN. 2010. Grain yield, nutrient content and lipid profile of oat genotypes grown in a semiarid environment. Field Crops Res, 116(1-2): 92-100.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J Agri Sci (Camb), 93: 217-222.
  • Menke KH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev, 28: 7-55.
  • Naneli I, Sakin MA. 2017. Bazı yulaf çeşitlerinin (Avena Sativa L.) farklı lokasyonlarda verim ve kalite parametrelerinin belirlenmesi. Tarla Bitkileri Merkez Aras Enst Derg, 26: 37-45. https://doi.org/10.21566/tarbitderg.359057.
  • Norton BW. 2012. The nutritive value of tree legumes. URL: http://www.fao.org/ag/AGP/AGPC/doc/Pubicat/Guttshel/ x5556e0j.htm (Accesed date, November 07, 2022).
  • NRC. 2007. National Research Council: Nutrient requirements of small ruminants.
  • Ørskov ER, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agri Sci, 92(2): 499-503.
  • Peterson DM, Wesenberg DM, Burrup DE, Erickson CA. 2005. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop Sci, 45: 1249-1255.
  • Redaelli R, Lagana P, Rizza F, Nicosia OLD, Cattivelli L. 2008. Genetic progress of oats in Italy. Euphytica, 164: 679-687.
  • Sagocak AT. 2011. Determination of potential nutritive value of leaves Arbutus adrachne. MSc Thesis, Kahramanmaras Sutcu Imam University, Institute of Science, Kahramanmaraş, Türkiye, pp: 63.
  • Sampath KT, Wood CD, Prasad CS. 1995. Effect of urea and by products on the in vitro fermentation of untreated and urea treated finger millet (Eleusine coracana) straw. J Sci Food Agri, 67(3): 323-328.
  • Sanderson R, Lister, SJ, Sargeant, A, Dhanoa MS. 1997. Effect of particle size on in vitro fermentation of silages differing in dry matter content. In Proceedings of the British Society of Animal Science Vol. 1997, Cambridge University Press, Cambridge, UK, pp: 197-197.
  • Sehu A, Yalçin S, Önol AG. Koçak D. 1998. Prediction of dry matter intake and live weight gain in lambs by some characteristics of roughages. Turkish J Vet Anim Sci, 22(6): 475-484.
  • Sterna V, Zute S, Brunava L. 2016. Oat grain composition and its nutrition benefice. Agri Agricultural Sci Proc, 8: 252-256.
  • Van Soest PJ. 2018. Nutritional ecology of the ruminant. Cornell University Press, New York, US, pp: 488.
  • Van Soest PV, Robertson JB, Lewis, BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74(10): 3583-3597.
  • Wolin MJ. 1960. A theoretical rumen fermentation balance. J Dairy Sci, 43(10): 1452-1459.
  • Yavuz M. 2005. Bazı ruminant yemlerinin nispi yem degeri ve in vitro sindirim degerlerinin belirlenmesi. J Agri Fac Gaziosmanpasa Univ, 22(1): 97-101.
There are 31 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Research Articles
Authors

Bilal Selçuk 0000-0001-9136-5707

Adem Kamalak 0000-0003-0967-4821

Mustafa Yıldırım 0000-0001-9253-5173

Early Pub Date July 18, 2024
Publication Date August 15, 2024
Submission Date January 17, 2024
Acceptance Date July 10, 2024
Published in Issue Year 2024

Cite

APA Selçuk, B., Kamalak, A., & Yıldırım, M. (2024). Effect of Variety on the Potential Nutritive Value of Oat Hays. Black Sea Journal of Agriculture(7), 429-433. https://doi.org/10.47115/bsagriculture.1419351

                                                  24890