Research Article
BibTex RIS Cite

The Use of Rhizobacteria on White Rot Disease and Growth of Lettuce

Year 2024, , 176 - 183, 15.03.2024
https://doi.org/10.47115/bsagriculture.1424442

Abstract

White rot caused by Sclerotinia sclerotiorum [(Lib.) de Bary] is one of the most important diseases negatively affecting lettuce production. In this study, the effects of rhizobacteria containing different species on S. sclerotiorum were investigated. Also effect of rhizobacteria were determined on the growth of lettuce. Eight rhizobacteria strains (Enterobacter cloacae, E. aerogenes, Bacillus cereus, Microbacterium testaceum, Pseudomonas putida, P. chlororaphis, Acinetobacter calcoaceticus, and Burkholderia cepacia) were used in the study. Firstly, the in vitro effects of rhizobacteria strains were investigated on the mycelial growth and sclerotia viability of S. sclerotiorum. Then, pot experiments were carried out under controlled greenhouse conditions to determine the effect of selected strains on white rot disease and the growth of lettuce. The effect of tested bacteria on the mycelial growth of S. sclerotiorum ranged between 38.09-79.84%, and the P. putida strain had the highest impact. The bacterial strains were also effective on the sclerotia viability of S. sclerotiorum. The efficiency in the pot experiment was between 50-90% on white rot, and the highest effect was recorded in A. calcoaceticus strain. In the pot experiment rhizobacteria also increased plant growth. In particular, E. aerogenes was the most successful strain in plant growth. The results revealed that bacterial strains have different inhibitory effects in in vitro and in vivo experiments, while having the potential in the biological control of white rot disease and positive results on lettuce growth.

Supporting Institution

Scientific Research Projects Council of Tokat Gaziosmanpasa University

Project Number

2021/90

Thanks

The authors would like to thank to Dr. Zeliha KAYAASLAN (Yozgat Bozok University) supplying the bacterial isolates (ZE-2, ZE-5, ZE-7, ZE-8, ZE-12, ZE-13). The authors would like to thank to Scientific Research Projects Council of Tokat Gaziosmanpasa University.

References

  • Abdeljalil NOB, Vallance S, Gerbore J, Rey P, Daami-Remadi M. 2016. Bio-suppression of Sclerotinia Stem Rot of Tomato and Biostimulation of Plant Growth Using Tomato-associated Rhizobacteria. J Plant Path and Mic, 7: 2-11.
  • Aggeli F, Ziogas I, Gkizi D, Fragkogeorgi GA, Tjamos SE. 2020. Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce. BioControl, 65: 763-773.
  • Agrios GN. 1997. Plant Pathology. Academic Pres, California, pp 635.
  • Albert D, Dumonceaux T, Carisse O, Baeulieu C, Filion M. 2022. Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum. Microorganisms, 10: 2-18
  • Anonymous. 2008. White Rot on Vegetables (Sclerotinia sclerotiorum, S. minor). Plant Protection Technical Instructions, Ankara, Türkiye, pp 73-77.
  • Baniasadipour SH, Shahidi Bonjar GH. 2014. Biological Control of Sclerotinia sclerotiorum the causal agent of Lettuce Rot Disease by use of soil Streptomycetes. J Biolog Contr, 28:225-233.
  • Bardin SD, Huang HC. 2001. Research on biology and control of Sclerotinia diseases in Canada. Canad J Plant Path, 23: 88-98.
  • Bayram M, Belguzar S. 2021. The Effects of Antagonistic Bacteria Against White Mold Disease Agent [Sclerotinia sclerotiorum (Lib.) De Bary] In Cucumber. Appl Ecol Envir Res, 19: 1135-1147.
  • Biessy A, Ciotola M, Cadieux M, Albert D, Filion M. 2022. Complete Genome Sequences of Five Burkholderia Strains with Biocontrol Activity against Various Lettuce Pathogens. Microb Res Anno, 11: 1-4.
  • Bolton MD, Thomma BPHJ, Nelson BD. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molec Plant Path, 7: 1-16.
  • Budge SP, Whipps JM. 2001. Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytop, 91: 221-227.
  • Chakraborthy U, Chakraborthy B, Basnet M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J of Basic Microb, 46: 186-195.
  • Chen X, Pizzatt C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P. 2016. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front in Microb, 7: 1-12.
  • Chitrampalam P, Figuli PJ, Matheron ME, Subbarao KV, Pryor BM. 2008. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in Desert Agroecosystems. Plant Dis, 92: 1625-1634.
  • Chon BG, Park S, Kim JW. 2013. Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria. The Korean S of Plant Path, 19: 12-20.
  • Clarkson JP, Fawcett L, Anthony SG, Young C. 2014. A Model for Sclerotinia sclerotiorum Infection and Disease Development in Lettuce, Based on the Effects of Temperature, Relative Humidity and Ascospore Density. Plos One, 9: 1-12.
  • Compant S, Duffy B, Nowak J, Christophe C, Ait Barka E. 2005. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl Envir Microb, 71: 4951-4959.
  • Çakmakçı R. 2005. Use of Plant Growth Promoting Rhizobacteria in Agriculture. J Atatürk Unv Agric Faculty, 36: 97-107.
  • Celik Y. 2022. The Effects of Different Bacterial Strains (PGPR) Applications on Seedling Growth and Quality in Lettuce (Lactuca sativa L.). J Global Health Nat Sci, 5: 39-46.
  • El-kafrawy A. 2008. Biological Control of White Rot of Cucumber Caused by Sclerotinia sclerotiorum Under Greenhouse Conditions. J of Agri Research, 86: 427-439.
  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GEStJ. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Path, 49: 573-583.
  • Elias LM, Domingues MVPF, de Moura KE, Harakava R, Patricio FRA. 2016. Selection of Trichoderma isolates for biological control of Sclerotinia minor and S. sclerotiorum in lettuce. Summa Phytopathol Botucatu, 42: 216-221.
  • FAO. 2021. FAOSTAT World lettuce production amounts. URL: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed date: May 20, 2023).
  • Fatouros G, Gkizi D, Fragkogeorgi GA, Paplomatas EJ, Tjamos SE. 2018. Biological control of Pythium, Rhizoctonia and Sclerotinia in lettuce: association of the plant protective activity of the bacterium Paenibacillus alvei K165 with the induction of systemic resistance. Plant Path, 67: 418-425.
  • Ferreira SA, Boley RA. 2002. Sclerotinia sclerotiorum. URL: http://www.extento.hawaii.edu/kbase/Crop/Type/s_scler.htm (accessed date: March 06, 2021).
  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S. 2007. Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on Canola Petals. Crop Prot, 26: 100-107.
  • Ficker AL. 2019. Sclerotinia sclerotiorum impacts on host crops. PhD thesis, Iowa State University, Ames, Iowa.
  • Fiume F, Fiume G. 2005. Biological Control of Botrytis Gray Mould and Sclerotinia Drop In Lettuce. Comm Appl Biol Sci Ghent University, 70: 157-168.
  • Helmy KG. 2016. Screening Potential of Some Bacterial Species and Trichoderma harzianum against Sclerotinia sclerotiorum on Cucumber. J of Plant Prot and Path, 7: 867-872.
  • Hernandez-Leon R, Rojas-Solis D, Contreras-Perez M, Orozco-Mosqueda C, Macias-Rodriguez LI, Reyes de la-Cruz H, Valencia-Cantero E, Santoyo G. 2015. Characterization of The Antifungal and Plant Growth-Promoting Effects of Diffusible and Volatile Organic Compounds Produced by Pseudomonas fluorescens Strains. Biol Control, 81: 83-92.
  • Hwang JY, Shim CK, Ryu KY, Choi DH, Jee HJ. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as Biological Control Agents against Sclerotinia Rot of Lettuce. Organic Farming Technology Division, National Institute of Agriculturel Science and Technology, Rural Development Administration, Suwon Korea, pp 254-259.
  • Imriz G, Özdemir F, Topal İ, Ercan B, Taş MN, Yakışır E, Okur O. 2014. Plant Growth Promoting Rhizobacteria (PGPRs) and Effect Mechanisms in Crop Production. Electr J Microb, 12: 1-19.
  • Kang SM, Khan AL, Hamayun M, Shinwari ZK, Kim YH, Joo GJ, Lee IJ. 2012. Acinetobacter calcoaceticus Ameliorated Plant Growth and Influenced Gibberellins and Functional Biochemicals. Pakistan J Bot, 44: 365-372.
  • Kara M, Soylu S, Kurt S, Soylu EM, Uysal A. 2020. Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Hortic, 1290: 135-142.
  • Karagöz K, Kotan R. 2010. Effects of some plant growth promoting bacteria on growth of lettuce and Bacterial leaf spot disease. Turk J Biol Control, 1: 165-179.
  • Kayaaslan Z. 2021. Diagnosis, Epidemiology and Biological Control of Bacterial Leaf Spot Disease (Xanthomonas euvesicatoria) in Pepper Production Areas of Tokat Province. PhD thesis, Tokat Gaziosmanpasa University, Tokat, Türkiye, pp 101.
  • Khalil MdMR, Fierro-Coronado RA, Peñuelas-Rubio O, Villa-Lerma AG, Plascencia-Jatomea R, Félix-Gastélum R, Maldonado-Mendoza IE. 2021. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi J of Biol Sci, 28: 7460-7471.
  • Lee SY, Weon HY, Kim GW, Kim JJ, Han JH. 2015. Selection of Bacillus amyloliquefaciens M27 for Biocontrol on Lettuce Sclerotinia Rot. The Korean J Mycol, 43: 180-184.
  • Mari M, Guizzardi M, Pratella GC. 1996. Biological Control of Gray mould in Pears by Antagonistic Bacteria. Biol Contr, 7: 30-37.
  • Monteiro F, Ferreira L, Pacheco L, Souza P. 2013. Antagonism of Bacillus subtilis Against Sclerotinia sclerotiorum on Lactuca sativa. J Agric Sci, 5: 214-223.
  • Mohamed BFF, Sallam NAM, Alamri SAM, Abo-Elyousr KAM, Mostafa YS, Hashem M. 2020. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt J Biolog Pest Cont, 30: 2-13.
  • Onaran A, Yanar Y. 2011. Screening bacterial species for antagonistic activities against the Sclerotinia sclerotiorum (Lib.) de Bary causal agent of cucumber White mold disease. African J Biotech, 10: 2223-2229.
  • Rabeendran N, Jones EE, Moot DJ, Stewart A. 2006. Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biolog Contr, 39: 352-362.
  • Ramona Y, Darmayasa IBG, Line MA. 2022. Biological control of Sclerotinia minor attack on pyrethrum plants by Trichoderma harzianum in glasshouse experiment. Biodiversitas, 23: 3264-3269.
  • Savchuk SC. 2002. Evaluation of Biological Control of Sclerotinia sclerotiorum on Canola (Brassica napus) in the lab, in the greenhouse, and in the field. PhD thesis, University of Manitoba, Winnipeg, Manitoba, Canada.
  • Selin C, Habibiban R, Poritsanos N, Athukorala SNP, Fernando D, de Kevit TR. 2010. Phenasines are not Essential for Pseudomonas chlororaphis PA23 Biocontrol of Sclerotinia sclerotiorum, But Do Play a Role in Biofilm Formation. FEMS Microb Ecol, 71: 73-83.
  • Smolinska U, Kowalaska B. 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum. J Plant Path, 1-12.
  • Soylu S. 2011. The Possibility of Using Root Bacteria Against White Rot Disease (Sclerotinia sclerotiorum (Lib.) de Bary) in Lettuce (Lactuca sativa L.). Alatarım, 10: 85-93.
  • Soylu S, Soylu EM, Kurt S, Ekici OK. 2005. Antagonistic Potentials of Rhizosphere associated Bacterial Isolated Against Soil Borne Diseases of Tomato and Pepper Caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan J Biolog Sci, 8: 43-48.
  • Soylu S, Kara M, Uysal A, Kurt S, Soylu EM. 2021. Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdir-Agri, 108: 303-312.
  • Sen F, Teksür PK, Okşar RE, Güles A, Aşçıoğul TK. 2016. Effects of Plant Growth Promoting Microorganisms on Yield and Quality Parameters of Lettuce (Lactuca sativa L.). J Adnan Menderes Uni Agri F, 13: 35-40.
  • Tozlu E, Mohammadi P, Kotan MS, Nadaroğlu H, Kotan R. 2016. Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary, the Causal Agent of White Mould Disease in Red Cabbage by Some Bacteria. Plant Prot Sci, 52: 188-198.
  • TUIK. 2022. Turkey lettuce production amounts. URL: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504. (accessed date: May 20, 2023).
  • Villalta ON, Wite D, Hunt J, Stewart A, Porter IJ. 2012. Biological control of Sclerotinia minor on lettuce using Trichoderma and Coniothyrium species. Acta Hort, 944: 51-58.
  • Yıldız F, Cenberci Coskun B. 2017. Biological control of White Mold Disease (Sclerotinia sclerotiorum) on Lettuce by Using Fungal Antagonists. J Turk Phyt, 46: 1-14.
  • Zhang Y, Fernando WGD, Kavitha K, Nakkeeran S, Ramarathnam R. 2004. Combination of Mechanisms in Pseudomonas chlororaphis strain PA-23 Results in Control of Multiple Pathogens. Phytop, 94: 115.
Year 2024, , 176 - 183, 15.03.2024
https://doi.org/10.47115/bsagriculture.1424442

Abstract

Project Number

2021/90

References

  • Abdeljalil NOB, Vallance S, Gerbore J, Rey P, Daami-Remadi M. 2016. Bio-suppression of Sclerotinia Stem Rot of Tomato and Biostimulation of Plant Growth Using Tomato-associated Rhizobacteria. J Plant Path and Mic, 7: 2-11.
  • Aggeli F, Ziogas I, Gkizi D, Fragkogeorgi GA, Tjamos SE. 2020. Novel biocontrol agents against Rhizoctonia solani and Sclerotinia sclerotiorum in lettuce. BioControl, 65: 763-773.
  • Agrios GN. 1997. Plant Pathology. Academic Pres, California, pp 635.
  • Albert D, Dumonceaux T, Carisse O, Baeulieu C, Filion M. 2022. Combining Desirable Traits for a Good Biocontrol Strategy against Sclerotinia sclerotiorum. Microorganisms, 10: 2-18
  • Anonymous. 2008. White Rot on Vegetables (Sclerotinia sclerotiorum, S. minor). Plant Protection Technical Instructions, Ankara, Türkiye, pp 73-77.
  • Baniasadipour SH, Shahidi Bonjar GH. 2014. Biological Control of Sclerotinia sclerotiorum the causal agent of Lettuce Rot Disease by use of soil Streptomycetes. J Biolog Contr, 28:225-233.
  • Bardin SD, Huang HC. 2001. Research on biology and control of Sclerotinia diseases in Canada. Canad J Plant Path, 23: 88-98.
  • Bayram M, Belguzar S. 2021. The Effects of Antagonistic Bacteria Against White Mold Disease Agent [Sclerotinia sclerotiorum (Lib.) De Bary] In Cucumber. Appl Ecol Envir Res, 19: 1135-1147.
  • Biessy A, Ciotola M, Cadieux M, Albert D, Filion M. 2022. Complete Genome Sequences of Five Burkholderia Strains with Biocontrol Activity against Various Lettuce Pathogens. Microb Res Anno, 11: 1-4.
  • Bolton MD, Thomma BPHJ, Nelson BD. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Molec Plant Path, 7: 1-16.
  • Budge SP, Whipps JM. 2001. Potential for integrated control of Sclerotinia sclerotiorum in glasshouse lettuce using Coniothyrium minitans and reduced fungicide application. Phytop, 91: 221-227.
  • Chakraborthy U, Chakraborthy B, Basnet M. 2006. Plant growth promotion and induction of resistance in Camellia sinensis by Bacillus megaterium. J of Basic Microb, 46: 186-195.
  • Chen X, Pizzatt C, Bonaldi M, Saracchi M, Erlacher A, Kunova A, Berg G, Cortesi P. 2016. Biological Control of Lettuce Drop and Host Plant Colonization by Rhizospheric and Endophytic Streptomycetes. Front in Microb, 7: 1-12.
  • Chitrampalam P, Figuli PJ, Matheron ME, Subbarao KV, Pryor BM. 2008. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minor in Desert Agroecosystems. Plant Dis, 92: 1625-1634.
  • Chon BG, Park S, Kim JW. 2013. Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria. The Korean S of Plant Path, 19: 12-20.
  • Clarkson JP, Fawcett L, Anthony SG, Young C. 2014. A Model for Sclerotinia sclerotiorum Infection and Disease Development in Lettuce, Based on the Effects of Temperature, Relative Humidity and Ascospore Density. Plos One, 9: 1-12.
  • Compant S, Duffy B, Nowak J, Christophe C, Ait Barka E. 2005. Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases: Principles, Mechanisms of Action, and Future Prospects. Appl Envir Microb, 71: 4951-4959.
  • Çakmakçı R. 2005. Use of Plant Growth Promoting Rhizobacteria in Agriculture. J Atatürk Unv Agric Faculty, 36: 97-107.
  • Celik Y. 2022. The Effects of Different Bacterial Strains (PGPR) Applications on Seedling Growth and Quality in Lettuce (Lactuca sativa L.). J Global Health Nat Sci, 5: 39-46.
  • El-kafrawy A. 2008. Biological Control of White Rot of Cucumber Caused by Sclerotinia sclerotiorum Under Greenhouse Conditions. J of Agri Research, 86: 427-439.
  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GEStJ. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Path, 49: 573-583.
  • Elias LM, Domingues MVPF, de Moura KE, Harakava R, Patricio FRA. 2016. Selection of Trichoderma isolates for biological control of Sclerotinia minor and S. sclerotiorum in lettuce. Summa Phytopathol Botucatu, 42: 216-221.
  • FAO. 2021. FAOSTAT World lettuce production amounts. URL: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed date: May 20, 2023).
  • Fatouros G, Gkizi D, Fragkogeorgi GA, Paplomatas EJ, Tjamos SE. 2018. Biological control of Pythium, Rhizoctonia and Sclerotinia in lettuce: association of the plant protective activity of the bacterium Paenibacillus alvei K165 with the induction of systemic resistance. Plant Path, 67: 418-425.
  • Ferreira SA, Boley RA. 2002. Sclerotinia sclerotiorum. URL: http://www.extento.hawaii.edu/kbase/Crop/Type/s_scler.htm (accessed date: March 06, 2021).
  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S. 2007. Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on Canola Petals. Crop Prot, 26: 100-107.
  • Ficker AL. 2019. Sclerotinia sclerotiorum impacts on host crops. PhD thesis, Iowa State University, Ames, Iowa.
  • Fiume F, Fiume G. 2005. Biological Control of Botrytis Gray Mould and Sclerotinia Drop In Lettuce. Comm Appl Biol Sci Ghent University, 70: 157-168.
  • Helmy KG. 2016. Screening Potential of Some Bacterial Species and Trichoderma harzianum against Sclerotinia sclerotiorum on Cucumber. J of Plant Prot and Path, 7: 867-872.
  • Hernandez-Leon R, Rojas-Solis D, Contreras-Perez M, Orozco-Mosqueda C, Macias-Rodriguez LI, Reyes de la-Cruz H, Valencia-Cantero E, Santoyo G. 2015. Characterization of The Antifungal and Plant Growth-Promoting Effects of Diffusible and Volatile Organic Compounds Produced by Pseudomonas fluorescens Strains. Biol Control, 81: 83-92.
  • Hwang JY, Shim CK, Ryu KY, Choi DH, Jee HJ. 2006. Selection of Brevibacillus brevis B23 and Bacillus stearothermophilus B42 as Biological Control Agents against Sclerotinia Rot of Lettuce. Organic Farming Technology Division, National Institute of Agriculturel Science and Technology, Rural Development Administration, Suwon Korea, pp 254-259.
  • Imriz G, Özdemir F, Topal İ, Ercan B, Taş MN, Yakışır E, Okur O. 2014. Plant Growth Promoting Rhizobacteria (PGPRs) and Effect Mechanisms in Crop Production. Electr J Microb, 12: 1-19.
  • Kang SM, Khan AL, Hamayun M, Shinwari ZK, Kim YH, Joo GJ, Lee IJ. 2012. Acinetobacter calcoaceticus Ameliorated Plant Growth and Influenced Gibberellins and Functional Biochemicals. Pakistan J Bot, 44: 365-372.
  • Kara M, Soylu S, Kurt S, Soylu EM, Uysal A. 2020. Determination of antagonistic traits of bacterial isolates obtained from apricot against green fruit rot disease agent Sclerotinia sclerotiorum. Acta Hortic, 1290: 135-142.
  • Karagöz K, Kotan R. 2010. Effects of some plant growth promoting bacteria on growth of lettuce and Bacterial leaf spot disease. Turk J Biol Control, 1: 165-179.
  • Kayaaslan Z. 2021. Diagnosis, Epidemiology and Biological Control of Bacterial Leaf Spot Disease (Xanthomonas euvesicatoria) in Pepper Production Areas of Tokat Province. PhD thesis, Tokat Gaziosmanpasa University, Tokat, Türkiye, pp 101.
  • Khalil MdMR, Fierro-Coronado RA, Peñuelas-Rubio O, Villa-Lerma AG, Plascencia-Jatomea R, Félix-Gastélum R, Maldonado-Mendoza IE. 2021. Rhizospheric bacteria as potential biocontrol agents against Fusarium wilt and crown and root rot diseases in tomato. Saudi J of Biol Sci, 28: 7460-7471.
  • Lee SY, Weon HY, Kim GW, Kim JJ, Han JH. 2015. Selection of Bacillus amyloliquefaciens M27 for Biocontrol on Lettuce Sclerotinia Rot. The Korean J Mycol, 43: 180-184.
  • Mari M, Guizzardi M, Pratella GC. 1996. Biological Control of Gray mould in Pears by Antagonistic Bacteria. Biol Contr, 7: 30-37.
  • Monteiro F, Ferreira L, Pacheco L, Souza P. 2013. Antagonism of Bacillus subtilis Against Sclerotinia sclerotiorum on Lactuca sativa. J Agric Sci, 5: 214-223.
  • Mohamed BFF, Sallam NAM, Alamri SAM, Abo-Elyousr KAM, Mostafa YS, Hashem M. 2020. Approving the biocontrol method of potato wilt caused by Ralstonia solanacearum (Smith) using Enterobacter cloacae PS14 and Trichoderma asperellum T34. Egypt J Biolog Pest Cont, 30: 2-13.
  • Onaran A, Yanar Y. 2011. Screening bacterial species for antagonistic activities against the Sclerotinia sclerotiorum (Lib.) de Bary causal agent of cucumber White mold disease. African J Biotech, 10: 2223-2229.
  • Rabeendran N, Jones EE, Moot DJ, Stewart A. 2006. Biocontrol of Sclerotinia lettuce drop by Coniothyrium minitans and Trichoderma hamatum. Biolog Contr, 39: 352-362.
  • Ramona Y, Darmayasa IBG, Line MA. 2022. Biological control of Sclerotinia minor attack on pyrethrum plants by Trichoderma harzianum in glasshouse experiment. Biodiversitas, 23: 3264-3269.
  • Savchuk SC. 2002. Evaluation of Biological Control of Sclerotinia sclerotiorum on Canola (Brassica napus) in the lab, in the greenhouse, and in the field. PhD thesis, University of Manitoba, Winnipeg, Manitoba, Canada.
  • Selin C, Habibiban R, Poritsanos N, Athukorala SNP, Fernando D, de Kevit TR. 2010. Phenasines are not Essential for Pseudomonas chlororaphis PA23 Biocontrol of Sclerotinia sclerotiorum, But Do Play a Role in Biofilm Formation. FEMS Microb Ecol, 71: 73-83.
  • Smolinska U, Kowalaska B. 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum. J Plant Path, 1-12.
  • Soylu S. 2011. The Possibility of Using Root Bacteria Against White Rot Disease (Sclerotinia sclerotiorum (Lib.) de Bary) in Lettuce (Lactuca sativa L.). Alatarım, 10: 85-93.
  • Soylu S, Soylu EM, Kurt S, Ekici OK. 2005. Antagonistic Potentials of Rhizosphere associated Bacterial Isolated Against Soil Borne Diseases of Tomato and Pepper Caused by Sclerotinia sclerotiorum and Rhizoctonia solani. Pakistan J Biolog Sci, 8: 43-48.
  • Soylu S, Kara M, Uysal A, Kurt S, Soylu EM. 2021. Determination of antagonistic potential of endophytic bacteria isolated from lettuce against lettuce white mould disease caused by Sclerotinia sclerotiorum. Zemdir-Agri, 108: 303-312.
  • Sen F, Teksür PK, Okşar RE, Güles A, Aşçıoğul TK. 2016. Effects of Plant Growth Promoting Microorganisms on Yield and Quality Parameters of Lettuce (Lactuca sativa L.). J Adnan Menderes Uni Agri F, 13: 35-40.
  • Tozlu E, Mohammadi P, Kotan MS, Nadaroğlu H, Kotan R. 2016. Biological Control of Sclerotinia sclerotiorum (Lib.) de Bary, the Causal Agent of White Mould Disease in Red Cabbage by Some Bacteria. Plant Prot Sci, 52: 188-198.
  • TUIK. 2022. Turkey lettuce production amounts. URL: https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2022-45504. (accessed date: May 20, 2023).
  • Villalta ON, Wite D, Hunt J, Stewart A, Porter IJ. 2012. Biological control of Sclerotinia minor on lettuce using Trichoderma and Coniothyrium species. Acta Hort, 944: 51-58.
  • Yıldız F, Cenberci Coskun B. 2017. Biological control of White Mold Disease (Sclerotinia sclerotiorum) on Lettuce by Using Fungal Antagonists. J Turk Phyt, 46: 1-14.
  • Zhang Y, Fernando WGD, Kavitha K, Nakkeeran S, Ramarathnam R. 2004. Combination of Mechanisms in Pseudomonas chlororaphis strain PA-23 Results in Control of Multiple Pathogens. Phytop, 94: 115.
There are 56 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Abdullah Can Akgül 0000-0003-4944-9995

Sabriye Belgüzar 0000-0002-8892-0017

Project Number 2021/90
Early Pub Date March 5, 2024
Publication Date March 15, 2024
Submission Date January 23, 2024
Acceptance Date February 27, 2024
Published in Issue Year 2024

Cite

APA Akgül, A. C., & Belgüzar, S. (2024). The Use of Rhizobacteria on White Rot Disease and Growth of Lettuce. Black Sea Journal of Agriculture, 7(2), 176-183. https://doi.org/10.47115/bsagriculture.1424442

                                                  24890