Research Article
BibTex RIS Cite

Vermicompost Effects on Soil Chemistry and Biology: Correlations with Basil's (Ocimum basilicum L.) Total Phenolic Content and Phenological Traits

Year 2024, , 437 - 450, 15.09.2024
https://doi.org/10.47115/bsagriculture.1489757

Abstract

This study investigates the effects of vermicompost on the chemical and biological properties of soils, their nutrient content, and the effects on the growth and phenolic content of basil (Ocimum basilicum L.). Using a controlled experimental setup, we tested five dosages of vermicompost (0%, 4%, 12%, 20%, and 24%, w/w) to evaluate their influence on soil biological activity by measuring basal respiration (CO2-C), microbial biomass C (MBC-C), and dehydrogenase activity (DHA) as well as basil's growth parameters and total phenolic content (TPC). The results show that vermicompost addition to soil enhanced soil microbial activity in direct proportion to the dose of vermicompost. The application of lower dosages of vermicompost (4% and 12%) significantly enhanced both fresh and dry weights. However, higher dosages (20% and 24%) were associated with reduced growth metrics. Notably, the highest vermicompost concentration (24%) led to a substantial increase in total phenolic content (TPC) in basil leaves, correlating with decreased growth metrics. The values for CO2-C, MBC-C, and DHA were determined as 0.135, 20.756, and 12.806, respectively, at the highest solid vermicompost application dose of 24%. Fresh and dry weight were determined at 12% vermicompost application, and plant height and leaf length were also determined at 12% vermicompost application. The TPC showed a remarkable increase at the 24% application dose. This response indicates a defense mechanism of the plant against oxidative stress caused by excess nutrients or salinity from the vermicompost. A multiple regression analysis following a correlation analysis also revealed an inversely proportional relationship between phosphorus content in the soil and total phenolic content in basil leaves. Our findings illustrate that while moderate vermicompost dosages optimize plant growth and health, higher concentrations can strategically enhance phenolic content due to nutrient overload or salt-induced stress. These results offer critical insights for tailoring organic amendment applications to balance plant growth and biochemical properties in agricultural practices.

References

  • Adamipour N, Heiderianpour M, Zarei M. 2016. Application of vermicompost for reducing the destructive effects of salinity stress on tall fescue turfgrass (Festuca arundinacea Schreb.‘Queen’). J Soil Plant Interact-Isfahan Univ Technol, 7(1): 35-47.
  • Akhzari D, Attaeian B, Arami A, Mahmoodi F, Aslani F. 2015. Effects of vermicompost and arbuscular mycorrhizal fungi on soil properties and growth of Medicago polymorpha L. Compost Sci Util, 23(3): 142-153. https://doi.org/10.1080/1065657x.2015.1013585.
  • Akula R, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6(11): 1720-1731. https://doi.org/10.4161/psb.6.11.17613
  • Aliyar S, Aliasgharzad N, Dabbagh Mohammadi Nasab A, Oustan S. 2021. The effect of vermicompost application on growth and water relationships of quinoa plant under salinity stress conditions. J Agric Sci Sustain Prod, 31(3): 131-147.
  • Arancon NQ, Galvis PA, Edwards CA. 2005. Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour Technol, 96(10): 1137-1142. https://doi.org/10.1016/j.biortech.2004.10.004
  • Asami DK, Hong YJ, Barrett DM, Mitchell AE. 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J Agric Food Chem, 51(5): 1237-1241. https://doi.org/10.1021/jf020635c
  • Atiyeh RM, Subler S, Edwards CA, Bachman GR, Metzger JD, Shuster WD. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5): 579-590. https://doi.org/10.1078/s0031-4056(04)70073-6
  • Bachman G, Metzger J. 2008. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour Technol, 99(8): 3155-3161. https://doi.org/10.1016/j.biortech.2007.05.069
  • Beykkhormizi A, Abrishamchi P, Ganjeali A, Parsa M. 2016. Effect of vermicompost on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. J Plant Nutr, 39(6): 883-893. https://doi.org/10.1080/01904167.2015.1109104
  • Broz AP, Verma PO, Appel C. 2016. Nitrogen dynamics of vermicompost use in sustainable agriculture. J Soil Sci Environ Manag, 7(11): 173-183. https://doi.org/10.5897/JSSEM2016.0587
  • Chang EH, Wang CH, Chen CL, Chung RS. 2014. Effects of long-term treatments of different organic fertilizers complemented with chemical N fertilizer on the chemical and biological properties of soils. Soil Sci Plant Nutr, 60(4): 499-511. https://doi.org/10.1080/00380768.2014.917333
  • Couto W. 2018. Soil pH and plant productivity. In: Couto W, editors. Handbook of agricultural productivity. CRC Press, Boca Raton, US, pp: 71-84.
  • Doan TT, Ngo PT, Rumpel C, Van Nguyen B, Jouquet P. 2013. Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic, 160: 148-154.
  • Domínguez J, Martínez-Cordeiro H, Álvarez-Casas M, Lores M. 2014. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Manag Res, 32(12): 1235-1240.
  • dos Santos Nascimiento LB, Brunetti C, Agati G, Iacono CL, Detti C, Giordani E, Ferrini F, Gori A. 2020. Short-term pre-harvest UV-B supplement enhances the polyphenol content and antioxidant capacity of Ocimum basilicum leaves during storage. Plants, 9(6): 797. https://doi.org/10.3390/plants9060797
  • Edwards CA, Arancon NQ, Sherman RL. 2010. Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, Boca Raton, US, pp: 623. https://doi.org/10.1201/b10453
  • Edwards CA, Burrows I. 1988. The potential of earthworms composts as plant growth media. In: Edward CA, Neuhauser EF, editors. Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, the Netherlands, pp: 21-32.
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Gill P, Singh DB, Kumar TR, Kumar P, Gupta RK. 2018. Comparative effect of different fertilizers on various growth parameters of Lycopersicum esculantum. Int J Curr Microbiol Appl Sci, 7(1): 56-60. https://doi.org/10.20546/ijcmas.2018.701.008
  • Hristozkova M, Gigova L, Geneva M, Stancheva I, Vasileva I, Sichanova M, Mincheva J. 2018. Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants. J Plant Prot Res, 57(4): 417-426. https://doi.org/10.1515/jppr-2017-0057
  • Ibrahim HA, El-Batran HS, Hassan NMK. 2022. Impact on growth, yield and nutritional status of tomato plants grown in saline soil by vermicompost and ascorbic acid. Int J Health Sci, 6(S1): 10134-10143. https://doi.org/10.53730/ijhs.v6nS1.7171
  • Jahanbakhshi A, Kheiralipour K. 2019. Influence of vermicompost and sheep manure on mechanical properties of tomato fruit. Food Sci Nutr, 7(4): 1172-1178. https://doi.org/10.1002/fsn3.877
  • Kacar B. 1994. Bitki ve toprağın kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı., Ankara, Türkiye, pp: 27-34.
  • Kamel EM, Eid SDM, Elian HMA. 2021. Allelochemicals effect of aqueous sweet basil (Ocimum basilicum L.) on weed control in peanut and cowpea crops. Egypt J Chem, 65(5): 153-164. https://doi.org/10.21608/ejchem.2021.93101.4455
  • Kannadasan N, Natarajan N, Anbusaravanan N, Sekar P, Krishnamoorthy R. 2013. Assessment of sustainable vermiconversion of water hyacinth by Eudrilus eugeniae and Eisenia fetida. J Appl Nat Sci, 5(2): 451-454.
  • Kaurinovic B, Popović M, Vlaisavljevic S, Trivić S. 2011. Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts. Molecules, 16(9): 7401-7414. https://doi.org/10.3390/molecules16097401
  • Kizilkaya R, Turkay FSH, Turkmen C, Durmus M. 2012. Vermicompost effects on wheat yield and nutrient contents in soil and plant. Arch Agron Soil Sci, 58(sup1): S175-S179. https://doi.org/10.1080/03650340.2012.696777
  • Kumar I., Sharma RK. 2018. Production of secondary metabolites in plants under abiotic stress: an overview. Sig Bioeng Biosci, 2: 196-200.
  • Kurnaz B, Önder H, Piwczynski D, Kolenda M, Sitkowska B, 2021. Determination of the best model to predict milk dry matter in high milk yielding dairy cattle. Acta Sci Pol Zootechnica, 20(3): 41-44.
  • Kurnaz B, Yüksel HM, Önder H, Tırınk C. 2022. 3-D Classification of agricultural areas of Turkey using mammalian livestock existence. BSJ Agri, 5(3): 311-313.
  • Lim SL, Wu TY, Lim PN, Shak KPY. 2014. The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric, 95(6): 1143-1156. https://doi.org/10.1002/jsfa.6849
  • Luna MC, Bekhradi F, Ferreres F, Jordán MJ, Delshad M, Gil MI. 2015. Effect of water stress and storage time on anthocyanins and other phenolics of different genotypes of fresh sweet basil. J Agric Food Chem, 63(42): 9223-9231. https://doi.org/10.1021/acs.jafc.5b04131
  • Mahirah YS, Rabeta, Antora RA. 2018. Effects of different drying methods on the proximate composition and antioxidant activities of Ocimum basilicum leaves. Food Res, 2(5): 421-428. https://doi.org/10.26656/fr.2017.2(5).083
  • Malusà E, Russo M, Mozzetti C, Belligno A. 2006. Modification of secondary metabolism and flavonoid biosynthesis under phosphate deficiency in bean roots. J Plant Nutr, 29(2): 245-258. https://doi.org/10.1080/01904160500474090
  • Massoud H, Abd El-Baset MM, Abd El-Baset M. 2022. Effect of ground treatments (vermicompost) and foliar application with some plant growth stimulants on growth, chemical composition, and oil yield of Italian basil (Ocimum basilicum L. var. Genovese). J Plant Prod, 13(9): 733-741. https://doi.org/10.21608/jpp.2022.163004.1172
  • Mintas AI, Miere F, Fritea L, Ganea M, Zdrîncă M, Dobjanschi L, Antonescu A, Vicaş SI, Bodog FD, Sindhu RK, Cavalu S. 2021. Perspectives on the combined effects of Ocimum basilicum and Trifolium pratense extracts in terms of phytochemical profile and pharmacological effects. Plants, 10(7): 1390. https://doi.org/10.3390/plants10071390
  • Moustafa YTA, Mustafa NS, Ghonim SMME, Zuhair R, Zhang L, Hassoub MA. 2022. Influence of wastes of taro leaf, sugar beet and saw dust on physiochemical parameters of produced vermicompost. Asian J Soil Sci Plant Nutr, 8(3): 29-40. https://doi.org/10.9734/ajsspn/2022/v8i3160
  • Neina D. 2019. The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci, 2019: 1-9.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of Soil Analysis. Part 3-Chemical Methods, Soil Science Society of America Inc., Madison, US, pp: 961-1010.
  • Nunes RR, Pigatin LBF, Oliveira TS, Bontempi RM, Maria Olímpia de Oliveira R. 2018. Vermicomposted tannery wastes in the organic cultivation of sweet pepper: growth, nutritive value and production. Int J Recycl Org Waste Agric, 7(4): 313-324. https://doi.org/10.1007/s40093-018-0217-7
  • Nurhidayati N, Machfudz M, Murwani I. 2018. Direct and residual effect of various vermicompost on soil nutrient and nutrient uptake dynamics and productivity of four mustard pak-coi (Brassica rapa L.) sequences in organic farming system. Int J Recycl Org Waste Agric, 7(2): 173-181. https://doi.org/10.1007/s40093-018-0203-0
  • Pang X, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang X. 2022. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Glob Change Biol, 28(13): 4194-4210. https://doi.org/10.1111/gcb.16205
  • Pereira MdG, Lourdes Cardoso de Souza N, Fontes MPF, Souza AN, Matos TC, Sachdev RdL, Santos AVd, Marluce Oliveira da Guarda S, Marta Valéria Almeida Santana de A, Paulo GMM, Ribeiro JN, Araceli Verónica Flores Nardy R. 2014. An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods. Sci World J, 2014: 1-14. https://doi.org/10.1155/2014/917348
  • Pérez-Gómez JJ, Abud-Archila M, Villalobos-Maldonado JJ, Enciso-Saenz S, Hernández de León H, Ruiz-Valdiviezo VM, Gutiérrez-Miceli FA. 2017. Vermicompost and vermiwash minimized the influence of salinity stress on growth parameters in potato plants. Compost Sci Util, 25(4): 282-287. https://doi.org/10.1080/1065657X.2017.1333932
  • Phares CA, Atiah K, Frimpong KA, Danquah A, Asare AT, Aggor-Woananu S. 2020. Application of biochar and inorganic phosphorus fertilizer influenced rhizosphere soil characteristics, nodule formation and phytoconstituents of cowpea grown on tropical soil. Heliyon, 6(10): e05255. https://doi.org/10.1016/j.heliyon.2020.e05255
  • Pramanik P, Ghosh G, Chung YR. 2010. Changes in nutrient content, enzymatic activities and microbial properties of lateritic soil due to application of different vermicomposts: a comparative study of ergosterol and chitin to determine fungal biomass in soil. Soil Use Manage, 26(4): 508-515. https://doi.org/10.1111/j.1475-2743.2010.00304.x
  • Prinsi B, Negrini N, Morgutti S, Espen L. 2020. Nitrogen starvation and nitrate or ammonium availability differently affect phenolic composition in green and purple basil. Agronomy, 10(4): 498. https://doi.org/10.3390/agronomy10040498
  • Puccinelli M, Pezzarossa B, Rosellini I, Malorgio F. 2020. Selenium enrichment enhances the quality and shelf life of basil leaves. Plants, 9(6): 801. https://doi.org/10.3390/plants9060801
  • Rao S, Lesparre N, Flores-Orozco A, Wagner F, Kemna A, Javaux M. 2020. Imaging plant responses to water deficit using electrical resistivity tomography. Plant Soil, 454: 261-281.
  • Rekha GS, Kaleena PK, Elumalai D, Srikumaran MP, Maheswari VN. 2018. Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annuum (Linn.) Hepper. Int J Recycl Org Waste Agric, 7(1): 83-88. https://doi.org/10.1007/s40093-017-0191-5
  • Reyes-Pérez JJ, Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, Rueda-Puente EO, Hernández-Montiel LG, Rangel PP, Morales AB, Rodríguez-Félix F, Bustamante RJL. 2017. Uso de humatos de vermicompost para disminuir el efecto de la salinidad en el crecimiento y desarrollo de albahaca (Ocimum basilicum L.). Rev Mex Cienc Agríc, 7(6): 1375-1387. https://doi.org/10.29312/remexca.v7i6.186
  • Rivier PA, Jamniczky D, Nemes A, Makó A, Barna G, Uzinger N, Rékási M, Farkas C. 2022. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J Hydrol Hydromech, 70(1): 74-88. https://doi.org/10.2478/johh-2022-0004
  • Samaranayake J, Wijekoon S. 2011. Effect of selected earthworms on soil fertility, plant growth and vermicomposting. Trop Agric Res Ext, 13(2): 33-40. https://doi.org/10.4038/tare.v13i2.3136
  • Sharma R, Singh P, Gupta M, Kumar Khilla D, Malik P, Jindal S. 2023. The nutraceutical value of horticultural crops. Int J Ayurvedic Med, 14(3): 606-615. https://doi.org/10.47552/ijam.v14i3.3788
  • Sim EYS, Wu TY. 2010. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting. J Sci Food Agric, 90(13): 2153-2162. https://doi.org/10.1002/jsfa.4127
  • Social Science Statistics. 2024. URL: https://www.socscistatistics.com (accessed date: May 15, 2024).
  • Szczech M. 1999. Suppressiveness of vermicompost against Fusarium wilt of tomato. J Phytopathol, 147(3): 155-161.
  • Tejada M, Gómez I, Hernández T, García C. 2010. Utilization of vermicomposts in soil restoration: effects on soil biological properties. Soil Sci Soc Am J, 74(2): 525-532. https://doi.org/10.2136/sssaj2009.0260
  • Tikoria R, Kaur A, Ohri P. 2022. Modulation of various phytoconstituents in tomato seedling growth and Meloidogyne incognita–induced stress alleviation by vermicompost application. Front Environ Sci, 10: 891195. https://doi.org/10.3389/fenvs.2022.891195
  • Tisdall JM, Oades JM. 1982. Organic matter and water‐stable aggregates in soils. J Soil Sci, 33(2): 141-163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  • Türkay FŞH. 2023. Heat pre-treatment as an initial step in vermicomposting significantly influences worm population and cocoon production. Soil Stud, 12(2): 102-110. https://doi.org/10.21657/soilst.1408077
  • Türkay İ, Öztürk L, Hepşen Türkay FŞ. 2024. Unveiling the role of vermicompost in modulating phenylpropanoid metabolism in basil (Ocimum basilicum L.): a single-cell type PGT approach. Curr Plant Biol, 38: 100335. https://doi.org/10.1016/j.cpb.2024.100335
  • Türkay İ, Öztürk L. 2019. Addition of vermicompost to soil influences total phenolic content of sweet basil. In: 10th International Soil Congress. Successful Transformation toward Land Degradation Neutrality: Future Perspective, June 17-19, Ankara, Türkiye.
  • Türkay İ, Öztürk L. 2023. The form, dose, and method of application of vermicompost differentiate the phenylpropene biosynthesis in the peltate glandular trichomes of methylchavicol chemotype of Ocimum basilicum L. Ind Crops Prod, 198: 116688. https://doi.org/10.1016/j.indcrop.2023.116688
  • Wang BL, Wang C, Liu ML. 2021. Ecological remediation of earthworms on soil-plant system: a review. Ying Yong Sheng Tai Xue Bao, 32(6): 2259-2266.
  • Yadav A, Garg VK. 2015. Influence of vermi-fortification on chickpea (Cicer arietinum L.) growth and photosynthetic pigments. Int J Recycl Org Waste Agric, 4(4): 299-305. https://doi.org/10.1007/s40093-015-0109-z
  • Zargoosh Z, Ghavam M, Bacchetta G, Tavili A. 2019. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci Rep, 9(1): 16021. https://doi.org/10.1038/s41598-019-52605-8
  • Zhang H, Li C, Wei K, Liu M, Shi Y, Yang X, Li F, Ruan J, Zhang Q. 2023. The reduction of tea quality caused by irrational phosphate application is associated with anthocyanin metabolism. Bever Plant Res, 3: 0010. https://doi.org/10.48130/bpr-2023-0010
  • Zlotek U, Michalak-Majewska M, Szymanowska U. 2016. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chem, 213: 1-7. https://doi.org/10.1016/j.foodchem.2016.06.052
Year 2024, , 437 - 450, 15.09.2024
https://doi.org/10.47115/bsagriculture.1489757

Abstract

References

  • Adamipour N, Heiderianpour M, Zarei M. 2016. Application of vermicompost for reducing the destructive effects of salinity stress on tall fescue turfgrass (Festuca arundinacea Schreb.‘Queen’). J Soil Plant Interact-Isfahan Univ Technol, 7(1): 35-47.
  • Akhzari D, Attaeian B, Arami A, Mahmoodi F, Aslani F. 2015. Effects of vermicompost and arbuscular mycorrhizal fungi on soil properties and growth of Medicago polymorpha L. Compost Sci Util, 23(3): 142-153. https://doi.org/10.1080/1065657x.2015.1013585.
  • Akula R, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav, 6(11): 1720-1731. https://doi.org/10.4161/psb.6.11.17613
  • Aliyar S, Aliasgharzad N, Dabbagh Mohammadi Nasab A, Oustan S. 2021. The effect of vermicompost application on growth and water relationships of quinoa plant under salinity stress conditions. J Agric Sci Sustain Prod, 31(3): 131-147.
  • Arancon NQ, Galvis PA, Edwards CA. 2005. Suppression of insect pest populations and damage to plants by vermicomposts. Bioresour Technol, 96(10): 1137-1142. https://doi.org/10.1016/j.biortech.2004.10.004
  • Asami DK, Hong YJ, Barrett DM, Mitchell AE. 2003. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J Agric Food Chem, 51(5): 1237-1241. https://doi.org/10.1021/jf020635c
  • Atiyeh RM, Subler S, Edwards CA, Bachman GR, Metzger JD, Shuster WD. 2000. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia, 44(5): 579-590. https://doi.org/10.1078/s0031-4056(04)70073-6
  • Bachman G, Metzger J. 2008. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour Technol, 99(8): 3155-3161. https://doi.org/10.1016/j.biortech.2007.05.069
  • Beykkhormizi A, Abrishamchi P, Ganjeali A, Parsa M. 2016. Effect of vermicompost on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. J Plant Nutr, 39(6): 883-893. https://doi.org/10.1080/01904167.2015.1109104
  • Broz AP, Verma PO, Appel C. 2016. Nitrogen dynamics of vermicompost use in sustainable agriculture. J Soil Sci Environ Manag, 7(11): 173-183. https://doi.org/10.5897/JSSEM2016.0587
  • Chang EH, Wang CH, Chen CL, Chung RS. 2014. Effects of long-term treatments of different organic fertilizers complemented with chemical N fertilizer on the chemical and biological properties of soils. Soil Sci Plant Nutr, 60(4): 499-511. https://doi.org/10.1080/00380768.2014.917333
  • Couto W. 2018. Soil pH and plant productivity. In: Couto W, editors. Handbook of agricultural productivity. CRC Press, Boca Raton, US, pp: 71-84.
  • Doan TT, Ngo PT, Rumpel C, Van Nguyen B, Jouquet P. 2013. Interactions between compost, vermicompost and earthworms influence plant growth and yield: a one-year greenhouse experiment. Sci Hortic, 160: 148-154.
  • Domínguez J, Martínez-Cordeiro H, Álvarez-Casas M, Lores M. 2014. Vermicomposting grape marc yields high quality organic biofertiliser and bioactive polyphenols. Waste Manag Res, 32(12): 1235-1240.
  • dos Santos Nascimiento LB, Brunetti C, Agati G, Iacono CL, Detti C, Giordani E, Ferrini F, Gori A. 2020. Short-term pre-harvest UV-B supplement enhances the polyphenol content and antioxidant capacity of Ocimum basilicum leaves during storage. Plants, 9(6): 797. https://doi.org/10.3390/plants9060797
  • Edwards CA, Arancon NQ, Sherman RL. 2010. Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, Boca Raton, US, pp: 623. https://doi.org/10.1201/b10453
  • Edwards CA, Burrows I. 1988. The potential of earthworms composts as plant growth media. In: Edward CA, Neuhauser EF, editors. Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, the Netherlands, pp: 21-32.
  • Genç S, Soysal Mİ. 2018. Parametric and nonparametric post hoc tests. BSJ Eng Sci, 1(1): 18-27.
  • Gill P, Singh DB, Kumar TR, Kumar P, Gupta RK. 2018. Comparative effect of different fertilizers on various growth parameters of Lycopersicum esculantum. Int J Curr Microbiol Appl Sci, 7(1): 56-60. https://doi.org/10.20546/ijcmas.2018.701.008
  • Hristozkova M, Gigova L, Geneva M, Stancheva I, Vasileva I, Sichanova M, Mincheva J. 2018. Mycorrhizal fungi and microalgae modulate antioxidant capacity of basil plants. J Plant Prot Res, 57(4): 417-426. https://doi.org/10.1515/jppr-2017-0057
  • Ibrahim HA, El-Batran HS, Hassan NMK. 2022. Impact on growth, yield and nutritional status of tomato plants grown in saline soil by vermicompost and ascorbic acid. Int J Health Sci, 6(S1): 10134-10143. https://doi.org/10.53730/ijhs.v6nS1.7171
  • Jahanbakhshi A, Kheiralipour K. 2019. Influence of vermicompost and sheep manure on mechanical properties of tomato fruit. Food Sci Nutr, 7(4): 1172-1178. https://doi.org/10.1002/fsn3.877
  • Kacar B. 1994. Bitki ve toprağın kimyasal analizleri. Ankara Üniversitesi Ziraat Fakültesi Eğitim, Araştırma ve Geliştirme Vakfı., Ankara, Türkiye, pp: 27-34.
  • Kamel EM, Eid SDM, Elian HMA. 2021. Allelochemicals effect of aqueous sweet basil (Ocimum basilicum L.) on weed control in peanut and cowpea crops. Egypt J Chem, 65(5): 153-164. https://doi.org/10.21608/ejchem.2021.93101.4455
  • Kannadasan N, Natarajan N, Anbusaravanan N, Sekar P, Krishnamoorthy R. 2013. Assessment of sustainable vermiconversion of water hyacinth by Eudrilus eugeniae and Eisenia fetida. J Appl Nat Sci, 5(2): 451-454.
  • Kaurinovic B, Popović M, Vlaisavljevic S, Trivić S. 2011. Antioxidant capacity of Ocimum basilicum L. and Origanum vulgare L. extracts. Molecules, 16(9): 7401-7414. https://doi.org/10.3390/molecules16097401
  • Kizilkaya R, Turkay FSH, Turkmen C, Durmus M. 2012. Vermicompost effects on wheat yield and nutrient contents in soil and plant. Arch Agron Soil Sci, 58(sup1): S175-S179. https://doi.org/10.1080/03650340.2012.696777
  • Kumar I., Sharma RK. 2018. Production of secondary metabolites in plants under abiotic stress: an overview. Sig Bioeng Biosci, 2: 196-200.
  • Kurnaz B, Önder H, Piwczynski D, Kolenda M, Sitkowska B, 2021. Determination of the best model to predict milk dry matter in high milk yielding dairy cattle. Acta Sci Pol Zootechnica, 20(3): 41-44.
  • Kurnaz B, Yüksel HM, Önder H, Tırınk C. 2022. 3-D Classification of agricultural areas of Turkey using mammalian livestock existence. BSJ Agri, 5(3): 311-313.
  • Lim SL, Wu TY, Lim PN, Shak KPY. 2014. The use of vermicompost in organic farming: overview, effects on soil and economics. J Sci Food Agric, 95(6): 1143-1156. https://doi.org/10.1002/jsfa.6849
  • Luna MC, Bekhradi F, Ferreres F, Jordán MJ, Delshad M, Gil MI. 2015. Effect of water stress and storage time on anthocyanins and other phenolics of different genotypes of fresh sweet basil. J Agric Food Chem, 63(42): 9223-9231. https://doi.org/10.1021/acs.jafc.5b04131
  • Mahirah YS, Rabeta, Antora RA. 2018. Effects of different drying methods on the proximate composition and antioxidant activities of Ocimum basilicum leaves. Food Res, 2(5): 421-428. https://doi.org/10.26656/fr.2017.2(5).083
  • Malusà E, Russo M, Mozzetti C, Belligno A. 2006. Modification of secondary metabolism and flavonoid biosynthesis under phosphate deficiency in bean roots. J Plant Nutr, 29(2): 245-258. https://doi.org/10.1080/01904160500474090
  • Massoud H, Abd El-Baset MM, Abd El-Baset M. 2022. Effect of ground treatments (vermicompost) and foliar application with some plant growth stimulants on growth, chemical composition, and oil yield of Italian basil (Ocimum basilicum L. var. Genovese). J Plant Prod, 13(9): 733-741. https://doi.org/10.21608/jpp.2022.163004.1172
  • Mintas AI, Miere F, Fritea L, Ganea M, Zdrîncă M, Dobjanschi L, Antonescu A, Vicaş SI, Bodog FD, Sindhu RK, Cavalu S. 2021. Perspectives on the combined effects of Ocimum basilicum and Trifolium pratense extracts in terms of phytochemical profile and pharmacological effects. Plants, 10(7): 1390. https://doi.org/10.3390/plants10071390
  • Moustafa YTA, Mustafa NS, Ghonim SMME, Zuhair R, Zhang L, Hassoub MA. 2022. Influence of wastes of taro leaf, sugar beet and saw dust on physiochemical parameters of produced vermicompost. Asian J Soil Sci Plant Nutr, 8(3): 29-40. https://doi.org/10.9734/ajsspn/2022/v8i3160
  • Neina D. 2019. The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci, 2019: 1-9.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of Soil Analysis. Part 3-Chemical Methods, Soil Science Society of America Inc., Madison, US, pp: 961-1010.
  • Nunes RR, Pigatin LBF, Oliveira TS, Bontempi RM, Maria Olímpia de Oliveira R. 2018. Vermicomposted tannery wastes in the organic cultivation of sweet pepper: growth, nutritive value and production. Int J Recycl Org Waste Agric, 7(4): 313-324. https://doi.org/10.1007/s40093-018-0217-7
  • Nurhidayati N, Machfudz M, Murwani I. 2018. Direct and residual effect of various vermicompost on soil nutrient and nutrient uptake dynamics and productivity of four mustard pak-coi (Brassica rapa L.) sequences in organic farming system. Int J Recycl Org Waste Agric, 7(2): 173-181. https://doi.org/10.1007/s40093-018-0203-0
  • Pang X, Kuzyakov Y, Zhu B, Qiang W, Zhang Y, Pang X. 2022. Phosphorus addition decreases plant lignin but increases microbial necromass contribution to soil organic carbon in a subalpine forest. Glob Change Biol, 28(13): 4194-4210. https://doi.org/10.1111/gcb.16205
  • Pereira MdG, Lourdes Cardoso de Souza N, Fontes MPF, Souza AN, Matos TC, Sachdev RdL, Santos AVd, Marluce Oliveira da Guarda S, Marta Valéria Almeida Santana de A, Paulo GMM, Ribeiro JN, Araceli Verónica Flores Nardy R. 2014. An overview of the environmental applicability of vermicompost: from wastewater treatment to the development of sensitive analytical methods. Sci World J, 2014: 1-14. https://doi.org/10.1155/2014/917348
  • Pérez-Gómez JJ, Abud-Archila M, Villalobos-Maldonado JJ, Enciso-Saenz S, Hernández de León H, Ruiz-Valdiviezo VM, Gutiérrez-Miceli FA. 2017. Vermicompost and vermiwash minimized the influence of salinity stress on growth parameters in potato plants. Compost Sci Util, 25(4): 282-287. https://doi.org/10.1080/1065657X.2017.1333932
  • Phares CA, Atiah K, Frimpong KA, Danquah A, Asare AT, Aggor-Woananu S. 2020. Application of biochar and inorganic phosphorus fertilizer influenced rhizosphere soil characteristics, nodule formation and phytoconstituents of cowpea grown on tropical soil. Heliyon, 6(10): e05255. https://doi.org/10.1016/j.heliyon.2020.e05255
  • Pramanik P, Ghosh G, Chung YR. 2010. Changes in nutrient content, enzymatic activities and microbial properties of lateritic soil due to application of different vermicomposts: a comparative study of ergosterol and chitin to determine fungal biomass in soil. Soil Use Manage, 26(4): 508-515. https://doi.org/10.1111/j.1475-2743.2010.00304.x
  • Prinsi B, Negrini N, Morgutti S, Espen L. 2020. Nitrogen starvation and nitrate or ammonium availability differently affect phenolic composition in green and purple basil. Agronomy, 10(4): 498. https://doi.org/10.3390/agronomy10040498
  • Puccinelli M, Pezzarossa B, Rosellini I, Malorgio F. 2020. Selenium enrichment enhances the quality and shelf life of basil leaves. Plants, 9(6): 801. https://doi.org/10.3390/plants9060801
  • Rao S, Lesparre N, Flores-Orozco A, Wagner F, Kemna A, Javaux M. 2020. Imaging plant responses to water deficit using electrical resistivity tomography. Plant Soil, 454: 261-281.
  • Rekha GS, Kaleena PK, Elumalai D, Srikumaran MP, Maheswari VN. 2018. Effects of vermicompost and plant growth enhancers on the exo-morphological features of Capsicum annuum (Linn.) Hepper. Int J Recycl Org Waste Agric, 7(1): 83-88. https://doi.org/10.1007/s40093-017-0191-5
  • Reyes-Pérez JJ, Murillo-Amador B, Nieto-Garibay A, Troyo-Diéguez E, Rueda-Puente EO, Hernández-Montiel LG, Rangel PP, Morales AB, Rodríguez-Félix F, Bustamante RJL. 2017. Uso de humatos de vermicompost para disminuir el efecto de la salinidad en el crecimiento y desarrollo de albahaca (Ocimum basilicum L.). Rev Mex Cienc Agríc, 7(6): 1375-1387. https://doi.org/10.29312/remexca.v7i6.186
  • Rivier PA, Jamniczky D, Nemes A, Makó A, Barna G, Uzinger N, Rékási M, Farkas C. 2022. Short-term effects of compost amendments to soil on soil structure, hydraulic properties, and water regime. J Hydrol Hydromech, 70(1): 74-88. https://doi.org/10.2478/johh-2022-0004
  • Samaranayake J, Wijekoon S. 2011. Effect of selected earthworms on soil fertility, plant growth and vermicomposting. Trop Agric Res Ext, 13(2): 33-40. https://doi.org/10.4038/tare.v13i2.3136
  • Sharma R, Singh P, Gupta M, Kumar Khilla D, Malik P, Jindal S. 2023. The nutraceutical value of horticultural crops. Int J Ayurvedic Med, 14(3): 606-615. https://doi.org/10.47552/ijam.v14i3.3788
  • Sim EYS, Wu TY. 2010. The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting. J Sci Food Agric, 90(13): 2153-2162. https://doi.org/10.1002/jsfa.4127
  • Social Science Statistics. 2024. URL: https://www.socscistatistics.com (accessed date: May 15, 2024).
  • Szczech M. 1999. Suppressiveness of vermicompost against Fusarium wilt of tomato. J Phytopathol, 147(3): 155-161.
  • Tejada M, Gómez I, Hernández T, García C. 2010. Utilization of vermicomposts in soil restoration: effects on soil biological properties. Soil Sci Soc Am J, 74(2): 525-532. https://doi.org/10.2136/sssaj2009.0260
  • Tikoria R, Kaur A, Ohri P. 2022. Modulation of various phytoconstituents in tomato seedling growth and Meloidogyne incognita–induced stress alleviation by vermicompost application. Front Environ Sci, 10: 891195. https://doi.org/10.3389/fenvs.2022.891195
  • Tisdall JM, Oades JM. 1982. Organic matter and water‐stable aggregates in soils. J Soil Sci, 33(2): 141-163. https://doi.org/10.1111/j.1365-2389.1982.tb01755.x
  • Türkay FŞH. 2023. Heat pre-treatment as an initial step in vermicomposting significantly influences worm population and cocoon production. Soil Stud, 12(2): 102-110. https://doi.org/10.21657/soilst.1408077
  • Türkay İ, Öztürk L, Hepşen Türkay FŞ. 2024. Unveiling the role of vermicompost in modulating phenylpropanoid metabolism in basil (Ocimum basilicum L.): a single-cell type PGT approach. Curr Plant Biol, 38: 100335. https://doi.org/10.1016/j.cpb.2024.100335
  • Türkay İ, Öztürk L. 2019. Addition of vermicompost to soil influences total phenolic content of sweet basil. In: 10th International Soil Congress. Successful Transformation toward Land Degradation Neutrality: Future Perspective, June 17-19, Ankara, Türkiye.
  • Türkay İ, Öztürk L. 2023. The form, dose, and method of application of vermicompost differentiate the phenylpropene biosynthesis in the peltate glandular trichomes of methylchavicol chemotype of Ocimum basilicum L. Ind Crops Prod, 198: 116688. https://doi.org/10.1016/j.indcrop.2023.116688
  • Wang BL, Wang C, Liu ML. 2021. Ecological remediation of earthworms on soil-plant system: a review. Ying Yong Sheng Tai Xue Bao, 32(6): 2259-2266.
  • Yadav A, Garg VK. 2015. Influence of vermi-fortification on chickpea (Cicer arietinum L.) growth and photosynthetic pigments. Int J Recycl Org Waste Agric, 4(4): 299-305. https://doi.org/10.1007/s40093-015-0109-z
  • Zargoosh Z, Ghavam M, Bacchetta G, Tavili A. 2019. Effects of ecological factors on the antioxidant potential and total phenol content of Scrophularia striata Boiss. Sci Rep, 9(1): 16021. https://doi.org/10.1038/s41598-019-52605-8
  • Zhang H, Li C, Wei K, Liu M, Shi Y, Yang X, Li F, Ruan J, Zhang Q. 2023. The reduction of tea quality caused by irrational phosphate application is associated with anthocyanin metabolism. Bever Plant Res, 3: 0010. https://doi.org/10.48130/bpr-2023-0010
  • Zlotek U, Michalak-Majewska M, Szymanowska U. 2016. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chem, 213: 1-7. https://doi.org/10.1016/j.foodchem.2016.06.052
There are 69 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Fevziye Şüheda Hepşen Türkay 0000-0002-9413-264X

Publication Date September 15, 2024
Submission Date May 25, 2024
Acceptance Date July 28, 2024
Published in Issue Year 2024

Cite

APA Hepşen Türkay, F. Ş. (2024). Vermicompost Effects on Soil Chemistry and Biology: Correlations with Basil’s (Ocimum basilicum L.) Total Phenolic Content and Phenological Traits. Black Sea Journal of Agriculture, 7(5), 437-450. https://doi.org/10.47115/bsagriculture.1489757

                                                  24890