Research Article
BibTex RIS Cite

Effects of Ozone Treatments on in vitro Seed Germination of Ruscus aculeatus, Ruscus hypoglossum and Danae racemosa

Year 2024, , 542 - 547, 15.09.2024
https://doi.org/10.47115/bsagriculture.1528904

Abstract

Ruscus aculeatus, Ruscus hypoglossum, and Danae racemosa are cut foliage and valuable for ornamental plants; they are also very valuable in terms of their medicinal aromatic properties. Propagating these plants using their seeds is very challenging due to deep dormancy and required pre-treatments before sowing. Ozone is a colorless gas with a pungent odor, made up of three oxygen atoms, and it offers an eco-friendly solution to break dormancy in seeds. In this study, stored seeds for four years were treated to ozone gas for 0, 15, and 30 minutes using an ozone generator that has the capacity to produce 6 grams of ozone per hour. Then, the seeds were cultured in Petri dishes containing Murashige and Skoog medium without plant growth regulators. In vitro seed germination rates were recorded 30, 40, 50, and 60 days after culture initiation. According to statistical analysis, the effects of species, duration of ozone treatments, and interaction of species and duration of ozone treatments on in vitro germination rates of seeds were statistically significant. The highest in vitro germination rates of 42%, 28%, and 24% were recorded at 30 min ozone treatment in R. aculeatus, R. hypoglossum, and D. racemosa, respectively. These results indicate that ozone application positively affects the germination of seeds.

Ethical Statement

This study does not involve experimental research on animals or humans. During the conduct of the study, relevant ethical standards and research ethics in the field have been adhered to. All data and materials used were obtained from open-access sources, and citations were made appropriately where necessary.

References

  • Abeli T, Guasconi DB, Mondoni A, Dondi D, Bentivoglio A, Buttafava A, Cristofenalli P, Bonasoni P, Rossi G, Orsenigo S. 2017. Acute and chronic ozone exposure temporarily affects seed germination in alpine plants. Plant Biosyst, 151(2): 304-315.
  • Ali-Shtayeh MS, Yaghmour RMR, Faidi YR, Salem K, Al-Nuri MA. 1998. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol, 60(3): 265-271.
  • Avdeeva V, Zorina E, Bezgina J, Kolosova O. 2018. Influence of ozone on germination and germinating energy of winter wheat seeds. Eng Rural Dev, 23: 543-546.
  • Banciu C, Aiftimie-Păunescu A. 2012. In vitro propagation of rare species Ruscus aculeatus L. and histological peculiarities of the regenerants. Fasc Biol, 19(1): 67-73.
  • Bocci V. 2004. Ozone as Janus: this controversial gas can be either toxic or medically useful. Mediators Inflamm, 13(1): 3-11.
  • Dong X, Sun L, Maker G, Ren Y, Yu X. 2022. Ozone treatment increases the release of voc from barley, which modifies seed germination. J Agric Food Chem, 70(10): 3127-3135.
  • Fathiazad F, Hamedeyazdan S. 2014. Phytochemical analysis of Danae racemosa L. Moench leaves. Pharm Sci, 20(4): 135-140.
  • Güvenç A, Coşkun M, Arihan O. 2011. Anatomical structure of cladodes of Ruscus L. taxa (Liliaceae) in Turkey. FABAD J Pharm Sci, 36: 119-128.
  • Haci D. 2015. The determination of effects on the packaging and ozone treatments of the table figs. MSc Thesis, Ondokuz Mayıs University, Institute of Science, Samsun, Türkiye, pp: 93.
  • Hadžifejzović N, Kukić-Marković J, Petrović S, Soković M, Glamočlija J, Stojković D, Nahrstedt A. 2013. Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Ind Crop Prod, 49: 407-411.
  • Halada L, Erdelská O. 2005. Reproductive biology of Ruscus hypoglossum L. in Slovakia. Acta Biol Crac Ser Bot, 47(1): 213-217.
  • Ivanova T, Dimitrova D, Angelov G, Gussev C, Bosseva Y, Stoeva T. 2013. Callus cultures and indirect regeneration of Ruscus hypoglossum in vitro. Bulg J Agric Sci, 19(2): 49-51.
  • Kebeli F, Çelikel FG. 2024. Ruscus species distributed in Türkiye. Anadolu J Aegean Agric Res Inst, 34: 68-76.
  • Kebeli F. 2021. The studies on propagation and growing techniques of ruscus species grown in flora of Istanbul and introducing to ornamental plant sector. PhD thesis, Ondokuz Mayıs University, Institute of Science, Samsun, Türkiye, pp: 151.
  • Manole A, Banciu C. 2015. Optimization of shoot multiplication in Ruscus aculeatus L. from long term cultures. Rom Biotechnol Lett, 20(2): 10200-10204.
  • Masoudi M, Maivan HZ, Mehrabian A. 2022. Abundance and occurrence of Danae racemosa growing in Hyrcanian forest understory in relation to static and dynamic environmental variables. J Wildl Biodivers, 6(2): 1-21.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 15(3).
  • Normov D, Chesniuk E, Shevchenko A, Normova T, Goldman R, Pozhidaev D, Bohinc T, Trdan S. 2019. Does ozone treatment of maize seeds influence their germination and growth energy?. Acta Agric Slov, 114(2): 251-258.
  • Özden E, Kazaz S, Demir İ. 2016. Ruscus spp: tohumlarının çimlenmesi üzerine farklı uygulamaların etkileri. Süs Bitkileri Kongresi, 19-22 Nisan 2016, Antalya, Türkiye, pp: 99-104.
  • Pandiselvam R, Mayookha VP, Kothakota A, Sharmila L, Ramesh SV, Bharathi CP, Gomathy K, Srikanth V. 2020. Impact of ozone treatment on seed germination–A systematic review. Ozone Sci Eng, 42(4): 331-346.
  • Shen X, Yang G, Lu ZC. 2013. In vitro propagation of Alexandrian Laurel (Danae racemosa L. Moench), a valuable ornamental plant. Hort Sci, 48(10): 1301-1303.
  • Sudhakar N, Nagendra-Prasad D, Mohan N, Hill B, Gunasekaran M, Murugesan K. 2011. Assessing influence of ozone in tomato seed dormancy alleviation. Am J Plant Sci, 2(03): 443.
  • Tuzlaci E, Aymaz PE. 2001. Turkish folk medicinal plants, part IV: Gönen (Balıkesir). Fitoterapia, 72(4): 323-343.
  • Tütüncü M. 2022. Effects of ozone applications on in vitro seed germination in cyclamen. 11th International Molecular Biology and Biotechnology Congress, June 09, Online pp: 38.
  • Uslu ÖS, Erol A, Gedik O, Akbay F. 2022. Determination of the effects of different aqueous ozone doses and temperature on germination and seedling development of vetch seeds. Ozone Sci Eng, 44(6): 512-520.
  • Veronese G. 2014. A study on the genus Ruscus and its horticultural value. Cambridge University, Botanic Garden, Cambridge, UK, pp: 54.
  • Violleau F, Hadjeba K, Albet J, Cazalis R, Surel O. 2007. Increase of corn seeds germination by oxygen and ozone treatment. In: Proceedings of the IOA Conference and Exhibition, October 29-30, Valencia, Spain, pp: 3-4.
Year 2024, , 542 - 547, 15.09.2024
https://doi.org/10.47115/bsagriculture.1528904

Abstract

References

  • Abeli T, Guasconi DB, Mondoni A, Dondi D, Bentivoglio A, Buttafava A, Cristofenalli P, Bonasoni P, Rossi G, Orsenigo S. 2017. Acute and chronic ozone exposure temporarily affects seed germination in alpine plants. Plant Biosyst, 151(2): 304-315.
  • Ali-Shtayeh MS, Yaghmour RMR, Faidi YR, Salem K, Al-Nuri MA. 1998. Antimicrobial activity of 20 plants used in folkloric medicine in the Palestinian area. J Ethnopharmacol, 60(3): 265-271.
  • Avdeeva V, Zorina E, Bezgina J, Kolosova O. 2018. Influence of ozone on germination and germinating energy of winter wheat seeds. Eng Rural Dev, 23: 543-546.
  • Banciu C, Aiftimie-Păunescu A. 2012. In vitro propagation of rare species Ruscus aculeatus L. and histological peculiarities of the regenerants. Fasc Biol, 19(1): 67-73.
  • Bocci V. 2004. Ozone as Janus: this controversial gas can be either toxic or medically useful. Mediators Inflamm, 13(1): 3-11.
  • Dong X, Sun L, Maker G, Ren Y, Yu X. 2022. Ozone treatment increases the release of voc from barley, which modifies seed germination. J Agric Food Chem, 70(10): 3127-3135.
  • Fathiazad F, Hamedeyazdan S. 2014. Phytochemical analysis of Danae racemosa L. Moench leaves. Pharm Sci, 20(4): 135-140.
  • Güvenç A, Coşkun M, Arihan O. 2011. Anatomical structure of cladodes of Ruscus L. taxa (Liliaceae) in Turkey. FABAD J Pharm Sci, 36: 119-128.
  • Haci D. 2015. The determination of effects on the packaging and ozone treatments of the table figs. MSc Thesis, Ondokuz Mayıs University, Institute of Science, Samsun, Türkiye, pp: 93.
  • Hadžifejzović N, Kukić-Marković J, Petrović S, Soković M, Glamočlija J, Stojković D, Nahrstedt A. 2013. Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Ind Crop Prod, 49: 407-411.
  • Halada L, Erdelská O. 2005. Reproductive biology of Ruscus hypoglossum L. in Slovakia. Acta Biol Crac Ser Bot, 47(1): 213-217.
  • Ivanova T, Dimitrova D, Angelov G, Gussev C, Bosseva Y, Stoeva T. 2013. Callus cultures and indirect regeneration of Ruscus hypoglossum in vitro. Bulg J Agric Sci, 19(2): 49-51.
  • Kebeli F, Çelikel FG. 2024. Ruscus species distributed in Türkiye. Anadolu J Aegean Agric Res Inst, 34: 68-76.
  • Kebeli F. 2021. The studies on propagation and growing techniques of ruscus species grown in flora of Istanbul and introducing to ornamental plant sector. PhD thesis, Ondokuz Mayıs University, Institute of Science, Samsun, Türkiye, pp: 151.
  • Manole A, Banciu C. 2015. Optimization of shoot multiplication in Ruscus aculeatus L. from long term cultures. Rom Biotechnol Lett, 20(2): 10200-10204.
  • Masoudi M, Maivan HZ, Mehrabian A. 2022. Abundance and occurrence of Danae racemosa growing in Hyrcanian forest understory in relation to static and dynamic environmental variables. J Wildl Biodivers, 6(2): 1-21.
  • Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant, 15(3).
  • Normov D, Chesniuk E, Shevchenko A, Normova T, Goldman R, Pozhidaev D, Bohinc T, Trdan S. 2019. Does ozone treatment of maize seeds influence their germination and growth energy?. Acta Agric Slov, 114(2): 251-258.
  • Özden E, Kazaz S, Demir İ. 2016. Ruscus spp: tohumlarının çimlenmesi üzerine farklı uygulamaların etkileri. Süs Bitkileri Kongresi, 19-22 Nisan 2016, Antalya, Türkiye, pp: 99-104.
  • Pandiselvam R, Mayookha VP, Kothakota A, Sharmila L, Ramesh SV, Bharathi CP, Gomathy K, Srikanth V. 2020. Impact of ozone treatment on seed germination–A systematic review. Ozone Sci Eng, 42(4): 331-346.
  • Shen X, Yang G, Lu ZC. 2013. In vitro propagation of Alexandrian Laurel (Danae racemosa L. Moench), a valuable ornamental plant. Hort Sci, 48(10): 1301-1303.
  • Sudhakar N, Nagendra-Prasad D, Mohan N, Hill B, Gunasekaran M, Murugesan K. 2011. Assessing influence of ozone in tomato seed dormancy alleviation. Am J Plant Sci, 2(03): 443.
  • Tuzlaci E, Aymaz PE. 2001. Turkish folk medicinal plants, part IV: Gönen (Balıkesir). Fitoterapia, 72(4): 323-343.
  • Tütüncü M. 2022. Effects of ozone applications on in vitro seed germination in cyclamen. 11th International Molecular Biology and Biotechnology Congress, June 09, Online pp: 38.
  • Uslu ÖS, Erol A, Gedik O, Akbay F. 2022. Determination of the effects of different aqueous ozone doses and temperature on germination and seedling development of vetch seeds. Ozone Sci Eng, 44(6): 512-520.
  • Veronese G. 2014. A study on the genus Ruscus and its horticultural value. Cambridge University, Botanic Garden, Cambridge, UK, pp: 54.
  • Violleau F, Hadjeba K, Albet J, Cazalis R, Surel O. 2007. Increase of corn seeds germination by oxygen and ozone treatment. In: Proceedings of the IOA Conference and Exhibition, October 29-30, Valencia, Spain, pp: 3-4.
There are 27 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Mehmet Tütüncü 0000-0003-4354-6620

Merve Andiç 0000-0002-3869-2458

Fatih Kebeli 0000-0001-8658-8447

Fisun Gürsel Çelikel 0000-0002-4722-2693

Özhan Şimşek 0000-0001-5552-095X

Publication Date September 15, 2024
Submission Date August 6, 2024
Acceptance Date September 2, 2024
Published in Issue Year 2024

Cite

APA Tütüncü, M., Andiç, M., Kebeli, F., Çelikel, F. G., et al. (2024). Effects of Ozone Treatments on in vitro Seed Germination of Ruscus aculeatus, Ruscus hypoglossum and Danae racemosa. Black Sea Journal of Agriculture, 7(5), 542-547. https://doi.org/10.47115/bsagriculture.1528904

                                                  24890