Research Article
BibTex RIS Cite

Determination of Anti Methanogenic Characteristics of Some Tree Leaves Using In Vitro Gas Production Technique

Year 2019, Volume: 2 Issue: 1, 1 - 5, 01.01.2019

Abstract

The aim of the current experiment was to determine
the antimethanogenic properties of some tree leaves containing condensed
tannin. It has been found that there are significant differences among tree
leaves in terms of chemical composition. 
Crude ash contents of tree leaves ranged from %4.42 to 13.33 with
highest being for
Styrax officinalis.
Ether extract contents of tree leaves ranged from %5.68 to 9.28 with highest
being for
Styrax officinalis and Salix alba. Crude protein contents of
tree leaves ranged from %11.64 to 18.40 with highest being for
Alnus glutinosa. Neutral detergent fiber
and acid detergent fiber contents of tree leaves ranged from %28.95 to 50.21
and 22.73 to 33.09 respectively, with highest being for
Salix alba. Condensed tannin contents of tree leaves ranged from
%1.59 to 14.29 with highest being for
Styrax officinalis. It has been found that
there are significant differences among tree leaves in terms of gas, methane
production, organic matter digestibility, metabolisable energy contents in the
absence and presence of Polyethylene Glycol. Supplementation of Polyethylene
Glycol improved all parameters measured in the gas production experiment. It
can be said that the tree leaves studied in the current experiment has a low
anti-methanogenic potential since the percentage of methane ranged from %11 to
14. It is required that these tree leaves should be tested with
in vivo experiment to determine the
anti-methanogenic potential of these tree leaves. 

References

  • AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. US.
  • Bhatta R, Saravanan M, Baruah L, Prasad CS. 2014. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microb, 118: 557-564.
  • Canbolat O, Kamalak A, Ozkose E, Ozkan CO, Sahin M, Karabay P. 2005. Effect of polyethylene glycol on in vitro gas production, metabolizable energy and organic matter digestibility of Quercus cerris leaves. Livest Res Rural Develop, 17: 42.
  • Carulla JE, Kreuzer M, Machmüller A, Hess HD. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian J Agri Res, 56: 961-970.
  • Dawson JM, Buttery PJ, Jenkins D, Wood CD, Gill M. 1999. Effects of dietary quebracho tannin on nutrient utilization and tissue metabolism in sheep and rats. J Sci Food Agri, 79(11): 1423-1430.
  • Delgado DC, Galindo J, Cairo J, Orta I, Dominguez M, Dorta N. 2013. Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep. Cuban J Agri Sci, 47(3): 267-271.
  • Goel G, Makkar HPS, Becker K. 2008. Effect of sesbania sesban and carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Anim Feed Sci Technol, 147(1-3): 72-89.
  • Grainger C, Clarke T, Auldist MJ, Beauchemin KA, McGinn SM, Waghorn GC, Eckard RJ. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emission and nitrogen excretion from grazing dairy cows. Can J Anim Sci, 89: 241-251.
  • Hariadi BT, Santoso B. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J Sci Food Agri, 90: 456-461.
  • Jayanegara A, Lieber F, Kreuzer M. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Anim Physiol Anim Nutri, 96: 365-375.
  • Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J Anim Sci, 73: 2483-2492.
  • Lopez S, Makkar HPS, Soliva CR. 2010. Screening plants and plant products for methane inhibitors. In, Vercoe PE, Makkar HPS, Schlink A (Eds): In vitro Screening of Plant Resources for Extra-nutritional Attributes in Ruminants: Nuclear and Related Methodologies, 191-231, London, New York.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor. J Agri Sci, 93: 217–222.
  • Menke KH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop. 28(7): 55.
  • Puchala R, Min BR, Goetsch AL, Sahlu T. 2005. The effect of condensed tannin-containing forage on methane emission by goats. J Anim Sci, 83(1): 182-186.
  • Tiemann TT, Lascono CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD. 2008. Effect the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy in growing lamb. Animal, 2(5): 790-799.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74: 3583-3597.
  • Waghorn GC, Shelton ID. 1997. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J Agri Sci, 128 (3): 365.
  • Woodward SL, Waghorn GC, Lassey KR, Laboyrie PG. 2004. Condensed tannin in birdshot trefoil (Lotus corniculatus) reduce methane emission from dairy cows. Proceed New Zealand Soc Anim Prod, 64: 160-164.

BAZI AĞAÇ YAPRAKLARININ ANTİ METANOJENİK ÖZELLİKLERİNİN IN VİTRO GAZ ÜRETİM TEKNİĞİ İLE BELİRLENMESİ

Year 2019, Volume: 2 Issue: 1, 1 - 5, 01.01.2019

Abstract

Bu çalışmanın amacı tanen içeren bazı ağaç yapraklarının anti-metanojenik özelliklerini in vitro gaz üretim testiyle belirlemektir. Çalışmada tesbih (Styrax officinalis), söğüt (Salix alba) ve karaağaç (Alnus glutinosa) ağacı yapraklarının kimyasal kompozisyonları arasında önemli farklılıklar bulunmuştur. Ham kül içeriği % 4.42 ile 13.33 arasında olup en yüksek kül içeriği tespih yaprağında bulunmuştur. Ham yağ içeriği % 5.68 ile 9.28 olurken en yüksek ham yağ içeri tesbih ve söğüt yaprağında bulunmuştur. Ham protein içeriği % 11.64 ile 18.40 arasında olup en yüksek ham protein içeriği karaağaç yaprağında bulunmuştur. NDF ve ADF içerikleri sırasıyla % 28.95 ile 50.21 ve 22.73 ile 33.09 arasında değişmiş en yüksek NDF ve ADF içeriğine söğüt yaprağı sahip olmuştur. Ağaç yapraklarının kondense tanen içerikleri % 1.59 ile 14.29 arasında değişmiş en yüksek değere tesbih çalısında rastlanmıştır. Ağaç yapraklarının polyethylene
glycol (PEG)’li ve PEG’siz ortamlardaki gaz, metan üretimleri, organik madde sindirim derecesi ve metabolik enerji değerleri arasında önemli farklar bulunmuş olup PEG ilavesi tüm parametrelerde artışa neden olmuştur. Bu çalışmada ağaç yapraklarının metan içerikleri % 11 ile 14 arasında olduğundan dolayı söz konusu yaprakların hepsinin düşük seviyede anti-metanojik potansiyele sahip olduğu söylenebilmektedir. Anti-metanojenik özellik bakımından bu çalışmaya konu olan ağaçları söğüt, karaağaç ve tesbih ağacı şeklinde sıralamak mümkündür. Bu çalışmaya konu olan ağaç yapraklarının anti-metanojik özelliklerinin in vivo denemelerle test edilmesine ihtiyaç vardır.

References

  • AOAC. 1990. Official methods of analysis. 15th ed. Association of Official Analytical Chemists, Washington, DC. US.
  • Bhatta R, Saravanan M, Baruah L, Prasad CS. 2014. Effects of graded levels of tannin-containing tropical tree leaves on in vitro rumen fermentation, total protozoa and methane production. J Appl Microb, 118: 557-564.
  • Canbolat O, Kamalak A, Ozkose E, Ozkan CO, Sahin M, Karabay P. 2005. Effect of polyethylene glycol on in vitro gas production, metabolizable energy and organic matter digestibility of Quercus cerris leaves. Livest Res Rural Develop, 17: 42.
  • Carulla JE, Kreuzer M, Machmüller A, Hess HD. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian J Agri Res, 56: 961-970.
  • Dawson JM, Buttery PJ, Jenkins D, Wood CD, Gill M. 1999. Effects of dietary quebracho tannin on nutrient utilization and tissue metabolism in sheep and rats. J Sci Food Agri, 79(11): 1423-1430.
  • Delgado DC, Galindo J, Cairo J, Orta I, Dominguez M, Dorta N. 2013. Supplementation with foliage of L. leucocephala. Its effect on the apparent digestibility of nutrients and methane production in sheep. Cuban J Agri Sci, 47(3): 267-271.
  • Goel G, Makkar HPS, Becker K. 2008. Effect of sesbania sesban and carduus pycnocephalus leaves and fenugreek (Trigonella foenum-graecum L) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Anim Feed Sci Technol, 147(1-3): 72-89.
  • Grainger C, Clarke T, Auldist MJ, Beauchemin KA, McGinn SM, Waghorn GC, Eckard RJ. 2009. Potential use of Acacia mearnsii condensed tannins to reduce methane emission and nitrogen excretion from grazing dairy cows. Can J Anim Sci, 89: 241-251.
  • Hariadi BT, Santoso B. 2010. Evaluation of tropical plants containing tannin on in vitro methanogenesis and fermentation parameters using rumen fluid. J Sci Food Agri, 90: 456-461.
  • Jayanegara A, Lieber F, Kreuzer M. 2012. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. Anim Physiol Anim Nutri, 96: 365-375.
  • Johnson KA, Johnson DE. 1995. Methane emissions from cattle. J Anim Sci, 73: 2483-2492.
  • Lopez S, Makkar HPS, Soliva CR. 2010. Screening plants and plant products for methane inhibitors. In, Vercoe PE, Makkar HPS, Schlink A (Eds): In vitro Screening of Plant Resources for Extra-nutritional Attributes in Ruminants: Nuclear and Related Methodologies, 191-231, London, New York.
  • Menke KH, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor. J Agri Sci, 93: 217–222.
  • Menke KH, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Develop. 28(7): 55.
  • Puchala R, Min BR, Goetsch AL, Sahlu T. 2005. The effect of condensed tannin-containing forage on methane emission by goats. J Anim Sci, 83(1): 182-186.
  • Tiemann TT, Lascono CE, Wettstein HR, Mayer AC, Kreuzer M, Hess HD. 2008. Effect the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy in growing lamb. Animal, 2(5): 790-799.
  • Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci, 74: 3583-3597.
  • Waghorn GC, Shelton ID. 1997. Effect of condensed tannins in Lotus corniculatus on the nutritive value of pasture for sheep. J Agri Sci, 128 (3): 365.
  • Woodward SL, Waghorn GC, Lassey KR, Laboyrie PG. 2004. Condensed tannin in birdshot trefoil (Lotus corniculatus) reduce methane emission from dairy cows. Proceed New Zealand Soc Anim Prod, 64: 160-164.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Zootechny (Other)
Journal Section Research Articles
Authors

Nurullah Şimşek This is me 0000-0001-9566-1036

Adem Kamalak 0000-0003-0967-4821

Publication Date January 1, 2019
Submission Date September 21, 2018
Acceptance Date October 11, 2018
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Şimşek, N., & Kamalak, A. (2019). BAZI AĞAÇ YAPRAKLARININ ANTİ METANOJENİK ÖZELLİKLERİNİN IN VİTRO GAZ ÜRETİM TEKNİĞİ İLE BELİRLENMESİ. Black Sea Journal of Agriculture, 2(1), 1-5.

                                                  24890