Year 2020, Volume 3 , Issue 2, Pages 85 - 95 2020-04-01

Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits

Mulugeta Mamo MARU [1] , Fisseha WOREDE [2] , Muluken BANTAYEHU [3]


Striga is major biotic constraint and a serious threat to sorghum production in areas of semi- arid tropics. The objectives of this study were to evaluate the performance of 49 sorghum genotypes including resistance and susceptible checks to Striga hermonthica and estimate genetic variability, heritability and genetic advance. The experiment was conducted at Kobo research sub-center, North Eastern Ethiopia in 2018 main cropping season using simple lattice design. The analysis of variance revealed significance difference among the genotypes for all traits including grain yield, days to maturity, plant height and Striga count ranged from 1462-7972 kgha-1, 112-130days, 120-285cm and 3.35-34.25 Striga counts, respectively. Genotypes ETSC-14118-2-1, ETSC-14019-9-1, ETSC-14184-8-3, ETSC-14019-14-2, ETSC-14127-1-3, ETSC-14018-1-3, ETSC-14217-10-1, host low number of Striga count. The genotypic coefficient of variation (GCV) ranged from 2.97% for days to maturity (DM) to 24.94% for grain yield, while phenotypic coefficient of variation (PCV) ranged from 2.26% for DM to 33.34% for biomass (BM). Plant height and head weight show high heritability and high genetic advance. The first seven PCA explained 89.5% of the total variation and the traits plant height (0.83), Striga severity (0.71) days to maturity (0.59), panicle length (0.56) and days to flowering (0.54) accounted for most of the variability. Six clusters were found and significant distances were observed among cluster IV and V, and III and IV. Accordingly, resistance, tolerance and susceptible genotypes were identified. However, further research is needed to test these genotypes to prove the current results.

Cluster analysis, Grain yield, Principal component, Striga hermonithica
  • Allard, R.W. 1960. Principle of Plant Breeding. John Wiley and Sons Inc. New York, USA.p430.
  • Ali, M.A., Jabran, K., Awan, S.I., Abbas, A., Zulkiffal, M., Acet, T., Farooq, J. and Rehman, A. 2011. Morpho-Physiological Diversity and Its Implications for Improving Drought Tolerance in Grain Sorghum at Different Growth Stages. Australian Journal of Crop Science, 5 (3): 311-320.
  • Amelework Beyene, Shimelis Hussein, Pangirayi T, Fentahun Mengistu, Mark DL, Dawit Getnet. 2016. Sorghum production systems and constraints, and coping strategies under drought-prone agro-ecologies of Ethiopia. South African Journal of Plant and Soil, 33:3-4.
  • Asfaw Adugna. 2007. The role of introduced sorghum and millet in Ethiopian agriculture. SAT ejournal Vol.3. ICRISAT, India.
  • Ayana A, Bekele E.1998. Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea: qualitative characters. Hereditas 129:195-205. Burton, G.W. and de Vane, E.H. 1953. Estimating heritability in Tall Fescue (Festucaarundinacea) from replicated clonal material. Agronomy Journal, 45: 481-487.
  • Chatfield, C. and Collin, A.J. 1980. Introduction to multivariate analysis. Published in the USA by Chapman and Hall in Association with Methuen, Inc, 733 Third Avenue, New
  • CSA (Central Statistical Agency). 2016. Agricultural sample survey 2015/2016: report on area and production of crops (private peasant holdings, main season), vol. 1. Addis Ababa: Federal Democratic Republic of Ethiopia, Central Statistical Agency.
  • CSA (Central Statistical Agency). 2018. Agricultural sample survey 2016/2017: report on area and production of crops (private peasant holdings, main season), vol. 1. Addis Ababa: Federal Democratic Republic of Ethiopia, Central Statistical Agency.
  • Deshmukh, S.N., Basu, M.S. and Reddy, P.S. 1986. Genetic variability, character association and path coefficient analysis of quantitative traits in Viginia bunch varieties of ground nut. Indian Journal of Agricultural Science, 56:515-518.
  • Doggett, H. 1988. Sorghum, 2nd Edition. Tropical Agriculture Series. Essex, England: Longman Scientific & Technical.
  • Esilaba, A.O., Mulatu, T., Reda, F., Ranson J.K., Woldewahid, G., Tesfaye, A., Fitwy, I., Abate, G.(1998). A diagnostic survey on Striga on northern Ethiopian highlands. pp . 13-27. In: Reda, F., Taner, D.G.(eds), Arem 4 EWSS, Adis Abeba.
  • FAOSTAT. 2015. Food and Agriculture Organization of the United Nations Database of agricultural production. FAO Statistical databases. [accessed 2019 August 13] http://faostat.fao.org/site/339/default.aspx.
  • Gebretsadik Reda, Shimelis Hussein, Laing MD, Tongoona P, Mandefro Niguse. 2014. A diagnostic appraisal of the sorghum farming system and priorities in Striga infested agro-ecologies of Ethiopia. Agricultural Systems 123: 54–61.
  • Haussmann, B. I. G., Hess, D. E., Welz, H. G., and Geiger, H. H. 2000. Improved methodologies for breeding Striga resistant sorghums. Field Crops Research, 66, 195–211.
  • Johnson H.W., H.F. Robinson and R.E. Comstock. 1955. Estimates of genetic and environmental variability in soybeans. Agronomy Journal 47: 314-318.
  • Kassahun Amare, Habtamu Zeleke and Geremew Bultosa. 2011. Variability for yield, yield related traits, protein Content and association among traits of sorghum [Sorghum bicolor (L) Moench] Varieties in Wollo, Ethiopia. Journal of Plant Breeding and Crop science, 7(5): 125-133. Khandelwal, V., Shukla, M., Jodha, B. S., Nathawat, V. S. and Dashora, S. K. 2015. Genetic Parameters and Character Association in Sorghum [Sorghum bicolor (L.) Moenc]). Indian Journal of Science and Technology, 8(22):2-4.
  • Mesfin Abate. 2016. Assessment of Striga infestation and Evaluation of sorghum landraces for Resistance/Tolerance to [Striga hermonthica (Del.) Benth] in North-Western Ethiopia. Haramaya University, Dire Dawa, Ethiopia.
  • Paterson, A. H., Moore, P. H., and Tew, T. L. 2013. “The gene pool of Saccharum species and their improvement,” in Genomics of the Saccharinae, ed A. H. Paterson (New York, NY: Springer), 43–71. doi: 10.1007/978-1-4419-5947-8-3
  • Poehlman, J.M. and Sleeper D.A.. 1995. Breeding Field Crops.4th ed. Iowa State University press, Ames Iowa 50014, USA.494 Pp.
  • Reddy, B.V.S., Kumar, A. A. and Ramesh, S. 2007. Sweet sorghum: a water saving bio-energy crop. Patancheru-502 324. International Crops Res. Institute for the Semi-Arid Tropics. Andhra Pradesh, India.
  • Rispail, N., Dita, M.-A., Gonzlez-Verdejo, C., Prezde-Luque, A., Castillejo, M.-A., Prats, E., Rubiales, D. 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 173(4), 703–712. http://doi.org/10.1111/j.1469-8137.2007.01980.x
  • SAS (Statistical Analysis System) Institute. 2004. SAS User Guides, Version 9.1. SAS Inc. Cary. North Carolina, USA.
  • Seetharam K, Ganeshmurthy K. 2013.Characterization of sorghum genotypes for yield and other agronomic traits through genetic variability and diversity analysis. Electronic Journal of Plant Breeding. 4(1):1073-1079.
  • Singh RK, Chaudhary BD. 1977. Biometrical methods in quantative genetic analysis. Kalyani Publishers, New Delhi. 318 pp.
  • Temesgen Teressa. 2018. Evaluation of Ethiopian Sorghum [Sorghum bicolor (L.) Moench] landraces: low germination stimulant genotypes for Striga hermonthica resistance under field condition. Thesis submitted to the school of graduate studies of Haramaya University, Ethiopia. Pp 44-45.
  • Vavilov NI. 1951. The origin, variation, immunity and breeding of cultivated plants. Chron. Bot. 13:1-366.
Primary Language en
Subjects Agriculture, Dairy and Animal Science
Journal Section Research Articles
Authors

Orcid: 0000-0002-7963-5193
Author: Mulugeta Mamo MARU (Primary Author)
Institution: Sirinka Agricultural Research Center, P.O.Box,74, Woldia, Ethiopia. Bahirdar University College of Agriculture and Environmental Science,P.O.Box, 5501, Bahirdar, Ethiopia
Country: Ethiopia


Orcid: 0000-0001-8828-5028
Author: Fisseha WOREDE
Institution: Bahirdar University College of Agriculture and Environmental Science,
Country: Ethiopia


Orcid: 0000-0002-1243-7539
Author: Muluken BANTAYEHU
Institution: Bahirdar University College of Agriculture and Environmental Science,
Country: Ethiopia


Dates

Publication Date : April 1, 2020

Bibtex @research article { bsagriculture612295, journal = {Black Sea Journal of Agriculture}, issn = {}, eissn = {2618-6578}, address = {bsjagri@blackseapublishers.com}, publisher = {Hasan ÖNDER}, year = {2020}, volume = {3}, pages = {85 - 95}, doi = {}, title = {Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits}, key = {cite}, author = {Maru, Mulugeta Mamo and Worede, Fisseha and Bantayehu, Muluken} }
APA Maru, M , Worede, F , Bantayehu, M . (2020). Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits . Black Sea Journal of Agriculture , 3 (2) , 85-95 . Retrieved from https://dergipark.org.tr/en/pub/bsagriculture/issue/51814/612295
MLA Maru, M , Worede, F , Bantayehu, M . "Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits" . Black Sea Journal of Agriculture 3 (2020 ): 85-95 <https://dergipark.org.tr/en/pub/bsagriculture/issue/51814/612295>
Chicago Maru, M , Worede, F , Bantayehu, M . "Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits". Black Sea Journal of Agriculture 3 (2020 ): 85-95
RIS TY - JOUR T1 - Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits AU - Mulugeta Mamo Maru , Fisseha Worede , Muluken Bantayehu Y1 - 2020 PY - 2020 N1 - DO - T2 - Black Sea Journal of Agriculture JF - Journal JO - JOR SP - 85 EP - 95 VL - 3 IS - 2 SN - -2618-6578 M3 - UR - Y2 - 2019 ER -
EndNote %0 Black Sea Journal of Agriculture Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits %A Mulugeta Mamo Maru , Fisseha Worede , Muluken Bantayehu %T Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits %D 2020 %J Black Sea Journal of Agriculture %P -2618-6578 %V 3 %N 2 %R %U
ISNAD Maru, Mulugeta Mamo , Worede, Fisseha , Bantayehu, Muluken . "Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits". Black Sea Journal of Agriculture 3 / 2 (April 2020): 85-95 .
AMA Maru M , Worede F , Bantayehu M . Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits. BSJ Agri.. 2020; 3(2): 85-95.
Vancouver Maru M , Worede F , Bantayehu M . Evaluation of Sorghum (Sorghum bicolour (L.) Moench) Genotypes for Striga Resistance and Yield and Yield Related Traits. Black Sea Journal of Agriculture. 2020; 3(2): 85-95.