Research Article
BibTex RIS Cite

Comparative Evaluation of Salicylic Acid (SA) and 2,4-Dichloro-6-{(E)-[(3methoxyphenyl)imino]methyl} Phenol (DPMP) on Growth and Salt Stress Tolerance in Forage Pea (Pisum sativum L. arvense)

Year 2022, Volume: 5 Issue: 3, 329 - 335, 01.07.2022
https://doi.org/10.47115/bsagriculture.1110338

Abstract

Alleviation of salt stress is becoming one of the urgent needs of agricultural production. Even though enhancement of tolerance levels with genetic variation is a common approach, exogenous applications of various compounds are a newly emerging field. Here, the effects of two different plant elicitors, salicylic acid (SA) and 2,4-dichloro-6-{(E)-[(3methoxyphenyl)imino]methyl} phenol (DPMP) on growth and stress tolerance levels of forage pea (Pisum sativum ssp. arvense L.) were evaluated. Plants were exposed to salt stress (100 mM) in addition to DPMP, SA, or DMSO (Solvent) foliar spraying. The results revealed contrasting effects for each elicitor. Under non-stressed conditions, DPMP applied plants had higher values in plant height, shoot dry weight (SDW), and taproot length, while SA applied plants had significantly higher shoot fresh weight (SFW), and DMSO applied plants had higher values in root fresh (RFW) and dry (RDW) weights, and root/shoot ratios. When we evaluated stress tolerance index (STI) levels, DPMP applied plants had higher STI values in SFW, SDW, RFW, and RDW. DPMP improved STI and biomass allocation better than SA and DMSO. These elicitors may have significant potential in abiotic stress tolerance, in addition to their well-known biotic stress eliciting roles. There is a need for further research to define appropriate doses and application times.

Thanks

The authors are grateful to Assoc. Prof. Dr. Mehmet Arif Özyazıcı for providing seeds and Prof. Dr. Thomas Eulgem for providing DPMP.

References

  • Acikbas S, Ozyazici MA, Bektas H. 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Res, 44(4): 407-412. DOI: 10.18805/lr-608.
  • Acikbas S, Ozyazici MA, Bektas H. 2022. Root system architecture and seed weight relations in forage pea (Pisum sativum ssp. arvense L. Poir.). Ciência Rural, 52(6): e20210032. DOI: 10.1590/0103-8478cr20210032.
  • Acosta-Motos JR, Penella C, Hernandez JA, Diaz-Vivancos P, Sanchez-Blanco MJ, Navarro JM, Gomez-Bellot MJ, Barba-Espin G. 2020. Towards a sustainable agriculture: strategies involving phytoprotectants against salt stress. Agronomy, 10(2): 194. DOI: 10.3390/agronomy10020194.
  • Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S, Raza A, Ali HM, Siddiqui MH, Salem MZM, Hano C, Shabbir R, Ahmar S, Saeed T, Jamal MA. 2021. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. Plos One, 16(12): e0260556. DOI: 10.1371/journal.pone.0260556.
  • Amoah NKA, Akromah R, Kena AW, Manneh B, Dieng I, Bimpong IK. 2020. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica, 216(10): 156. DOI: 10.1007/s10681-020-02689-5.
  • Ateş E, Tekeli AS. 2017. Farklı taban gübresi uygulamalarının yem bezelyesi (Pisum arvense L.)’nin ot verimi ve kalitesine etkisi. KSÜ Doğa Bil Derg, 20: 13-16.
  • Bektas Y, Eulgem T. 2015. Synthetic plant defense elicitors. Front Plant Sci, 5: 804. DOI: 10.3389/fpls.2014.00804.
  • Bektas Y, Rodriguez-Salus M, Schroeder M, Gomez A, Kaloshian I, Eulgem T. 2016. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) triggers strong immunity in Arabidopsis thaliana and tomato. Sci Rep, 6(1): 29554. DOI: 10.1038/srep29554.
  • Bektas Y. 2021. The synthetic elicitors 2,6-dichloro-isonicotinic acid (INA) and 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP) enhances tomato resistance against bacterial canker disease with different molecular mechanisms. Physiol Mol Plant Pathol, 116: 101740. DOI: 10.1016/j.pmpp.2021.101740.
  • Bektas Y. 2022. Trade-offs in root and shoot growth in forage pea [Pisum sativum (L.) arvense] with foliar applications of synthetic elicitor DPMP (2,4-Dichloro-6-{(E)-[(3-Methoxyphenyl) Imino] Methyl} Phenol) and SA (Salicylic Acid). Legume Res, 45(4): 445-453. DOI: 10.18805/LRF-655.
  • Çaçan E, Kökten K, Bakoğlu A, Kaplan M, Bozkurt A. 2019. Bazı yem bezelyesi hat ve çeşitlerinin (Pisum arvense L.) ot verimi ve kalitesi açısından değerlendirilmesi. Harran Tarım ve Gıda Bil Derg, 23(3): 254-262.
  • Cornacchione MV, Suarez DL. 2017. Evaluation of alfalfa (Medicago sativa L.) populations' response to salinity stress. Crop Sci, 57(1): 137-150. DOI: 10.2135/cropsci2016.05.0371.
  • Demirkol G, Yilmaz N, Önal Aşçi Ö. 2019. Tuz stresinin yem bezelyesi (Pisum sativum ssp. arvense L.) genotipinde çimlenme ve fide gelişimi üzerine etkileri. KSÜ Tarım ve Doğa Derg, 22(3): 354-359.
  • Demirkol G, Yilmaz N. 2019. Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities. Turk J Bot, 43(3): 331-342. DOI: 10.3906/bot-1812-12.
  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I. 2010. The roots of a new green revolution. Trends Plant Sci, 15(11): 600-607. DOI: 10.1016/j.tplants.2010.08.009.
  • Filgueiras CC, Martins AD, Pereira RV, Willett DS. 2019. The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. Int J Mol Sci, 20(23): 5851. DOI: 10.3390/ijms20235851.
  • Gerami M, Majidian P, Ghorbanpour A, Alipour Z. 2020. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol Mol Biol Plants, 26(5): 965-974.
  • Grozeva S, Kalapchieva S, Tringovska I. 2019. Evaluation of garden pea cultivars to salt stress tolerance. Mechaniz Agri Conserv Res, 65(4): 150-152.
  • Hohn CE, Bektas H. 2020. Genetic mapping of quantitative trait loci (QTLs) associated with seminal root angle and number in three populations of bread wheat (Triticum aestivum L.) with common parents. Plant Mol Biol Rep, 38(4): 572-585.
  • Koo YM, Heo AY, Choi HW. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J, 36(1): 1-10.
  • Kumar A, Choudhary A, Kaur H, Mehta S. 2021. A walk towards Wild grasses to unlock the clandestine of gene pools for wheat improvement: A review. Plant Stress, 3: 100048.
  • Larqué-Saavedra A, Martin-Mex R. 2007. Effects of salicylic acid on the bioproductivity of Plants. In: Hayat S, Ahmad A (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht, Netherlands, pp: 15-23. DOI: 10.1007/1-4020-5184-0_2.
  • Li G, Peng X, Wei L, Kang G. 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529(2): 321-325.
  • Li L, Peng Z, Mao X, Wang J, Li C, Chang X, Jing R. 2020. Genetic insights into natural variation underlying salt tolerance in wheat. J Exp Bot, 72(4): 1135-1150.
  • Liang W, Ma X, Wan P, Liu L. 2018. Plant salt-tolerance mechanism: A review. Biochem Biophys Res Commun, 495(1): 286-291. DOI: 10.1016/j.bbrc.2017.11.043.
  • Mahmud JA, Hasanuzzaman M, Khan MIR, Nahar K, Fujita M. 2020. β-Aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification. Plants, 9(2): 241. DOI: 10.3390/plants9020241.
  • Mostek A, Börner A, Weidner S. 2016. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley. Plant Physiol Biochem, 99: 150-161.
  • Moursi YS, Thabet SG, Amro A, Dawood MF, Baenziger PS, Sallam A. 2020. Detailed genetic analysis for identifying QTLs associated with drought tolerance at seed germination and seedling stages in barley. Plants, 9(11): 1425.
  • Mullan DJ, Barrett-Lennard EG. 2010. Breeding crops for tolerance to salinity, waterlogging and inundation. Clim Change Crop Prod, 1: 92-114.
  • Nazar R, Umar S, Khan NA. 2015. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav, 10(3): e1003751. DOI: 10.1080/15592324.2014.1003751.
  • Palmer IA, Chen H, Chen J, Chang M, Li M, Liu F, Fu ZQ. 2019. Novel salicylic acid analogs induce a potent defense response in arabidopsis. Int J Mol Sci, 20(13): 3356.
  • Peykani LS, Sepehr MF. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Iran J Plant Physiol, 9(1): 2661-2670.
  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. Bmc Bioinform, 18(1): 529.
  • Samota MK, Sasi M, Awana M, Yadav OP, Amitha Mithra S, Tyagi A, Kumar S, Singh A. 2017. Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Front Plant Sci, 8: 934. DOI: 10.3389/fpls.2017.00934.
  • Shabala S, Bose J, Fuglsang AT, Pottosin I. 2016. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot, 67(4): 1015-1031.
  • Shamili M, Esfandiari Ghalati R, Samari F. 2021. The impact of foliar salicylic acid in salt-exposed guava (Psidium Guajava L.) seedlings. Int J Fruit Sci, 21(1): 323-333.
  • Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. 2021. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol, 19(1): 173.
  • Tan M, Kadıoğlu S. 2018. Erzurum şartlarında farklı tarihlerde kışlık ekilen yem bezelyesi çeşitlerinin verim ve bazı özellikleri. Tarla Bitk Merk Araş Enst Derg, 27(1): 25-32.
  • Tripathi D, Raikhy G, Kumar D. 2019. Chemical elicitors of systemic acquired resistance-Salicylic acid and its functional analogs. Current Plant Biol, 17: 48-59.
  • Uzun A, Gün H, Açıkgöz E. 2012. Farklı gelişme dönemlerinde biçilen bazı yem bezelyesi (Pisum sativum L.) çeşitlerinin ot, tohum ve ham protein verimlerinin belirlenmesi. Uludağ Üniv Ziraat Fak Derg, 26(1): 27-38.
  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N. 2016. Salicylic acid to decrease plant stress. Environ Chem Lett, 15(1): 101-123. DOI: 10.1007/s10311-016-0584-0.
  • Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. J Integr Plant Biol, 60(9): 796-804. DOI: 10.1111/jipb.12689.
  • Zhang JS, Li T, Hu Y, Du X, Tang H, Shen C, Wu J. 2014. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS One, 9(10): e109492. DOI: 10.1371/journal.pone.0109492.
  • Zhang X, Liu P, Qing C, Yang C, Shen Y, Ma L. 2021. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ, 9: e10765. DOI: 10.7717/peerj.10765.
  • Zhao P, Lu GH, Yang YH. 2017. Salicylic acid signaling and its role in responses to stresses, in Girdhar K. Pandey (Ed), Plants Mechanisms of Plant Hormone Signaling under Stress, John Wiley & Sons, New York, US, pp: 413-441.
Year 2022, Volume: 5 Issue: 3, 329 - 335, 01.07.2022
https://doi.org/10.47115/bsagriculture.1110338

Abstract

References

  • Acikbas S, Ozyazici MA, Bektas H. 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Res, 44(4): 407-412. DOI: 10.18805/lr-608.
  • Acikbas S, Ozyazici MA, Bektas H. 2022. Root system architecture and seed weight relations in forage pea (Pisum sativum ssp. arvense L. Poir.). Ciência Rural, 52(6): e20210032. DOI: 10.1590/0103-8478cr20210032.
  • Acosta-Motos JR, Penella C, Hernandez JA, Diaz-Vivancos P, Sanchez-Blanco MJ, Navarro JM, Gomez-Bellot MJ, Barba-Espin G. 2020. Towards a sustainable agriculture: strategies involving phytoprotectants against salt stress. Agronomy, 10(2): 194. DOI: 10.3390/agronomy10020194.
  • Ahmad A, Aslam Z, Naz M, Hussain S, Javed T, Aslam S, Raza A, Ali HM, Siddiqui MH, Salem MZM, Hano C, Shabbir R, Ahmar S, Saeed T, Jamal MA. 2021. Exogenous salicylic acid-induced drought stress tolerance in wheat (Triticum aestivum L.) grown under hydroponic culture. Plos One, 16(12): e0260556. DOI: 10.1371/journal.pone.0260556.
  • Amoah NKA, Akromah R, Kena AW, Manneh B, Dieng I, Bimpong IK. 2020. Mapping QTLs for tolerance to salt stress at the early seedling stage in rice (Oryza sativa L.) using a newly identified donor ‘Madina Koyo’. Euphytica, 216(10): 156. DOI: 10.1007/s10681-020-02689-5.
  • Ateş E, Tekeli AS. 2017. Farklı taban gübresi uygulamalarının yem bezelyesi (Pisum arvense L.)’nin ot verimi ve kalitesine etkisi. KSÜ Doğa Bil Derg, 20: 13-16.
  • Bektas Y, Eulgem T. 2015. Synthetic plant defense elicitors. Front Plant Sci, 5: 804. DOI: 10.3389/fpls.2014.00804.
  • Bektas Y, Rodriguez-Salus M, Schroeder M, Gomez A, Kaloshian I, Eulgem T. 2016. The Synthetic Elicitor DPMP (2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol) triggers strong immunity in Arabidopsis thaliana and tomato. Sci Rep, 6(1): 29554. DOI: 10.1038/srep29554.
  • Bektas Y. 2021. The synthetic elicitors 2,6-dichloro-isonicotinic acid (INA) and 2,4-dichloro-6-{(E)-[(3-methoxyphenyl)imino]methyl}phenol (DPMP) enhances tomato resistance against bacterial canker disease with different molecular mechanisms. Physiol Mol Plant Pathol, 116: 101740. DOI: 10.1016/j.pmpp.2021.101740.
  • Bektas Y. 2022. Trade-offs in root and shoot growth in forage pea [Pisum sativum (L.) arvense] with foliar applications of synthetic elicitor DPMP (2,4-Dichloro-6-{(E)-[(3-Methoxyphenyl) Imino] Methyl} Phenol) and SA (Salicylic Acid). Legume Res, 45(4): 445-453. DOI: 10.18805/LRF-655.
  • Çaçan E, Kökten K, Bakoğlu A, Kaplan M, Bozkurt A. 2019. Bazı yem bezelyesi hat ve çeşitlerinin (Pisum arvense L.) ot verimi ve kalitesi açısından değerlendirilmesi. Harran Tarım ve Gıda Bil Derg, 23(3): 254-262.
  • Cornacchione MV, Suarez DL. 2017. Evaluation of alfalfa (Medicago sativa L.) populations' response to salinity stress. Crop Sci, 57(1): 137-150. DOI: 10.2135/cropsci2016.05.0371.
  • Demirkol G, Yilmaz N, Önal Aşçi Ö. 2019. Tuz stresinin yem bezelyesi (Pisum sativum ssp. arvense L.) genotipinde çimlenme ve fide gelişimi üzerine etkileri. KSÜ Tarım ve Doğa Derg, 22(3): 354-359.
  • Demirkol G, Yilmaz N. 2019. Forage pea (Pisum sativum var. arvense L.) landraces reveal morphological and genetic diversities. Turk J Bot, 43(3): 331-342. DOI: 10.3906/bot-1812-12.
  • Den Herder G, Van Isterdael G, Beeckman T, De Smet I. 2010. The roots of a new green revolution. Trends Plant Sci, 15(11): 600-607. DOI: 10.1016/j.tplants.2010.08.009.
  • Filgueiras CC, Martins AD, Pereira RV, Willett DS. 2019. The ecology of salicylic acid signaling: primary, secondary and tertiary effects with applications in agriculture. Int J Mol Sci, 20(23): 5851. DOI: 10.3390/ijms20235851.
  • Gerami M, Majidian P, Ghorbanpour A, Alipour Z. 2020. Stevia rebaudiana Bertoni responses to salt stress and chitosan elicitor. Physiol Mol Biol Plants, 26(5): 965-974.
  • Grozeva S, Kalapchieva S, Tringovska I. 2019. Evaluation of garden pea cultivars to salt stress tolerance. Mechaniz Agri Conserv Res, 65(4): 150-152.
  • Hohn CE, Bektas H. 2020. Genetic mapping of quantitative trait loci (QTLs) associated with seminal root angle and number in three populations of bread wheat (Triticum aestivum L.) with common parents. Plant Mol Biol Rep, 38(4): 572-585.
  • Koo YM, Heo AY, Choi HW. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol J, 36(1): 1-10.
  • Kumar A, Choudhary A, Kaur H, Mehta S. 2021. A walk towards Wild grasses to unlock the clandestine of gene pools for wheat improvement: A review. Plant Stress, 3: 100048.
  • Larqué-Saavedra A, Martin-Mex R. 2007. Effects of salicylic acid on the bioproductivity of Plants. In: Hayat S, Ahmad A (eds) Salicylic Acid: A Plant Hormone. Springer, Dordrecht, Netherlands, pp: 15-23. DOI: 10.1007/1-4020-5184-0_2.
  • Li G, Peng X, Wei L, Kang G. 2013. Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene, 529(2): 321-325.
  • Li L, Peng Z, Mao X, Wang J, Li C, Chang X, Jing R. 2020. Genetic insights into natural variation underlying salt tolerance in wheat. J Exp Bot, 72(4): 1135-1150.
  • Liang W, Ma X, Wan P, Liu L. 2018. Plant salt-tolerance mechanism: A review. Biochem Biophys Res Commun, 495(1): 286-291. DOI: 10.1016/j.bbrc.2017.11.043.
  • Mahmud JA, Hasanuzzaman M, Khan MIR, Nahar K, Fujita M. 2020. β-Aminobutyric acid pretreatment confers salt stress tolerance in Brassica napus L. by modulating reactive oxygen species metabolism and methylglyoxal detoxification. Plants, 9(2): 241. DOI: 10.3390/plants9020241.
  • Mostek A, Börner A, Weidner S. 2016. Comparative proteomic analysis of β-aminobutyric acid-mediated alleviation of salt stress in barley. Plant Physiol Biochem, 99: 150-161.
  • Moursi YS, Thabet SG, Amro A, Dawood MF, Baenziger PS, Sallam A. 2020. Detailed genetic analysis for identifying QTLs associated with drought tolerance at seed germination and seedling stages in barley. Plants, 9(11): 1425.
  • Mullan DJ, Barrett-Lennard EG. 2010. Breeding crops for tolerance to salinity, waterlogging and inundation. Clim Change Crop Prod, 1: 92-114.
  • Nazar R, Umar S, Khan NA. 2015. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress. Plant Signal Behav, 10(3): e1003751. DOI: 10.1080/15592324.2014.1003751.
  • Palmer IA, Chen H, Chen J, Chang M, Li M, Liu F, Fu ZQ. 2019. Novel salicylic acid analogs induce a potent defense response in arabidopsis. Int J Mol Sci, 20(13): 3356.
  • Peykani LS, Sepehr MF. 2018. Effect of chitosan on antioxidant enzyme activity, proline, and malondialdehyde content in Triticum aestivum L. and Zea maize L. under salt stress condition. Iran J Plant Physiol, 9(1): 2661-2670.
  • Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, Eliceiri KW. 2017. ImageJ2: ImageJ for the next generation of scientific image data. Bmc Bioinform, 18(1): 529.
  • Samota MK, Sasi M, Awana M, Yadav OP, Amitha Mithra S, Tyagi A, Kumar S, Singh A. 2017. Elicitor-induced biochemical and molecular manifestations to improve drought tolerance in rice (Oryza sativa L.) through seed-priming. Front Plant Sci, 8: 934. DOI: 10.3389/fpls.2017.00934.
  • Shabala S, Bose J, Fuglsang AT, Pottosin I. 2016. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot, 67(4): 1015-1031.
  • Shamili M, Esfandiari Ghalati R, Samari F. 2021. The impact of foliar salicylic acid in salt-exposed guava (Psidium Guajava L.) seedlings. Int J Fruit Sci, 21(1): 323-333.
  • Singh M, Nara U, Kumar A, Choudhary A, Singh H, Thapa S. 2021. Salinity tolerance mechanisms and their breeding implications. J Genet Eng Biotechnol, 19(1): 173.
  • Tan M, Kadıoğlu S. 2018. Erzurum şartlarında farklı tarihlerde kışlık ekilen yem bezelyesi çeşitlerinin verim ve bazı özellikleri. Tarla Bitk Merk Araş Enst Derg, 27(1): 25-32.
  • Tripathi D, Raikhy G, Kumar D. 2019. Chemical elicitors of systemic acquired resistance-Salicylic acid and its functional analogs. Current Plant Biol, 17: 48-59.
  • Uzun A, Gün H, Açıkgöz E. 2012. Farklı gelişme dönemlerinde biçilen bazı yem bezelyesi (Pisum sativum L.) çeşitlerinin ot, tohum ve ham protein verimlerinin belirlenmesi. Uludağ Üniv Ziraat Fak Derg, 26(1): 27-38.
  • Wani AB, Chadar H, Wani AH, Singh S, Upadhyay N. 2016. Salicylic acid to decrease plant stress. Environ Chem Lett, 15(1): 101-123. DOI: 10.1007/s10311-016-0584-0.
  • Yang Y, Guo Y. 2018. Unraveling salt stress signaling in plants. J Integr Plant Biol, 60(9): 796-804. DOI: 10.1111/jipb.12689.
  • Zhang JS, Li T, Hu Y, Du X, Tang H, Shen C, Wu J. 2014. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems. PLoS One, 9(10): e109492. DOI: 10.1371/journal.pone.0109492.
  • Zhang X, Liu P, Qing C, Yang C, Shen Y, Ma L. 2021. Comparative transcriptome analyses of maize seedling root responses to salt stress. PeerJ, 9: e10765. DOI: 10.7717/peerj.10765.
  • Zhao P, Lu GH, Yang YH. 2017. Salicylic acid signaling and its role in responses to stresses, in Girdhar K. Pandey (Ed), Plants Mechanisms of Plant Hormone Signaling under Stress, John Wiley & Sons, New York, US, pp: 413-441.
There are 45 citations in total.

Details

Primary Language English
Subjects Structural Biology, Agricultural Engineering
Journal Section Research Articles
Authors

Nazlı Özkurt 0000-0003-4064-3740

Yasemin Bektaş 0000-0002-6884-2234

Publication Date July 1, 2022
Submission Date April 28, 2022
Acceptance Date June 25, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Özkurt, N., & Bektaş, Y. (2022). Comparative Evaluation of Salicylic Acid (SA) and 2,4-Dichloro-6-{(E)-[(3methoxyphenyl)imino]methyl} Phenol (DPMP) on Growth and Salt Stress Tolerance in Forage Pea (Pisum sativum L. arvense). Black Sea Journal of Agriculture, 5(3), 329-335. https://doi.org/10.47115/bsagriculture.1110338

                                                  24890