Research Article
BibTex RIS Cite

Foliar Application of Ascorbic Acid and Green-Synthesized Nano Iron for Enhancing Drought Tolerance and Antioxidant Defense in Common Beans

Year 2024, Volume: 7 Issue: 6, 766 - 776, 15.11.2024
https://doi.org/10.47115/bsagriculture.1556862

Abstract

This study evaluated the effects of foliar-applied iron nanoparticles (FeNPs, 100 mg L⁻¹) and ascorbic acid (AsA, 400 mg L⁻¹) on the growth, photosynthetic pigments, and antioxidant defense mechanisms of common beans under optimal (100% FC) and water-restricted (50% FC) conditions. Under drought stress, both FeNPs and AsA significantly alleviated the negative impacts of water deficit, improving plant height, chlorophyll content, and carotenoid accumulation. FeNPs increased chlorophyll a by 60% and carotenoid content by 83.5%, while AsA enhanced ascorbate peroxidase activity (APX) activity by 44.8%, demonstrating its role in reducing oxidative stress. Additionally, FeNPs boosted catalase (CAT) and superoxide dismutase (SOD) activities by 198.2% and 17.3%, respectively. These treatments also significantly reduced malondialdehyde (MDA) concentration, with FeNPs-treated plants showing a 54.7% reduction compared to the control (P<0.01), indicating lower oxidative damage. This study is the first to use green-synthesized FeNPs in the context of global climate change, highlighting their potential in enhancing drought tolerance. Future research should explore the long-term effects of nanomaterials on human health and environmental safety.

References

  • Afshar RM, Hadi H, Pirzad A. 2013. Effect of nano-iron on the yield and yield component of cowpea (Vigna unguiculata) under end season water deficit. Int J Agri, 3(1): 27.
  • Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Iqbal MA. 2018. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. J Plant Nutr, 41(13): 1734-1743.
  • Ahmadikhah A, Marufinia A. 2016. Effect of reduced plant height on drought tolerance in rice. 3 Biotech, 6(2): 221.
  • Akram NA, Shafiq F, Ashraf M. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci, 8: 613.
  • Alabdallah NM, Hasan MM, Hammami I, Alghamdi AI, Alshehri D, Alatawi HA. 2021. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants, 10(8): 1730.
  • Alrajhi AH, Ahmed NM. 2023. Green synthesis of zinc oxide nanoparticles using salvia officinalis extract. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Springer International Publishing, Cham, berlin, Germany, pp: 1-21.
  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Tuteja N. 2016. Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res, 23: 19002-19029.
  • Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. 2024. Exploring therapeutic potential of catalase: strategies in disease prevention and management. Biomolecules, 14(6): 697.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24(1): 1.
  • Asgher M, Ahmed S, Sehar Z, Gautam H, Gandhi SG, Khan NA. 2021. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). J Hazard Mater, 401: 123365.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44(1): 276-287.
  • Beers RF, Sizer IW. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem, 195(1): 133-140.
  • Benlioğlu B, Demirel F, Türkoğlu A, Haliloğlu K, Özaktan H, Kujawa S Niedbała G. 2024. Insights into drought tolerance of tetraploid wheat genotypes in the germination stage using machine learning algorithms. Agriculture, 14(2): 206.
  • Bidi H, Fallah H, Niknejad Y, Tari DB. 2021. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol Biochem, 163: 348-357.
  • Canal SB, Bozkurt MA, Yílmaz H. 2023. Humic acid ameliorates phytoremediation, plant growth and antioxidative enzymes in forage turnip (Brassica rapa L.). Plant Soil Environ, 69(12): 567-576.
  • Chen X, Jiang Y, Cong Y, Liu X, Yang Q, Xing J, Liu H. 2024. Ascorbic acid mitigates salt stress in tomato seedlings by enhancing chlorophyll synthesis pathways. Agronomy, 14(8): 1810.
  • Chieb M, Gachomo EW. 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol, 23(1): 407.
  • de Cássia Alves R, Oliveira KR, Lúcio JCB, dos Santos Silva J, Carrega WC, Queiroz SF, Gratão PL. 2022. Exogenous foliar ascorbic acid applications enhance salt-stress tolerance in peanut plants through increase in the activity of major antioxidant enzymes. S Afr J Bot, 150: 759-767.
  • Demirel F, Kumlay AM, Yıldırım B. 2021. Bazı ekmeklik buğday (triticum aestivum l.) genotiplerinin agromorfolojik özellikleri bakımından biplot, kümeleme ve path analizi yöntemleri ile değerlendirilmesi. Avrupa Bil Teknol Derg, 23: 304-311.
  • Dola DB, Mannan MA, Sarker U, Mamun MAA, Islam T, Ercisli S, Marc RA. 2022. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front Plant Sci, 13: 992535.
  • El Amine B, Mosseddaq F, Houssa AA, Bouaziz A, Moughli L, Oukarroum A. 2024. How far can the interactive effects of continuous deficit irrigation and foliar iron fertilization improve the physiological and agronomic status of soybeans grown in calcareous soils under arid climate conditions? Agric Water Manag, 300: 108926.
  • Emiliani J, D’Andrea L, Lorena Falcone Ferreyra M, Maulión E, Rodriguez E, Rodriguez-Concepción M, Casati P. 2018. A role for β, β-xanthophylls in Arabidopsis UV-B photoprotection. J Exp Bot, 69(20): 4921-4933.
  • Faizan M, Arif Y, Rajput VD, Hayat S, Minkina T, Ahmed SM, Ilgiz K. 2022. Effects, uptake and translocation of iron (Fe) based nanoparticles in plants. In: Toxicity of Nanoparticles in Plants. Academic Press, London, UK, pp: 193-209.
  • Fatollahpour Grangah M, Rashidi V, Mirshekari B, Khalilvand Behrouzyar E, Farahvash F. 2020. Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. J Plant Nutr, 43(19): 2898-2910.
  • Gaafar AA, Ali SI, El-Shawadfy MA, Salama ZA, Sękara A, Ulrichs C, Abdelhamid MT. 2020. Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9(5): 627.
  • Ghasemi S, Piri I, Tavassoli A. 2022. The effect of iron nano-chelate fertilizer on yield, yield components and seed protein content of bean (Phaseolus vulgaris L.) under drought stress. Iran J Pulses Res, 13(1): 55-72.
  • Gosai HG, Sharma A, Mankodi P. 2024. Climate Change's Impact on Agricultural Food Production. In: Ashley JM (editor), Food Security in a Developing World: Status, Challenges, and Opportunities. Springer Nature Switzerland, Amsterdam, the Netherland, pp: 117-132.
  • Hassan A, Amjad SF, Saleem MH, Yasmin H, Imran M, Riaz M, Alyemeni MN. 2021. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci, 28(8): 4276-4290.
  • Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, Khan A, Lee IJ. 2021. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants, 13(4): plab026.
  • Iqbal MS, Singh AK, Ansari MI. 2020. Effect of drought stress on crop production. In: Rakshit A, Singh H, Singh A, Singh U, Fraceto L (eds), New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore, pp: 35-47.
  • Kashem MA, Hossain MZ. 2023. Climate-induced droughts and its implications for legume crops. In: Hossain MZ, Anawar HM, Chaudhary Dr (eds), Climate Change and Legumes. CRC Press, London, UK, pp: 189-206.
  • Kavas M, Baloğlu MC, Akca O, Köse FS, Gökçay D. 2013. Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turk J Biol, 37(4): 491-498.
  • Khatun M, Sarkar S, Era FM, Islam AM, Anwar MP, Fahad S, Islam AA. 2021. Drought stress in grain legumes: effects, tolerance mechanisms and management. Agronomy, 11(12): 2374.
  • Khazaei Z, Esmaielpour B, Estaji A. 2020. Ameliorative effects of ascorbic acid on tolerance to drought stress on pepper (Capsicum annuum L) plants. Physiol Mol Biol Plants, 26: 1649-1662.
  • Kobayashi T, Nozoye T, Nishizawa NK. 2019. Iron transport and its regulation in plants. Free Radic Biol Med, 133: 11-20.
  • Mahmoud AWM, Ayad AA, Abdel-Aziz HS, Williams LL, El-Shazoly RM, Abdel-Wahab A, Abdeldaym EA. 2022. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants, 11(19): 2599.
  • Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR. 2018. Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proc Natl Acad Sci India Sect B Biol Sci, 88: 595-607.
  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad P. 2022. Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2): 225.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ, 769: 145221.
  • Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Wang G. 2023. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotoxicol Environ Saf, 264: 115382.
  • Mazhar MW, Ishtiaq M, Maqbool M, Ullah F, Sayed SR, Mahmoud EA. 2023. Seed priming with iron oxide nanoparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. S Afr J Bot, 162: 577-587.
  • Ngalamu T, Galla JO, Ofori K, Meseka SK. 2023. Genetic improvement for development of a climate resilient food legume crops: relevance of cowpea breeding approach in improvement of food legume crops for future. In: Hossain MZ, Anawar HM, Chaudhary Dr (eds), Climate Change and Legumes. CRC Press, London, UK, pp: 97-120.
  • Ngan HTM, Tung HT, Van Le B, Nhut DT. 2020. Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus "Express golem") plantlets cultured in two culture systems supplemented with iron nanoparticles. Sci Hortic, 272: 109612.
  • Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK. 2015. Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci, 61(12): 1659-1672.
  • Özel SD, Gökkuş A, Alatürk F. 2016. Farklı sulama seviyelerinin macar fiği (Vicia pannonica Crantz.) ve yem bezelyesinin (Pisum arvense L.) gelişimine etkileri. Alinteri J Agric Sci, 30(1): 46-52.
  • Priya N, Kaur K, Sidhu AK. 2021. Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol, 3: 655062.
  • Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Mandzhieva S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biol, 10(4): 267.
  • Rasheed A, Azeem F. 2024. Biofortification potential of neglected protein legumes for combating hidden hunger in resource-poor countries. In: Azhar MT, Ahmad MQ, Rana IA, Atif RM (eds), Biofortification of Grain and Vegetable Crops. Academic Press, Chennai, India, pp: 161-186.
  • Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Wu Z. 2022. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: a review. Front Plant Sci, 13: 976179.
  • Sairam RK, Saxena DC. 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci, 184(1): 55-61.
  • Santhosh PB, Genova J, Chamati H. 2022. Green synthesis of gold nanoparticles: an eco-friendly approach. Chem, 4(2): 345-369.
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2): 259.
  • Semida WM, Abd El-Mageed TA, Abdalla RM, Hemida KA, Howladar SM, Leilah AA, Rady MO. 2021. Sequential antioxidants foliar application can alleviate negative consequences of salinity stress in Vicia faba L. Plants, 10(5): 914.
  • Shah AA, Yasin NA, Mudassir M, Ramzan M, Hussain I, Siddiqui MH, Kumar R. 2022. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environ Pollut, 307: 119413.
  • Shahid S, Ali Q, Ali S, Al-Misned FA, Maqbool S. 2022. Water deficit stress tolerance potential of newly developed wheat genotypes for better yield based on agronomic traits and stress tolerance indices: physio-biochemical responses, lipid peroxidation and antioxidative defense mechanism. Plants, 11(3): 466.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Zheng B. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul, 39: 509-531.
  • Sharma SK, Singh D, Pandey H, Jatav RB, Singh V, Pandey D. 2022. An overview of roles of enzymatic and nonenzymatic antioxidants. In: Aftab T, Hakeem KR (eds), Antioxidant Defense in Plants. Springer, Singapore, pp: 1-13.
  • Shemi R, Wang R, Gheith ESM, Hussain HA, Cholidah L, Zhang K, Wang L. 2021. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biol, 21: 1-15.
  • Sofi PA, Djanaguiraman M, Siddique KHM, Prasad PVV. 2018. Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian J Plant Physiol, 23: 796-809.
  • Sun H, Qu G, Li S, Song K, Zhao D, Li X, Hu T. 2023. Iron nanoparticles induced the growth and physio-chemical changes in Kobresia capillifolia seedlings. Plant Physiol Biochem, 194: 15-28.
  • Tapia G, Méndez J, Inostroza L, Lozano C. 2022. Water shortage affects vegetative and reproductive stages of common bean (Phaseolus vulgaris) Chilean landraces, differentially impacting grain yield components. Plants, 11(6): 749.
  • Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Roberts TH. 2020. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One, 15(5): e0232269.
  • Torabian S, Shakiba MR, Mohammadi Nasab AD, Toorchi M. 2018. Exogenous spermidine affected leaf characteristics and growth of common bean under water deficit conditions. Commun Soil Sci Plant Anal, 49(11): 1289-1301.
  • Türkoğlu A, Haliloğlu K, Demirel F, Aydin M, Çiçek S, Yiğider E, Niedbała G. 2023a. Machine learning analysis of the impact of silver nitrate and silver nanoparticles on wheat (Triticum aestivum L.): callus induction, plant regeneration, and DNA methylation. Plants, 12(24): 4151.
  • Türkoğlu A, Bolouri P, Haliloğlu K, Eren B, Demirel F, Işık Mİ, Niedbała G. 2023b. Modeling callus induction and regeneration in hypocotyl explant of fodder pea (Pisum sativum var. arvense L.) using machine learning algorithm method. Agronomy, 13(11): 2835.
  • Van Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen HT, Le HM, Van Ha C. 2022. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regul, 41(1): 364-375.
  • Wang Z, Fang C, Mallavarapu M. 2015. Characterization of iron–polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environ Technol Innov, 4: 92-97.
  • Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. 2017. Package ‘corrplot’. Statistician, 56: e24.
  • Wickham H. 2016. Programming with ggplot2. In: Aaron R, Villanueva M, Chen ZJ (eds), ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing, Berlin, Germany, pp: 241-253.
  • Yilmaz A, Yilmaz H, Soydemir HE, Çiftçi V. 2022. The effect of PGPR and AMF applications on yield properties and protein content in soybean (Glycine max L.). Int J Agri Wildlife Sci, 8(1): 108-118.
  • Yilmaz H, Kulaz H. 2019. The effects of plant growth promoting rhizobacteria on antioxidant activity in chickpea (Cicer arietinum L.) under salt stress. Legume Res, 42(1): 72-76.
  • Yilmaz H, Özer G, Baloch FS, Çiftçi V, Chung YS, Sun HJ. 2023a. Genome-wide identification and expression analysis of MTP (metal ion transport proteins) genes in the common bean. Plants, 12(18): 3218.
  • Yilmaz A, Yildirim E, Yilmaz H, Soydemir HE, Güler E, Ciftci V, Yaman M. 2023b. Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimum basilicum L.). Sustainability, 15(7): 5982.
  • Zia-ur-Rehman M, Mfarrej MFB, Usman M, Anayatullah S, Rizwan M, Alharby HF, Ali S. 2023. Effect of iron nanoparticles and conventional sources of Fe on growth, physiology and nutrient accumulation in wheat plants grown on normal and salt-affected soils. J Hazard Mater, 458: 131861.
Year 2024, Volume: 7 Issue: 6, 766 - 776, 15.11.2024
https://doi.org/10.47115/bsagriculture.1556862

Abstract

References

  • Afshar RM, Hadi H, Pirzad A. 2013. Effect of nano-iron on the yield and yield component of cowpea (Vigna unguiculata) under end season water deficit. Int J Agri, 3(1): 27.
  • Ahmad Z, Anjum S, Waraich EA, Ayub MA, Ahmad T, Tariq RMS, Iqbal MA. 2018. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress–a review. J Plant Nutr, 41(13): 1734-1743.
  • Ahmadikhah A, Marufinia A. 2016. Effect of reduced plant height on drought tolerance in rice. 3 Biotech, 6(2): 221.
  • Akram NA, Shafiq F, Ashraf M. 2017. Ascorbic acid-a potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front Plant Sci, 8: 613.
  • Alabdallah NM, Hasan MM, Hammami I, Alghamdi AI, Alshehri D, Alatawi HA. 2021. Green synthesized metal oxide nanoparticles mediate growth regulation and physiology of crop plants under drought stress. Plants, 10(8): 1730.
  • Alrajhi AH, Ahmed NM. 2023. Green synthesis of zinc oxide nanoparticles using salvia officinalis extract. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. Springer International Publishing, Cham, berlin, Germany, pp: 1-21.
  • Anjum NA, Sharma P, Gill SS, Hasanuzzaman M, Khan EA, Kachhap K, Tuteja N. 2016. Catalase and ascorbate peroxidase—representative H2O2-detoxifying heme enzymes in plants. Environ Sci Pollut Res, 23: 19002-19029.
  • Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, Rahmani AH. 2024. Exploring therapeutic potential of catalase: strategies in disease prevention and management. Biomolecules, 14(6): 697.
  • Arnon DI. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol, 24(1): 1.
  • Asgher M, Ahmed S, Sehar Z, Gautam H, Gandhi SG, Khan NA. 2021. Hydrogen peroxide modulates activity and expression of antioxidant enzymes and protects photosynthetic activity from arsenic damage in rice (Oryza sativa L.). J Hazard Mater, 401: 123365.
  • Beauchamp C, Fridovich I. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44(1): 276-287.
  • Beers RF, Sizer IW. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem, 195(1): 133-140.
  • Benlioğlu B, Demirel F, Türkoğlu A, Haliloğlu K, Özaktan H, Kujawa S Niedbała G. 2024. Insights into drought tolerance of tetraploid wheat genotypes in the germination stage using machine learning algorithms. Agriculture, 14(2): 206.
  • Bidi H, Fallah H, Niknejad Y, Tari DB. 2021. Iron oxide nanoparticles alleviate arsenic phytotoxicity in rice by improving iron uptake, oxidative stress tolerance and diminishing arsenic accumulation. Plant Physiol Biochem, 163: 348-357.
  • Canal SB, Bozkurt MA, Yílmaz H. 2023. Humic acid ameliorates phytoremediation, plant growth and antioxidative enzymes in forage turnip (Brassica rapa L.). Plant Soil Environ, 69(12): 567-576.
  • Chen X, Jiang Y, Cong Y, Liu X, Yang Q, Xing J, Liu H. 2024. Ascorbic acid mitigates salt stress in tomato seedlings by enhancing chlorophyll synthesis pathways. Agronomy, 14(8): 1810.
  • Chieb M, Gachomo EW. 2023. The role of plant growth promoting rhizobacteria in plant drought stress responses. BMC Plant Biol, 23(1): 407.
  • de Cássia Alves R, Oliveira KR, Lúcio JCB, dos Santos Silva J, Carrega WC, Queiroz SF, Gratão PL. 2022. Exogenous foliar ascorbic acid applications enhance salt-stress tolerance in peanut plants through increase in the activity of major antioxidant enzymes. S Afr J Bot, 150: 759-767.
  • Demirel F, Kumlay AM, Yıldırım B. 2021. Bazı ekmeklik buğday (triticum aestivum l.) genotiplerinin agromorfolojik özellikleri bakımından biplot, kümeleme ve path analizi yöntemleri ile değerlendirilmesi. Avrupa Bil Teknol Derg, 23: 304-311.
  • Dola DB, Mannan MA, Sarker U, Mamun MAA, Islam T, Ercisli S, Marc RA. 2022. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front Plant Sci, 13: 992535.
  • El Amine B, Mosseddaq F, Houssa AA, Bouaziz A, Moughli L, Oukarroum A. 2024. How far can the interactive effects of continuous deficit irrigation and foliar iron fertilization improve the physiological and agronomic status of soybeans grown in calcareous soils under arid climate conditions? Agric Water Manag, 300: 108926.
  • Emiliani J, D’Andrea L, Lorena Falcone Ferreyra M, Maulión E, Rodriguez E, Rodriguez-Concepción M, Casati P. 2018. A role for β, β-xanthophylls in Arabidopsis UV-B photoprotection. J Exp Bot, 69(20): 4921-4933.
  • Faizan M, Arif Y, Rajput VD, Hayat S, Minkina T, Ahmed SM, Ilgiz K. 2022. Effects, uptake and translocation of iron (Fe) based nanoparticles in plants. In: Toxicity of Nanoparticles in Plants. Academic Press, London, UK, pp: 193-209.
  • Fatollahpour Grangah M, Rashidi V, Mirshekari B, Khalilvand Behrouzyar E, Farahvash F. 2020. Effects of nano-fertilizers on physiological and yield characteristics of pinto bean cultivars under water deficit stress. J Plant Nutr, 43(19): 2898-2910.
  • Gaafar AA, Ali SI, El-Shawadfy MA, Salama ZA, Sękara A, Ulrichs C, Abdelhamid MT. 2020. Ascorbic acid induces the increase of secondary metabolites, antioxidant activity, growth, and productivity of the common bean under water stress conditions. Plants, 9(5): 627.
  • Ghasemi S, Piri I, Tavassoli A. 2022. The effect of iron nano-chelate fertilizer on yield, yield components and seed protein content of bean (Phaseolus vulgaris L.) under drought stress. Iran J Pulses Res, 13(1): 55-72.
  • Gosai HG, Sharma A, Mankodi P. 2024. Climate Change's Impact on Agricultural Food Production. In: Ashley JM (editor), Food Security in a Developing World: Status, Challenges, and Opportunities. Springer Nature Switzerland, Amsterdam, the Netherland, pp: 117-132.
  • Hassan A, Amjad SF, Saleem MH, Yasmin H, Imran M, Riaz M, Alyemeni MN. 2021. Foliar application of ascorbic acid enhances salinity stress tolerance in barley (Hordeum vulgare L.) through modulation of morpho-physio-biochemical attributes, ions uptake, osmo-protectants and stress response genes expression. Saudi J Biol Sci, 28(8): 4276-4290.
  • Imran M, Latif Khan A, Shahzad R, Aaqil Khan M, Bilal S, Khan A, Lee IJ. 2021. Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defence system of soybean plants. AoB Plants, 13(4): plab026.
  • Iqbal MS, Singh AK, Ansari MI. 2020. Effect of drought stress on crop production. In: Rakshit A, Singh H, Singh A, Singh U, Fraceto L (eds), New Frontiers in Stress Management for Durable Agriculture. Springer, Singapore, pp: 35-47.
  • Kashem MA, Hossain MZ. 2023. Climate-induced droughts and its implications for legume crops. In: Hossain MZ, Anawar HM, Chaudhary Dr (eds), Climate Change and Legumes. CRC Press, London, UK, pp: 189-206.
  • Kavas M, Baloğlu MC, Akca O, Köse FS, Gökçay D. 2013. Effect of drought stress on oxidative damage and antioxidant enzyme activity in melon seedlings. Turk J Biol, 37(4): 491-498.
  • Khatun M, Sarkar S, Era FM, Islam AM, Anwar MP, Fahad S, Islam AA. 2021. Drought stress in grain legumes: effects, tolerance mechanisms and management. Agronomy, 11(12): 2374.
  • Khazaei Z, Esmaielpour B, Estaji A. 2020. Ameliorative effects of ascorbic acid on tolerance to drought stress on pepper (Capsicum annuum L) plants. Physiol Mol Biol Plants, 26: 1649-1662.
  • Kobayashi T, Nozoye T, Nishizawa NK. 2019. Iron transport and its regulation in plants. Free Radic Biol Med, 133: 11-20.
  • Mahmoud AWM, Ayad AA, Abdel-Aziz HS, Williams LL, El-Shazoly RM, Abdel-Wahab A, Abdeldaym EA. 2022. Foliar application of different iron sources improves morpho-physiological traits and nutritional quality of broad bean grown in sandy soil. Plants, 11(19): 2599.
  • Maity A, Natarajan N, Vijay D, Srinivasan R, Pastor M, Malaviya DR. 2018. Influence of metal nanoparticles (NPs) on germination and yield of oat (Avena sativa) and berseem (Trifolium alexandrinum). Proc Natl Acad Sci India Sect B Biol Sci, 88: 595-607.
  • Mansoor S, Ali Wani O, Lone JK, Manhas S, Kour N, Alam P, Ahmad P. 2022. Reactive oxygen species in plants: from source to sink. Antioxidants, 11(2): 225.
  • Manzoor N, Ahmed T, Noman M, Shahid M, Nazir MM, Ali L, Wang G. 2021. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci Total Environ, 769: 145221.
  • Manzoor N, Ali L, Al-Huqail AA, Alghanem SMS, Al-Haithloul HAS, Abbas T, Wang G. 2023. Comparative efficacy of silicon and iron oxide nanoparticles towards improving the plant growth and mitigating arsenic toxicity in wheat (Triticum aestivum L.). Ecotoxicol Environ Saf, 264: 115382.
  • Mazhar MW, Ishtiaq M, Maqbool M, Ullah F, Sayed SR, Mahmoud EA. 2023. Seed priming with iron oxide nanoparticles improves yield and antioxidant status of garden pea (Pisum sativum L.) grown under drought stress. S Afr J Bot, 162: 577-587.
  • Ngalamu T, Galla JO, Ofori K, Meseka SK. 2023. Genetic improvement for development of a climate resilient food legume crops: relevance of cowpea breeding approach in improvement of food legume crops for future. In: Hossain MZ, Anawar HM, Chaudhary Dr (eds), Climate Change and Legumes. CRC Press, London, UK, pp: 97-120.
  • Ngan HTM, Tung HT, Van Le B, Nhut DT. 2020. Evaluation of root growth, antioxidant enzyme activity and mineral absorbability of carnation (Dianthus caryophyllus "Express golem") plantlets cultured in two culture systems supplemented with iron nanoparticles. Sci Hortic, 272: 109612.
  • Noman A, Ali S, Naheed F, Ali Q, Farid M, Rizwan M, Irshad MK. 2015. Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress. Arch Agron Soil Sci, 61(12): 1659-1672.
  • Özel SD, Gökkuş A, Alatürk F. 2016. Farklı sulama seviyelerinin macar fiği (Vicia pannonica Crantz.) ve yem bezelyesinin (Pisum arvense L.) gelişimine etkileri. Alinteri J Agric Sci, 30(1): 46-52.
  • Priya N, Kaur K, Sidhu AK. 2021. Green synthesis: an eco-friendly route for the synthesis of iron oxide nanoparticles. Front Nanotechnol, 3: 655062.
  • Rajput VD, Harish, Singh RK, Verma KK, Sharma L, Quiroz-Figueroa FR, Mandzhieva S. 2021. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biol, 10(4): 267.
  • Rasheed A, Azeem F. 2024. Biofortification potential of neglected protein legumes for combating hidden hunger in resource-poor countries. In: Azhar MT, Ahmad MQ, Rana IA, Atif RM (eds), Biofortification of Grain and Vegetable Crops. Academic Press, Chennai, India, pp: 161-186.
  • Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Wu Z. 2022. The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: a review. Front Plant Sci, 13: 976179.
  • Sairam RK, Saxena DC. 2000. Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci, 184(1): 55-61.
  • Santhosh PB, Genova J, Chamati H. 2022. Green synthesis of gold nanoparticles: an eco-friendly approach. Chem, 4(2): 345-369.
  • Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, Refay Y, Battaglia ML. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2): 259.
  • Semida WM, Abd El-Mageed TA, Abdalla RM, Hemida KA, Howladar SM, Leilah AA, Rady MO. 2021. Sequential antioxidants foliar application can alleviate negative consequences of salinity stress in Vicia faba L. Plants, 10(5): 914.
  • Shah AA, Yasin NA, Mudassir M, Ramzan M, Hussain I, Siddiqui MH, Kumar R. 2022. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environ Pollut, 307: 119413.
  • Shahid S, Ali Q, Ali S, Al-Misned FA, Maqbool S. 2022. Water deficit stress tolerance potential of newly developed wheat genotypes for better yield based on agronomic traits and stress tolerance indices: physio-biochemical responses, lipid peroxidation and antioxidative defense mechanism. Plants, 11(3): 466.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Zheng B. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul, 39: 509-531.
  • Sharma SK, Singh D, Pandey H, Jatav RB, Singh V, Pandey D. 2022. An overview of roles of enzymatic and nonenzymatic antioxidants. In: Aftab T, Hakeem KR (eds), Antioxidant Defense in Plants. Springer, Singapore, pp: 1-13.
  • Shemi R, Wang R, Gheith ESM, Hussain HA, Cholidah L, Zhang K, Wang L. 2021. Role of exogenous-applied salicylic acid, zinc and glycine betaine to improve drought-tolerance in wheat during reproductive growth stages. BMC Plant Biol, 21: 1-15.
  • Sofi PA, Djanaguiraman M, Siddique KHM, Prasad PVV. 2018. Reproductive fitness in common bean (Phaseolus vulgaris L.) under drought stress is associated with root length and volume. Indian J Plant Physiol, 23: 796-809.
  • Sun H, Qu G, Li S, Song K, Zhao D, Li X, Hu T. 2023. Iron nanoparticles induced the growth and physio-chemical changes in Kobresia capillifolia seedlings. Plant Physiol Biochem, 194: 15-28.
  • Tapia G, Méndez J, Inostroza L, Lozano C. 2022. Water shortage affects vegetative and reproductive stages of common bean (Phaseolus vulgaris) Chilean landraces, differentially impacting grain yield components. Plants, 11(6): 749.
  • Tayyab N, Naz R, Yasmin H, Nosheen A, Keyani R, Sajjad M, Roberts TH. 2020. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS One, 15(5): e0232269.
  • Torabian S, Shakiba MR, Mohammadi Nasab AD, Toorchi M. 2018. Exogenous spermidine affected leaf characteristics and growth of common bean under water deficit conditions. Commun Soil Sci Plant Anal, 49(11): 1289-1301.
  • Türkoğlu A, Haliloğlu K, Demirel F, Aydin M, Çiçek S, Yiğider E, Niedbała G. 2023a. Machine learning analysis of the impact of silver nitrate and silver nanoparticles on wheat (Triticum aestivum L.): callus induction, plant regeneration, and DNA methylation. Plants, 12(24): 4151.
  • Türkoğlu A, Bolouri P, Haliloğlu K, Eren B, Demirel F, Işık Mİ, Niedbała G. 2023b. Modeling callus induction and regeneration in hypocotyl explant of fodder pea (Pisum sativum var. arvense L.) using machine learning algorithm method. Agronomy, 13(11): 2835.
  • Van Nguyen D, Nguyen HM, Le NT, Nguyen KH, Nguyen HT, Le HM, Van Ha C. 2022. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. J Plant Growth Regul, 41(1): 364-375.
  • Wang Z, Fang C, Mallavarapu M. 2015. Characterization of iron–polyphenol complex nanoparticles synthesized by sage (Salvia officinalis) leaves. Environ Technol Innov, 4: 92-97.
  • Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. 2017. Package ‘corrplot’. Statistician, 56: e24.
  • Wickham H. 2016. Programming with ggplot2. In: Aaron R, Villanueva M, Chen ZJ (eds), ggplot2: Elegant Graphics for Data Analysis. Springer International Publishing, Berlin, Germany, pp: 241-253.
  • Yilmaz A, Yilmaz H, Soydemir HE, Çiftçi V. 2022. The effect of PGPR and AMF applications on yield properties and protein content in soybean (Glycine max L.). Int J Agri Wildlife Sci, 8(1): 108-118.
  • Yilmaz H, Kulaz H. 2019. The effects of plant growth promoting rhizobacteria on antioxidant activity in chickpea (Cicer arietinum L.) under salt stress. Legume Res, 42(1): 72-76.
  • Yilmaz H, Özer G, Baloch FS, Çiftçi V, Chung YS, Sun HJ. 2023a. Genome-wide identification and expression analysis of MTP (metal ion transport proteins) genes in the common bean. Plants, 12(18): 3218.
  • Yilmaz A, Yildirim E, Yilmaz H, Soydemir HE, Güler E, Ciftci V, Yaman M. 2023b. Use of arbuscular mycorrhizal fungi for boosting antioxidant enzyme metabolism and mitigating saline stress in sweet basil (Ocimum basilicum L.). Sustainability, 15(7): 5982.
  • Zia-ur-Rehman M, Mfarrej MFB, Usman M, Anayatullah S, Rizwan M, Alharby HF, Ali S. 2023. Effect of iron nanoparticles and conventional sources of Fe on growth, physiology and nutrient accumulation in wheat plants grown on normal and salt-affected soils. J Hazard Mater, 458: 131861.
There are 74 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Hilal Yılmaz 0000-0001-9138-3382

Publication Date November 15, 2024
Submission Date September 27, 2024
Acceptance Date November 6, 2024
Published in Issue Year 2024 Volume: 7 Issue: 6

Cite

APA Yılmaz, H. (2024). Foliar Application of Ascorbic Acid and Green-Synthesized Nano Iron for Enhancing Drought Tolerance and Antioxidant Defense in Common Beans. Black Sea Journal of Agriculture, 7(6), 766-776. https://doi.org/10.47115/bsagriculture.1556862

                                                  24890