Review
BibTex RIS Cite

Effects of Phyllocoptruta oleivora (Ashmead) on Fruit Yield, Quality and Economic Value in Citrus Production

Year 2025, Volume: 8 Issue: 1, 108 - 117, 15.01.2025
https://doi.org/10.47115/bsagriculture.1551557

Abstract

Citrus, which represents important species cultivated such as orange, tangerine, lemon, grapefruit and bitter orange and is one of the most important species in the field of fruit growing, is a fruit species with high economic value cultivated in the world and in Türkiye. However, there are diseases, pests and weed species that have negative effects on the yield, quality and economic value of citrus during the production process. The pest Phyllocoptruta oleivora (Ashmead) or citrus rust mite (CRM) causes great losses in terms of yield, quality and economic value in citrus fruits grown intensively in Türkiye and its surroundings as well as all over the world. In this study, the effects of CRM pest on the yield, quality and economic value of citrus fruits were investigated in citrus production. In the study where the literature review method was used, the data set consists of articles, bulletins, journals belonging to scientific studies on the subject; publications of academic institutions and organizations; studies of experts on the subject; studies, published information and documents conducted by public and private institutions and organizations with authority on the subject; and information obtained from units operating in the field and involved in the agricultural production process. According to the study findings, CRM damages the leaves and fruits of citrus fruits, reduces tree productivity by 30% and fruit productivity by 2.6-65%. Physical quality characteristics of fruit reduce fruit volume (weight, length, and diameter) by 12.5-25% and increase rind thickness by 13.95-23.81. Fruit chemical quality characteristics reduce fruit juice by 22.68-32.69%, Brix/Acid value by 9.22-27.56; increase Brix value by 4.23-16.36 and acid value by 14.66-80.82. CRM reduces the market value of citrus fruits by impairing the quality of 87% of the total marketable fruit. Damages caused by CRM affect tree productivity (30%), fruit productivity (15%), the quality of total marketable fruits by 87%, thus causing losses in market value and finally, causing a cost of $ 47 per acre in pest control, thus causing losses in total economic value of the fruit. As a result, CRM causes a decrease in fruit yield, fruit quality and fruit economic value in citrus. According to the study findings, prevention of this pest will increase the economic benefit from agricultural production.

Supporting Institution

None

Project Number

None

Thanks

None

References

  • Afzal M, Ullah MI, Bashir MH, Mukhtar SN, Arshad M, Altaf N. 2021. Diversity and abundance of mite species in citrus orchards of Sargodha, Pakistan. Punjab Univ J Zool, 36(1): 37-46. https://dx.doi.org/10.17582/journal.pujz/2021.36.1.37.46
  • Allen JC. 1978. The effect of citrus rust mite damage on citrus fruit drop. Econ Entomol, 71: 746-750. https://doi.org/10.1093/jee/71.5.746
  • Aygören E. 2023. Ürün raporu turunçgiller 2023. TEPGE Yayin No: 382: 1-53. URL: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2023%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Turun%C3%A7giller%20%C3%9Cr%C3%BCn%20Raporu%202023-382%20TEPGE.pdf A. D. 30.08.2024 (accessed date: August 10, 2024).
  • Bartholomew ET, Sinclair WB. 1943. Soluble constituents and buffer properties of orange juice. Plant Physiol, 18(2): 185-206. https://doi.org/10.1104/pp.18.2.185
  • Bayer. 2024. Citrus rust mite, scientific name: Phyllocoptruta oleivora ASHMEAD. URL: https://www.cropscience.bayer.sa/en-sa/pests/pests/citrus -rust-mite.html (accessed date: August 30, 2024).
  • Beattie GAC, Gellatley JG. 1983. Mite pests of citrus. URL: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/138705/mite-pests-citrus.pdf (accessed date: August 30, 2024).
  • Boyd JB. 1978. Chlorobenzilate: Position document 3. Special Pesticide Review Division, Environmental Protection Agency, Arlington, US: 1-133. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EBBL.PDF?Dockey=P100EBBL.PDF (accessed date: August 30, 2024).
  • Burditt AK, Reed DK, Crittenden CR. 1963. Observations on the mites Phyllocoptruta oleivora (Ashmead) and Aculus pelekassi Keifer under laboratory conditions. Florida Entomolog, 46(1): 1-5. https://doi.org/10.2307/3493008
  • Cartwright B, Browning HW. 1988. Mites: Description and biology. URL: https://aggie-hort.tamu.edu/citrus/l2309.htm (accessed date: August 30, 2024).
  • Chávez-Dulanto PN, Rey B, Ubillús C, Rázuri V, Bazán R, Sarmiento J. 2018. Foliar application of macro- and micronutrients for pest-mitescontrol in citrus crops. Food Ener Secur, 7(2): e00132. https://doi.org/10.1002/fes3.132
  • Childers CC. 2011. Assessment of an integrated pest mite and disease management program on Florida citrus utilizing 224°C or 235°C horticultural mineral oils (HMO). Zoosymposia, 6: 139-151. https://doi.org/10.11646/zoosymposia.6.1.24
  • Demard E, Qureshi JA. 2020. Citrus Rust Mite Phyllocoptruta oleivora (Ashmead) (Arachnida: Acari: Eriophyidae): EENY748/IN1278, 2/2020. EDIS, 2020(3). https://doi.org/10.32473/edis-in1278-2020
  • EL-Gioushy SF, El-Badawy HEM, Elezaby AA. 2018. Enhancing productivity, fruit quality and nutritional status of Washington navel orange trees by foliar applications with GA and amino acids. J Horticult Sci Ornam Plants, 10(2): 71-80.
  • FAOSTAT. 2022. Crops and livestock products. URL: https://www.fao.org/faostat/en/#data/QCL (accessed date: August 30, 2024).
  • Ferragut F, Navia D, Ochoa R. 2012. New mite invasions in citrus in the early years of the 21st century. Exp Appl Acarol, 59: 145-064. https://doi.org/10.1007/s10493-012-9635-9
  • Futch SH, Childers CC, McCoy CW. 2021. A guide to citrus mite identification. URL: https://edis.ifas.ufl.edu/publication/CH179 (accessed date: August 18, 2024)
  • Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. 2023. Fruit photosynthesis: More to know about where, how and why. Plants, 12(13): 2393. https://doi.org/10.3390/plants12132393
  • Gill K, Kumar P, Negi S, Sharma R, Joshi AK, Suprun II, Al-Nakıp EA. 2023. Physiological perspective of plant growth regulators in flowering, fruit setting and ripening process in citrus. Scientia Horticult, 309: 111628. https://doi.org/10.1016/j.scienta.2022.111628
  • Gonçalves GS, Carvalho JEB, Garcıa MVB, Gama LA, Azevedo CLLL, Silva JF. 2018. Periods of weed interference on orange tree crops. Planta Daninha, 36: e018179810. https://doi.org/10.1590/S0100-83582018360100080
  • Greenhalgh P. 2023. Citrus sinensis family: Rutaceae. IFEAT socio–economic report: Orange. URL: https://ifeat.org/wp-content/uploads/2023/10/IFEATWORLD-Autumn-2023-Socio-Economic-Report-Orange.pdf (accessed date: August 30, 2024).
  • Hall DG, Simms MK. 2003. Damage by Infestations of Texas citrus mite (Acari: Tetranychidae) and its effect on the life of ‘valencia’ leaves in an irrigated citrus grove. Florida Entomolog, 86(1): 15-28.
  • Hussain SB, Shi C-Y, Guo, L-X., Kamran HM, Sadka A, Liu Y-Z. 2017. Recent advances in the regulation of citricacid metabolism in citrus fruit. Crit Rev Plant Sci, 36(4): 241-256. https://doi.org/10.1080/07352689.2017.1402850
  • Imbachi LK, Mesa CNC, Rodríguez TIV, Gómez GI, Cuchimba M, Lozano H, Matabanchoy JH, Carabalí A. 2012. Evaluation of biological control strategies for Polyphagotarsonemus latus (Banks) and Phyllocoptruta oleivora (Ashmead) in Valencia orange. Acta Agronómica, 61(4): 364-370.
  • Jaouad M, Moinina A, Ezrari S, Lahlali R. 2020. Key pests and diseases of citrus trees with emphasis on root rot diseases: An overview. Mor J Agri Sci, 1(3): 149-160.
  • Kalaisekar A, Govardhana NV, Venugopal RB. 2003. Biology of citrus rust mite, Phyllocoptruta oleivora and quality changes of citrus fruits due to its attack. Indian J Entomol, 65(2): 184-187.
  • Kaur R, Bhullar MB, Sharma DR, Arora PK, Mahajan BVC. 2023. Rind scarring caused by biotic and abiotic factors influences kinnow fruit quality. Indian J Entomol, 85(4): 1077-1080. https://doi.org/10.55446/IJE.2022.495
  • Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. 2021. Citrus genus and its waste utilization: A review on health-promoting activities and industrial application. Evid Based Compl Alter Medic. 20: 2488804. https://doi.org/10.1155/2021/2488804
  • Knapp JL. 1994. Citrus rust mite. Fact Sheet ENY619, University of Florida (IFAS) Florida Cooperative Extension Service, Gainesville, Florida. URL: https://ufdcimages.uflib.ufl.edu/IR/00/00/46/16/00001/CH01300.PDF (accessed date: August 30, 2024).
  • Koubaa M, Barba FJ, Kovačević DB, Putnik P, Santos MD, Queirós RP, Moreira SA, Inácio RS, Fidalgo LG, Saraiva JA. 2018. Chapter 22 - Pulsed electric field processing of fruit juices. Fruit Juices, 2018: 437-449. https://doi.org/10.1016/B978-0-12-802230-6.00022-9
  • Kraus A, Popek S. 2013. Structural model of fruit juice quality determining factors in product design and development. British Food J, 115(6): 865-875. https://doi.org/10.1108/BFJ-Apr-2010-0064
  • Li-juan Z, Mei-ying H, Xin-fang C. 2000. Recent studies on cirtus rust mite Phyllocoptura oleivora. J Zhongkai Agrotech College, 13(2): 59-69.
  • McCoy CW, Albrigo LG. 1975. Feeding injury to the orange caused by the citrus rust mite, Phyllocoptruta oleivora (Prostigmata: Eriophyoidea). Annals Entomolog Soc America, 68(2): 289-297. https://doi.org/10.1093/aesa/68.2.289
  • McCoy CW, Lye B-H. 1995. Effect of copper sprays on the population dynamics of the citrus rust mite, Phyllocoptruta oleivora (Acari: Eriophyidae) and its fungal pathogen, Hirsutella thompsonii. Proc Fla State Hort Soc, 108: 126-129.
  • Olife IC, Mohammed AH. 2021. Harnessing the economic potentials of citrus peel for wealth creation in Nigeria. J Biol Agri Healthcare, 11(20): 7-12.
  • Oral MA, Akpınar MG. 2015. Factors effecting the orange marketing in Turkey. Tarım Bil Araş Derg, 8(2): 57-61.
  • Paschoal AD, Homma SK., Sanches AB, Nogueira MCS. 1994. Effect of EM on soil quality, fruit quality and yield of orange trees in a Brazilian citrus orchard. URL: https://www.infrc.or.jp/knf/4th_Conf_S_5_4.html (accessed date: August 30, 2024).
  • Petracek PD. 2002. Peel morphology and fruit blemishes. 108-118. URL: https://irrec.ifas.ufl.edu/postharvest/pdfs/short_ course_and_workshop/citrus_flowering_97/Petracek-Peel_ Morphology_ and_Fruit_Blemishes.pdf (accessed date: August 30, 2024).
  • Pimentel D. 2002. Introduction: non-native species in the world. In: Pimentel D (ed) Biological invasions: Economic and environmental costs of alien plant, animal and microbe species. CRC Press, Boca Raton, US, pp: 3-8. https://doi.org/10.1201/b10938
  • Plantix. 2024. Citrus rust mite, Phyllocoptruta oleivora. URL: https://plantix.net/en/library/plant-diseases/500018/citrus-rust-mite/ (accessed date: August 30, 2024).
  • Prochemica. 2020. Pheniksus® field trials by ProChemica in Composer. URL: https://prochemica.com/pheniksus-field-trials/ (accessed date: August 30, 2024).
  • Puspitarini RD, Endarto O. 2021. Notes on the citrus rust mite, Phyllocoptruta oleivora (Ashmead), as a major pest of citrus in Indonesia. AGRIVITA J Agri Sci, 43(3): 550-557. https://doi.org/10.17503/agrivita.v43i3.2997
  • Qureshi J, Stelinski L, Martini X, Diepenbrock LM. 2023. 2024–2025 Florida citrus production guide: rust mites, spider mites, and other phytophagous mites: CPG Ch. 24, CG002 ENY-603, Rev. 5 2024. EDIS 2024 (CPG). Gainesville, Florida, USA, pp: 132. https://doi.org/10.32473/edis-cg002-2023
  • Robles-Acosta IN, Chacón-Hernández JC, Torres-Acosta RI, Landeros-Flores J, Vanoye-Eligio V, Arredondo-Valdés R. 2019. Entomopathogenic fungi as biological control agents of Phyllocoptruta oleivora (Prostigmata: Eriophyidae) under greenhouse conditions. Florida Entomolog, 102(2): 303-308. https://doi.org/10.1653/024.102.0203
  • Rodríguez A, Peris JE, Redondo A, Shimada T, Costell E, Carbonell I, Rojas C, Peña L. 2016. Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception, Food Chem, 217: 139-150. http://dx.doi.org/10.1016/j.foodchem.2016.08.076
  • Roth-Nebelsick A, Krause M. 2023. The plant leaf: A biomimetic resource for multifunctional and economic design. Biomimetics, 8(2): 145. https://doi.org/10.3390/biomimetics8020145
  • Ruiz-Camacho W, Villegas-Rivas D, Borjas-Ventura R, Alvarado-Huamán L, Bello-Amez S, et al., 2023. The behavior of Valencia orange cultivation (Citrus x sinensis (L) Osbeck cv. Valencia) in "type farms" in a province in Central Jungle of Peru. OnLine J Biol Sci, 23(3): 307-312. https://doi.org/10.3844/ojbsci.2023.307.312
  • Santiago B, Moreira MT, Feijoo G, González-García S. 2020. Identification of environmental aspects of citrus waste valorization into D-limonene from a biorefinery approach. Biomass Bioener, 143: 105844. https://doi.org/10.1016/j.biombioe.2020.105844
  • Sarada G, Nagalakshmi T, Gopal K, KM Yuvaraj KM. 2018. Citrus rust mite (Phyllocoptruta oleivora Ashmead): A review. J Entomol Zool Stud, 6(6): 151-158.
  • Satar S, Tiring G, Tusun A, Yeşiloğlu T. 2020. Valencia portakalında Phyllocoptruta oleivora (Ashmead) (Acari: Phyllocoptidae)’nın meyve kalitesine etkisi. Derim, 37(1): 44-50. https://doi.org/10.16882/derim.2020.591334
  • Shan Y. 2016. Chapter 6 - Drying of citrus peel and processing of foods and feeds. In: Yang Shan (Eds), Comprehensive Utilization of Citrus By-Products. https://doi.org/10.1016/B978-0-12-809785-4.00006-X
  • Soares MBB, Galli JA, Martins MH, Oliveira AC, Bianco S. 2021. Weed management in the dry season: interferences in physiology and quality of Persian lime fruits. Pesquisa Agropecuária Tropical, 51: e67779. https://doi.org/10.1590/1983-40632021v5167779
  • Turgutoğlu E, Kurt Ş, Demir G, Eryılmaz Z. 2023. Dünyada ve Türkiye’de turunçgillerin gelişimi ve BATEM’in rolü. Meyve Bil, 10(Ö.S): 65-70. https://doi.org/10.51532/meyve.1188713
  • Ullah MS, Kobayashi Y, Gotoh T. 2022. Development and reproductive capacity of the miyake spider mite Eotetranychus kankitus (Acari: Tetranychidae) at different temperatures. Insects, 13(10): 910. https://doi.org/10.3390/insects13100910
  • van Brussel EW. 1975. Interrelations between citrus rust mite, Hirsutella thompsonii and greasy spoton citrus in Surinam. URL: https://edepot.wur.nl/308786 (accessed date: August 30, 2024).
  • Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochem Physiol, 121: 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009
  • Yang J. 2016. Preparing shelf-stable citrus juice and drinks at home. URL: https://www.uog.edu/_resources/files/extension/publications/Citrus_Drink.pdf (accessed date: August 30, 2024).
  • Yang Y, Allen JC, Knapp JL, Stansly PA. 1994. Citrus rust mite (Acari: Eriophyidae) damage effects on ‘hamlin’ orange fruit growth and drop. Environ Entomol, 23(2): 244-247. https://doi.org/10.1093/ee/23.2.244
  • Yothers WW, Mason AC. 1930. The Citrus rust mite and its control. Tech Bull, 176: 1-56. URL: https://ageconsearch.umn.edu/record/159435?v=pdf (accessed date: August 30, 2024).
  • Yothers WW. 1918. Some reasons for spraying to control insect and mite enemies of citrus trees in Florida. US Dept Agric Bull, 1918: 645-650.
Year 2025, Volume: 8 Issue: 1, 108 - 117, 15.01.2025
https://doi.org/10.47115/bsagriculture.1551557

Abstract

Project Number

None

References

  • Afzal M, Ullah MI, Bashir MH, Mukhtar SN, Arshad M, Altaf N. 2021. Diversity and abundance of mite species in citrus orchards of Sargodha, Pakistan. Punjab Univ J Zool, 36(1): 37-46. https://dx.doi.org/10.17582/journal.pujz/2021.36.1.37.46
  • Allen JC. 1978. The effect of citrus rust mite damage on citrus fruit drop. Econ Entomol, 71: 746-750. https://doi.org/10.1093/jee/71.5.746
  • Aygören E. 2023. Ürün raporu turunçgiller 2023. TEPGE Yayin No: 382: 1-53. URL: https://arastirma.tarimorman.gov.tr/tepge/Belgeler/PDF%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/2023%20%C3%9Cr%C3%BCn%20Raporlar%C4%B1/Turun%C3%A7giller%20%C3%9Cr%C3%BCn%20Raporu%202023-382%20TEPGE.pdf A. D. 30.08.2024 (accessed date: August 10, 2024).
  • Bartholomew ET, Sinclair WB. 1943. Soluble constituents and buffer properties of orange juice. Plant Physiol, 18(2): 185-206. https://doi.org/10.1104/pp.18.2.185
  • Bayer. 2024. Citrus rust mite, scientific name: Phyllocoptruta oleivora ASHMEAD. URL: https://www.cropscience.bayer.sa/en-sa/pests/pests/citrus -rust-mite.html (accessed date: August 30, 2024).
  • Beattie GAC, Gellatley JG. 1983. Mite pests of citrus. URL: https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0006/138705/mite-pests-citrus.pdf (accessed date: August 30, 2024).
  • Boyd JB. 1978. Chlorobenzilate: Position document 3. Special Pesticide Review Division, Environmental Protection Agency, Arlington, US: 1-133. URL: https://nepis.epa.gov/Exe/ZyPDF.cgi/P100EBBL.PDF?Dockey=P100EBBL.PDF (accessed date: August 30, 2024).
  • Burditt AK, Reed DK, Crittenden CR. 1963. Observations on the mites Phyllocoptruta oleivora (Ashmead) and Aculus pelekassi Keifer under laboratory conditions. Florida Entomolog, 46(1): 1-5. https://doi.org/10.2307/3493008
  • Cartwright B, Browning HW. 1988. Mites: Description and biology. URL: https://aggie-hort.tamu.edu/citrus/l2309.htm (accessed date: August 30, 2024).
  • Chávez-Dulanto PN, Rey B, Ubillús C, Rázuri V, Bazán R, Sarmiento J. 2018. Foliar application of macro- and micronutrients for pest-mitescontrol in citrus crops. Food Ener Secur, 7(2): e00132. https://doi.org/10.1002/fes3.132
  • Childers CC. 2011. Assessment of an integrated pest mite and disease management program on Florida citrus utilizing 224°C or 235°C horticultural mineral oils (HMO). Zoosymposia, 6: 139-151. https://doi.org/10.11646/zoosymposia.6.1.24
  • Demard E, Qureshi JA. 2020. Citrus Rust Mite Phyllocoptruta oleivora (Ashmead) (Arachnida: Acari: Eriophyidae): EENY748/IN1278, 2/2020. EDIS, 2020(3). https://doi.org/10.32473/edis-in1278-2020
  • EL-Gioushy SF, El-Badawy HEM, Elezaby AA. 2018. Enhancing productivity, fruit quality and nutritional status of Washington navel orange trees by foliar applications with GA and amino acids. J Horticult Sci Ornam Plants, 10(2): 71-80.
  • FAOSTAT. 2022. Crops and livestock products. URL: https://www.fao.org/faostat/en/#data/QCL (accessed date: August 30, 2024).
  • Ferragut F, Navia D, Ochoa R. 2012. New mite invasions in citrus in the early years of the 21st century. Exp Appl Acarol, 59: 145-064. https://doi.org/10.1007/s10493-012-9635-9
  • Futch SH, Childers CC, McCoy CW. 2021. A guide to citrus mite identification. URL: https://edis.ifas.ufl.edu/publication/CH179 (accessed date: August 18, 2024)
  • Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. 2023. Fruit photosynthesis: More to know about where, how and why. Plants, 12(13): 2393. https://doi.org/10.3390/plants12132393
  • Gill K, Kumar P, Negi S, Sharma R, Joshi AK, Suprun II, Al-Nakıp EA. 2023. Physiological perspective of plant growth regulators in flowering, fruit setting and ripening process in citrus. Scientia Horticult, 309: 111628. https://doi.org/10.1016/j.scienta.2022.111628
  • Gonçalves GS, Carvalho JEB, Garcıa MVB, Gama LA, Azevedo CLLL, Silva JF. 2018. Periods of weed interference on orange tree crops. Planta Daninha, 36: e018179810. https://doi.org/10.1590/S0100-83582018360100080
  • Greenhalgh P. 2023. Citrus sinensis family: Rutaceae. IFEAT socio–economic report: Orange. URL: https://ifeat.org/wp-content/uploads/2023/10/IFEATWORLD-Autumn-2023-Socio-Economic-Report-Orange.pdf (accessed date: August 30, 2024).
  • Hall DG, Simms MK. 2003. Damage by Infestations of Texas citrus mite (Acari: Tetranychidae) and its effect on the life of ‘valencia’ leaves in an irrigated citrus grove. Florida Entomolog, 86(1): 15-28.
  • Hussain SB, Shi C-Y, Guo, L-X., Kamran HM, Sadka A, Liu Y-Z. 2017. Recent advances in the regulation of citricacid metabolism in citrus fruit. Crit Rev Plant Sci, 36(4): 241-256. https://doi.org/10.1080/07352689.2017.1402850
  • Imbachi LK, Mesa CNC, Rodríguez TIV, Gómez GI, Cuchimba M, Lozano H, Matabanchoy JH, Carabalí A. 2012. Evaluation of biological control strategies for Polyphagotarsonemus latus (Banks) and Phyllocoptruta oleivora (Ashmead) in Valencia orange. Acta Agronómica, 61(4): 364-370.
  • Jaouad M, Moinina A, Ezrari S, Lahlali R. 2020. Key pests and diseases of citrus trees with emphasis on root rot diseases: An overview. Mor J Agri Sci, 1(3): 149-160.
  • Kalaisekar A, Govardhana NV, Venugopal RB. 2003. Biology of citrus rust mite, Phyllocoptruta oleivora and quality changes of citrus fruits due to its attack. Indian J Entomol, 65(2): 184-187.
  • Kaur R, Bhullar MB, Sharma DR, Arora PK, Mahajan BVC. 2023. Rind scarring caused by biotic and abiotic factors influences kinnow fruit quality. Indian J Entomol, 85(4): 1077-1080. https://doi.org/10.55446/IJE.2022.495
  • Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. 2021. Citrus genus and its waste utilization: A review on health-promoting activities and industrial application. Evid Based Compl Alter Medic. 20: 2488804. https://doi.org/10.1155/2021/2488804
  • Knapp JL. 1994. Citrus rust mite. Fact Sheet ENY619, University of Florida (IFAS) Florida Cooperative Extension Service, Gainesville, Florida. URL: https://ufdcimages.uflib.ufl.edu/IR/00/00/46/16/00001/CH01300.PDF (accessed date: August 30, 2024).
  • Koubaa M, Barba FJ, Kovačević DB, Putnik P, Santos MD, Queirós RP, Moreira SA, Inácio RS, Fidalgo LG, Saraiva JA. 2018. Chapter 22 - Pulsed electric field processing of fruit juices. Fruit Juices, 2018: 437-449. https://doi.org/10.1016/B978-0-12-802230-6.00022-9
  • Kraus A, Popek S. 2013. Structural model of fruit juice quality determining factors in product design and development. British Food J, 115(6): 865-875. https://doi.org/10.1108/BFJ-Apr-2010-0064
  • Li-juan Z, Mei-ying H, Xin-fang C. 2000. Recent studies on cirtus rust mite Phyllocoptura oleivora. J Zhongkai Agrotech College, 13(2): 59-69.
  • McCoy CW, Albrigo LG. 1975. Feeding injury to the orange caused by the citrus rust mite, Phyllocoptruta oleivora (Prostigmata: Eriophyoidea). Annals Entomolog Soc America, 68(2): 289-297. https://doi.org/10.1093/aesa/68.2.289
  • McCoy CW, Lye B-H. 1995. Effect of copper sprays on the population dynamics of the citrus rust mite, Phyllocoptruta oleivora (Acari: Eriophyidae) and its fungal pathogen, Hirsutella thompsonii. Proc Fla State Hort Soc, 108: 126-129.
  • Olife IC, Mohammed AH. 2021. Harnessing the economic potentials of citrus peel for wealth creation in Nigeria. J Biol Agri Healthcare, 11(20): 7-12.
  • Oral MA, Akpınar MG. 2015. Factors effecting the orange marketing in Turkey. Tarım Bil Araş Derg, 8(2): 57-61.
  • Paschoal AD, Homma SK., Sanches AB, Nogueira MCS. 1994. Effect of EM on soil quality, fruit quality and yield of orange trees in a Brazilian citrus orchard. URL: https://www.infrc.or.jp/knf/4th_Conf_S_5_4.html (accessed date: August 30, 2024).
  • Petracek PD. 2002. Peel morphology and fruit blemishes. 108-118. URL: https://irrec.ifas.ufl.edu/postharvest/pdfs/short_ course_and_workshop/citrus_flowering_97/Petracek-Peel_ Morphology_ and_Fruit_Blemishes.pdf (accessed date: August 30, 2024).
  • Pimentel D. 2002. Introduction: non-native species in the world. In: Pimentel D (ed) Biological invasions: Economic and environmental costs of alien plant, animal and microbe species. CRC Press, Boca Raton, US, pp: 3-8. https://doi.org/10.1201/b10938
  • Plantix. 2024. Citrus rust mite, Phyllocoptruta oleivora. URL: https://plantix.net/en/library/plant-diseases/500018/citrus-rust-mite/ (accessed date: August 30, 2024).
  • Prochemica. 2020. Pheniksus® field trials by ProChemica in Composer. URL: https://prochemica.com/pheniksus-field-trials/ (accessed date: August 30, 2024).
  • Puspitarini RD, Endarto O. 2021. Notes on the citrus rust mite, Phyllocoptruta oleivora (Ashmead), as a major pest of citrus in Indonesia. AGRIVITA J Agri Sci, 43(3): 550-557. https://doi.org/10.17503/agrivita.v43i3.2997
  • Qureshi J, Stelinski L, Martini X, Diepenbrock LM. 2023. 2024–2025 Florida citrus production guide: rust mites, spider mites, and other phytophagous mites: CPG Ch. 24, CG002 ENY-603, Rev. 5 2024. EDIS 2024 (CPG). Gainesville, Florida, USA, pp: 132. https://doi.org/10.32473/edis-cg002-2023
  • Robles-Acosta IN, Chacón-Hernández JC, Torres-Acosta RI, Landeros-Flores J, Vanoye-Eligio V, Arredondo-Valdés R. 2019. Entomopathogenic fungi as biological control agents of Phyllocoptruta oleivora (Prostigmata: Eriophyidae) under greenhouse conditions. Florida Entomolog, 102(2): 303-308. https://doi.org/10.1653/024.102.0203
  • Rodríguez A, Peris JE, Redondo A, Shimada T, Costell E, Carbonell I, Rojas C, Peña L. 2016. Impact of D-limonene synthase up- or down-regulation on sweet orange fruit and juice odor perception, Food Chem, 217: 139-150. http://dx.doi.org/10.1016/j.foodchem.2016.08.076
  • Roth-Nebelsick A, Krause M. 2023. The plant leaf: A biomimetic resource for multifunctional and economic design. Biomimetics, 8(2): 145. https://doi.org/10.3390/biomimetics8020145
  • Ruiz-Camacho W, Villegas-Rivas D, Borjas-Ventura R, Alvarado-Huamán L, Bello-Amez S, et al., 2023. The behavior of Valencia orange cultivation (Citrus x sinensis (L) Osbeck cv. Valencia) in "type farms" in a province in Central Jungle of Peru. OnLine J Biol Sci, 23(3): 307-312. https://doi.org/10.3844/ojbsci.2023.307.312
  • Santiago B, Moreira MT, Feijoo G, González-García S. 2020. Identification of environmental aspects of citrus waste valorization into D-limonene from a biorefinery approach. Biomass Bioener, 143: 105844. https://doi.org/10.1016/j.biombioe.2020.105844
  • Sarada G, Nagalakshmi T, Gopal K, KM Yuvaraj KM. 2018. Citrus rust mite (Phyllocoptruta oleivora Ashmead): A review. J Entomol Zool Stud, 6(6): 151-158.
  • Satar S, Tiring G, Tusun A, Yeşiloğlu T. 2020. Valencia portakalında Phyllocoptruta oleivora (Ashmead) (Acari: Phyllocoptidae)’nın meyve kalitesine etkisi. Derim, 37(1): 44-50. https://doi.org/10.16882/derim.2020.591334
  • Shan Y. 2016. Chapter 6 - Drying of citrus peel and processing of foods and feeds. In: Yang Shan (Eds), Comprehensive Utilization of Citrus By-Products. https://doi.org/10.1016/B978-0-12-809785-4.00006-X
  • Soares MBB, Galli JA, Martins MH, Oliveira AC, Bianco S. 2021. Weed management in the dry season: interferences in physiology and quality of Persian lime fruits. Pesquisa Agropecuária Tropical, 51: e67779. https://doi.org/10.1590/1983-40632021v5167779
  • Turgutoğlu E, Kurt Ş, Demir G, Eryılmaz Z. 2023. Dünyada ve Türkiye’de turunçgillerin gelişimi ve BATEM’in rolü. Meyve Bil, 10(Ö.S): 65-70. https://doi.org/10.51532/meyve.1188713
  • Ullah MS, Kobayashi Y, Gotoh T. 2022. Development and reproductive capacity of the miyake spider mite Eotetranychus kankitus (Acari: Tetranychidae) at different temperatures. Insects, 13(10): 910. https://doi.org/10.3390/insects13100910
  • van Brussel EW. 1975. Interrelations between citrus rust mite, Hirsutella thompsonii and greasy spoton citrus in Surinam. URL: https://edepot.wur.nl/308786 (accessed date: August 30, 2024).
  • Van Leeuwen T, Tirry L, Yamamoto A, Nauen R, Dermauw W. 2015. The economic importance of acaricides in the control of phytophagous mites and an update on recent acaricide mode of action research. Pesticide Biochem Physiol, 121: 12-21. https://doi.org/10.1016/j.pestbp.2014.12.009
  • Yang J. 2016. Preparing shelf-stable citrus juice and drinks at home. URL: https://www.uog.edu/_resources/files/extension/publications/Citrus_Drink.pdf (accessed date: August 30, 2024).
  • Yang Y, Allen JC, Knapp JL, Stansly PA. 1994. Citrus rust mite (Acari: Eriophyidae) damage effects on ‘hamlin’ orange fruit growth and drop. Environ Entomol, 23(2): 244-247. https://doi.org/10.1093/ee/23.2.244
  • Yothers WW, Mason AC. 1930. The Citrus rust mite and its control. Tech Bull, 176: 1-56. URL: https://ageconsearch.umn.edu/record/159435?v=pdf (accessed date: August 30, 2024).
  • Yothers WW. 1918. Some reasons for spraying to control insect and mite enemies of citrus trees in Florida. US Dept Agric Bull, 1918: 645-650.
There are 59 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Reviews
Authors

Hülya Sayğı 0000-0002-2327-566X

Project Number None
Publication Date January 15, 2025
Submission Date September 17, 2024
Acceptance Date December 27, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Sayğı, H. (2025). Effects of Phyllocoptruta oleivora (Ashmead) on Fruit Yield, Quality and Economic Value in Citrus Production. Black Sea Journal of Agriculture, 8(1), 108-117. https://doi.org/10.47115/bsagriculture.1551557

                                                  24890