Research Article
BibTex RIS Cite

Prediction Model of Albumen Index in Duck Eggs via External Egg Quality Characteristics in Case of Multicollinearity

Year 2025, Volume: 8 Issue: 4, 525 - 532, 15.07.2025
https://doi.org/10.47115/bsagriculture.1655436

Abstract

This study used multiple regression analysis to estimate the relationships between duck egg albumen index and external quality traits of eggs. Egg albumen index was selected as the dependent variable, and egg weight, width, length, shape index and Haugh unit were determined as independent variables. In the multiple regression analysis, it was determined that the overall fit of the model was quite high, but there were multicollinearity problem among the independent variables. In order to solve this problem, Ridge regression method, which is widely used in the literature, was applied. In order to determine the albumen index, egg weight (X1), width (X1), length (X3), shape index (X4) and Haugh unit (X5) variables were used, R ̂=(+18.2029) ̂+(0.1362) ̂X_1-(0.5736) ̂X_2-(0.1596) ̂X_3+(0.0262) ̂X_4+(0.1921) ̂X_5+e ̂. The regression equation was obtained and found to be statistically significant (P<0.05). The model's fit was determined as R2=0.901, and Ridge regression method reduced the standard errors of the parameters, reduced the errors caused by multicollinearity problem and increased the accuracy of the model. The results show that Ridge regression method effectively solves the problem of multicollinearity and increases the accuracy of prediction, making it more reliable. This also reveals that Ridge regression method can be used effectively in poultry breeding and selection studies.

Ethical Statement

Ethics committee approval was not required for this study because there was no study on animals or humans.

References

  • Akbaş Y, Altan O, Koçak C. 1996. Effects of hen’s age on external and internal egg quality characteristics. Turk J Vet Anim Sci, 20: 455-460.
  • Akçay A, Sarıözkan S. 2015. Yumurta tavukçuluğunda gelirin Ridge regresyon analizi ile tahmini. Ankara Üniv Vet Fak Derg, 62: 69-74.
  • Albayrak SA. 2005. Çoklu bağlantı halinde en küçük kareler tekniğinin alternatifi yanlı tahmin teknikleri ve bir uygulama. Zonguldak Karaelmas Üniv Sos Bil Derg, 1: 105-126.
  • Çetenak T, Gök İ, Yavuz E, Şahin M. 2024. Statistical models and evaluation criteria used in poultry farming. BSJ Agri, 7(6): 710-719.
  • Chen Z, Liu Y, Wang J. 2019. Effects of feeding strategies on egg quality and production in ducks: A statistical approach. Poult Sci, 98(5): 2121-2130.
  • Çiftsüren MN. 2017. Yumurta iç ve dış kalite özellikleri arasındaki ilişkiyi belirlemede Ridge ve Lasso regülarizasyon yöntemlerinin karşılaştırılması. Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Zootekni Anabilim Dalı, Van, Türkiye, pp:86.
  • Dickey DA, Fuller WA. 1979. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc, 74(366a): 427-431.
  • Gök İ, Şahin M, Tolun T. 2023. Determination of impact size by canonic correlation analysis of the factors affecting the buying or selling agricultural lands. Cumhuriyet Sci J, 44(2): 411-417.
  • Gök İ, Şahin M. 2023. Estimate of structural fractures in wheat culture and production in Türkiye by econometric analysis. BSJ Agri, 6(4): 411-415.
  • Gök İ, Şahin M. 2023. Investigation of vegetable production amount and the size of cultivation areas in Kahramanmaraş with the econometric model. BSJ Agri, 6(1): 8-15.
  • Gök İ, Şahin M. 2024. Analysis of the relationship lag between beef production amount and average meat price in Türkiye using the Koyck model. Turk Tarım Doğa Bilim Derg, 11(2): 342-346.
  • Gök İ, Şahin M. 2024. Econometric analysis of corn production in Türkiye. J Agric Fac Gaziosmanpaşa Univ, 41(2): 33-39.
  • Gök İ, Şahin M. 2025. General situation and production projection of chicken meat production in Türkiye. Osmaniye Korkut Ata Üniv Fen Bilim Enst Derg, 8(3): 1120-1128.
  • Gök İ, Yavuz E, Şahin M. 2022. Econometric analysis of factors affecting the buying or selling agricultural lands. BSJ Agri, 5(4): 455-463.
  • Güler F, Erol H. 2018. Ördek yumurtası üretiminde beslenme ve çevresel faktörlerin etkisi. J Anim Sci, 61(2): 190-202.
  • Hoerl AE, Kennard RW. 1970. Ridge regression: Biased estimation for non-orthogonal problems. Technometrics, 12(1): 55-67.
  • Johansen S. 1995. Likelihood based inference in cointegrated vector autoregressive models. Oxford Univ Press, Oxford, UK, pp: 54-59.
  • Kaya E, Aktan S. 2011. Japon bıldırcınlarında sürü yaşı ve kuluçkalık yumurta depolama süresi: 1. Koyu ak özellikleri üzerine etkileri. SDÜ Ziraat Fak Derg, 6(2): 30-38.
  • Kul S, Şeker İ. 2004. Phenotypic correlations between some external and internal egg quality traits in the Japanese quail (Coturnix coturnix japonica). Int J Poult Sci, 3(6): 400-405.
  • Liu Z, Zhang C. 2022. Ridge regression applications in agricultural production data modeling: Case studies in poultry farming. Int J Agric Res, 59(4): 345-356.
  • Maxwell SE. 2000. Sample size in multiple regression analysis. Psychol Methods, 5(4): 434-458.
  • Montgomery DC, Peck EA, Vining GG. 2001. Introduction to linear regression analysis, 3rd Edition. Wiley, New York, USA, pp: 672.
  • Olawumi S, Chiristiana B. 2017. Phenotypic correlations between external and internal egg quality traits of Coturnix quails reared under intensive housing system. J Appl Life Sci Int, 12(3): 1-6.
  • Tolun T, Gök İ, Şahin M. 2024. Modeling of some egg characteristics in henna partridges. BSJ Agri, 7(6): 729-742.
  • Tolun T, Yavuz E, Şahin M, Gök İ. 2023. Modeling egg curves in partridges. BSJ Agri, 6(1): 21-25.
  • Topal M, Eyduran E, Yağanoğlu M, Sönmez AY, Keskin S. 2010. Çoklu doğrusal bağlantı durumunda Ridge ve Temel Bileşenler regresyon analiz yöntemlerinin kullanımı. Atatürk Üniv Ziraat Fak Derg, 41: 53-57.
  • Tuncer S, Kılınç F. 2019. Yumurta akı indeksi ve dış kalite özellikleri arasındaki ilişkiler: Bir ördek yumurtası örneği. Turk J Vet Anim Sci, 43(6): 487-495.
  • Üçkardeş F, Efe E, Narinç D, Aksoy T. 2012. Japon bıldırcınlarında yumurta ak indeksinin Ridge regresyon yöntemiyle tahmin edilmesi. Akad Ziraat Derg, 1: 11-20.
  • Xu X, Zhang L, Song H. 2021. The impact of feed additives on egg quality and egg albumen index in ducks. Poult Sci, 100(3): 1430-1438.
  • Yalçınöz E, Şahin M. 2020. Yumurtacı tavuklarda yumurta verim eğrilerinin modellenmesi. KSÜ Tarım Doğa Derg, 23(5): 1373-1378.
  • Yannakopoulos AL, Tserveni-Gousi AS. 1986. Quality characteristics of quail eggs. Br Poult Sci, 27: 171-176.
  • Yavuz E, Abacı SH, Erensoy K, Şahin M. 2023. Modeling of individual egg weights of Lohmann-Brown layer hens. Turk J Vet Anim Sci, 47(3): 229-335.
  • Zhao X, Wang X, Li Y. 2020. Influence of genetic and environmental factors on egg shell quality in ducks. Anim Prod Sci, 60(7): 926-934.

Prediction Model of Albumen Index in Duck Eggs via External Egg Quality Characteristics in Case of Multicollinearity

Year 2025, Volume: 8 Issue: 4, 525 - 532, 15.07.2025
https://doi.org/10.47115/bsagriculture.1655436

Abstract

This study used multiple regression analysis to estimate the relationships between duck egg albumen index and external quality traits of eggs. Egg albumen index was selected as the dependent variable, and egg weight, width, length, shape index and Haugh unit were determined as independent variables. In the multiple regression analysis, it was determined that the overall fit of the model was quite high, but there were multicollinearity problem among the independent variables. In order to solve this problem, Ridge regression method, which is widely used in the literature, was applied. In order to determine the albumen index, egg weight (X1), width (X1), length (X3), shape index (X4) and Haugh unit (X5) variables were used, R ̂=(+18.2029) ̂+(0.1362) ̂X_1-(0.5736) ̂X_2-(0.1596) ̂X_3+(0.0262) ̂X_4+(0.1921) ̂X_5+e ̂. The regression equation was obtained and found to be statistically significant (P<0.05). The model's fit was determined as R2=0.901, and Ridge regression method reduced the standard errors of the parameters, reduced the errors caused by multicollinearity problem and increased the accuracy of the model. The results show that Ridge regression method effectively solves the problem of multicollinearity and increases the accuracy of prediction, making it more reliable. This also reveals that Ridge regression method can be used effectively in poultry breeding and selection studies.

Ethical Statement

Ethics committee approval was not required for this study because there was no study on animals or humans.

References

  • Akbaş Y, Altan O, Koçak C. 1996. Effects of hen’s age on external and internal egg quality characteristics. Turk J Vet Anim Sci, 20: 455-460.
  • Akçay A, Sarıözkan S. 2015. Yumurta tavukçuluğunda gelirin Ridge regresyon analizi ile tahmini. Ankara Üniv Vet Fak Derg, 62: 69-74.
  • Albayrak SA. 2005. Çoklu bağlantı halinde en küçük kareler tekniğinin alternatifi yanlı tahmin teknikleri ve bir uygulama. Zonguldak Karaelmas Üniv Sos Bil Derg, 1: 105-126.
  • Çetenak T, Gök İ, Yavuz E, Şahin M. 2024. Statistical models and evaluation criteria used in poultry farming. BSJ Agri, 7(6): 710-719.
  • Chen Z, Liu Y, Wang J. 2019. Effects of feeding strategies on egg quality and production in ducks: A statistical approach. Poult Sci, 98(5): 2121-2130.
  • Çiftsüren MN. 2017. Yumurta iç ve dış kalite özellikleri arasındaki ilişkiyi belirlemede Ridge ve Lasso regülarizasyon yöntemlerinin karşılaştırılması. Yüksek Lisans Tezi, Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Zootekni Anabilim Dalı, Van, Türkiye, pp:86.
  • Dickey DA, Fuller WA. 1979. Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc, 74(366a): 427-431.
  • Gök İ, Şahin M, Tolun T. 2023. Determination of impact size by canonic correlation analysis of the factors affecting the buying or selling agricultural lands. Cumhuriyet Sci J, 44(2): 411-417.
  • Gök İ, Şahin M. 2023. Estimate of structural fractures in wheat culture and production in Türkiye by econometric analysis. BSJ Agri, 6(4): 411-415.
  • Gök İ, Şahin M. 2023. Investigation of vegetable production amount and the size of cultivation areas in Kahramanmaraş with the econometric model. BSJ Agri, 6(1): 8-15.
  • Gök İ, Şahin M. 2024. Analysis of the relationship lag between beef production amount and average meat price in Türkiye using the Koyck model. Turk Tarım Doğa Bilim Derg, 11(2): 342-346.
  • Gök İ, Şahin M. 2024. Econometric analysis of corn production in Türkiye. J Agric Fac Gaziosmanpaşa Univ, 41(2): 33-39.
  • Gök İ, Şahin M. 2025. General situation and production projection of chicken meat production in Türkiye. Osmaniye Korkut Ata Üniv Fen Bilim Enst Derg, 8(3): 1120-1128.
  • Gök İ, Yavuz E, Şahin M. 2022. Econometric analysis of factors affecting the buying or selling agricultural lands. BSJ Agri, 5(4): 455-463.
  • Güler F, Erol H. 2018. Ördek yumurtası üretiminde beslenme ve çevresel faktörlerin etkisi. J Anim Sci, 61(2): 190-202.
  • Hoerl AE, Kennard RW. 1970. Ridge regression: Biased estimation for non-orthogonal problems. Technometrics, 12(1): 55-67.
  • Johansen S. 1995. Likelihood based inference in cointegrated vector autoregressive models. Oxford Univ Press, Oxford, UK, pp: 54-59.
  • Kaya E, Aktan S. 2011. Japon bıldırcınlarında sürü yaşı ve kuluçkalık yumurta depolama süresi: 1. Koyu ak özellikleri üzerine etkileri. SDÜ Ziraat Fak Derg, 6(2): 30-38.
  • Kul S, Şeker İ. 2004. Phenotypic correlations between some external and internal egg quality traits in the Japanese quail (Coturnix coturnix japonica). Int J Poult Sci, 3(6): 400-405.
  • Liu Z, Zhang C. 2022. Ridge regression applications in agricultural production data modeling: Case studies in poultry farming. Int J Agric Res, 59(4): 345-356.
  • Maxwell SE. 2000. Sample size in multiple regression analysis. Psychol Methods, 5(4): 434-458.
  • Montgomery DC, Peck EA, Vining GG. 2001. Introduction to linear regression analysis, 3rd Edition. Wiley, New York, USA, pp: 672.
  • Olawumi S, Chiristiana B. 2017. Phenotypic correlations between external and internal egg quality traits of Coturnix quails reared under intensive housing system. J Appl Life Sci Int, 12(3): 1-6.
  • Tolun T, Gök İ, Şahin M. 2024. Modeling of some egg characteristics in henna partridges. BSJ Agri, 7(6): 729-742.
  • Tolun T, Yavuz E, Şahin M, Gök İ. 2023. Modeling egg curves in partridges. BSJ Agri, 6(1): 21-25.
  • Topal M, Eyduran E, Yağanoğlu M, Sönmez AY, Keskin S. 2010. Çoklu doğrusal bağlantı durumunda Ridge ve Temel Bileşenler regresyon analiz yöntemlerinin kullanımı. Atatürk Üniv Ziraat Fak Derg, 41: 53-57.
  • Tuncer S, Kılınç F. 2019. Yumurta akı indeksi ve dış kalite özellikleri arasındaki ilişkiler: Bir ördek yumurtası örneği. Turk J Vet Anim Sci, 43(6): 487-495.
  • Üçkardeş F, Efe E, Narinç D, Aksoy T. 2012. Japon bıldırcınlarında yumurta ak indeksinin Ridge regresyon yöntemiyle tahmin edilmesi. Akad Ziraat Derg, 1: 11-20.
  • Xu X, Zhang L, Song H. 2021. The impact of feed additives on egg quality and egg albumen index in ducks. Poult Sci, 100(3): 1430-1438.
  • Yalçınöz E, Şahin M. 2020. Yumurtacı tavuklarda yumurta verim eğrilerinin modellenmesi. KSÜ Tarım Doğa Derg, 23(5): 1373-1378.
  • Yannakopoulos AL, Tserveni-Gousi AS. 1986. Quality characteristics of quail eggs. Br Poult Sci, 27: 171-176.
  • Yavuz E, Abacı SH, Erensoy K, Şahin M. 2023. Modeling of individual egg weights of Lohmann-Brown layer hens. Turk J Vet Anim Sci, 47(3): 229-335.
  • Zhao X, Wang X, Li Y. 2020. Influence of genetic and environmental factors on egg shell quality in ducks. Anim Prod Sci, 60(7): 926-934.
There are 33 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Research Articles
Authors

Kadriye Kurşun 0000-0001-9533-7391

İsmail Gök 0000-0002-0759-1187

Early Pub Date July 15, 2025
Publication Date July 15, 2025
Submission Date March 11, 2025
Acceptance Date July 10, 2025
Published in Issue Year 2025 Volume: 8 Issue: 4

Cite

APA Kurşun, K., & Gök, İ. (2025). Prediction Model of Albumen Index in Duck Eggs via External Egg Quality Characteristics in Case of Multicollinearity. Black Sea Journal of Agriculture, 8(4), 525-532. https://doi.org/10.47115/bsagriculture.1655436

                                                  24890