Review
BibTex RIS Cite

Su Bazlı Akıllı Polimerik Malzemeler: Hidrojeller

Year 2024, Volume: 7 Issue: 1, 58 - 70, 31.12.2024

Abstract

Hidrojeller, yüksek su içeriği ve üç boyutlu polimer ağ yapıları sayesinde biyomedikal alanda çok çeşitli uygulamalara hizmet eden benzersiz özelliklere sahiptir. Doğal veya sentetik polimerlerden üretilebilen bu malzemeler, ilaç ve hücre taşıma, doku yenileme, yara iyileşmesi, tıbbi implantların biyouyumluluğunu artırma gibi birçok işlevi yerine getirirken çevresel mühendislik gibi farklı alanlarda da kullanışlıdır. Kimyasal yapıları, çapraz bağlantıları ve üretim yöntemleriyle özelleştirilebilir, böylece akıllı malzemeler olarak farklı ihtiyaçlara uyarlanabilirler. Polimer zincirlerinin çözünmesini önleyen bu çapraz bağlar hem kimyasal hem de fiziksel yöntemlerle oluşturulabilir ve malzemeye hem elastikiyet hem de stabilite kazandırırlar. Bununla birlikte, hidrojellerin yüksek su içeriği onları canlı dokulara fiziksel olarak benzer kılar ve biyomedikal uygulamalar için ideal bir seçim haline getirir. Gözenekli yapıları, suyun yanı sıra biyomolekülleri ve ilaçları kapsüllemeye olanak tanır. Sulu ortamda oluşan bu malzemeler, organik çözücülere karşı dayanıklıdır ve biyolojik ajanların denatürasyon riskini en aza indirir. Hidrojellerin geri kazanılabilir ve yeniden kullanılabilir olması da onları sürdürülebilir malzeme tasarımı için de cazip hale getirmektedir. Bu derleme makalesi, hidrojellerin yapısal özelliklerini, sentez yöntemlerini ve uygulama alanlarındaki rollerine kısa bir bakış sunmakta, bu malzemelerin gelecekteki gelişimlerine dair önemli bilgiler sunmayı amaçlamaktadır.

References

  • Akhtar, M. F., Hanif, M., & Ranjha, N. M. (2016). Methods of synthesis of hydrogels … A review. Saudi Pharmaceutical Journal, 24(5), 554-559. https://doi.org/10.1016/j.jsps.2015.03.022
  • Andrade, F., Roca-Melendres, M. M., Durán-Lara, E. F., Rafael, D., & Schwartz, S. (2021). Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers, 13(5), 1164. https://doi.org/10.3390/cancers13051164
  • Awasthi, S., Gaur, J. K., Bobji, M. S., & Srivastava, C. (2022). Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: A review. Journal of Materials Science, 57(17), 8041-8063. https://doi.org/10.1007/s10853-022-07146-3
  • Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020a). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702
  • Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020b). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702
  • Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H., & Bucio, E. (2021). Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 7(4), 182. https://doi.org/10.3390/gels7040182
  • Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  • Chelu, M., & Musuc, A. M. (2023). Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels, 9(2), 161. https://doi.org/10.3390/gels9020161
  • Estrada Villegas, G. M., Morselli, G. R., González-Pérez, G., & Lugão, A. B. (2018). Enhancement swelling properties of PVGA hydrogel by alternative radiation crosslinking route. Radiation Physics and Chemistry, 153, 44-50. https://doi.org/10.1016/j.radphyschem.2018.08.038
  • Feng, W., & Wang, Z. (2023). Tailoring the Swelling‐Shrinkable Behavior of Hydrogels for Biomedical Applications. Advanced Science, 10(28), 2303326. https://doi.org/10.1002/advs.202303326
  • Gholamali, I. (2021). Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: A Review. Regenerative Engineering and Translational Medicine, 7(1), 91-114. https://doi.org/10.1007/s40883-019-00134-1
  • Grosjean, M., Gangolphe, L., & Nottelet, B. (2023). Degradable Self‐healable Networks for Use in Biomedical Applications. Advanced Functional Materials, 33(13), 2205315. https://doi.org/10.1002/adfm.202205315
  • Ho;, T. C., Chang;, C. C., Chan;, H. P., Chung;, T. W., Shu;, C. W., Chuang;, K. P., Duh;, T. H., Yang;, M. H., & Tyan;, Y. C. (2022). Hydrogels: Properties and Applications in Biomedicine. Molecules, 27(9), 1-29. https://doi.org/10.3390/molecules27092902
  • Ho, T.-C., Chang, C.-C., Chan, H.-P., Chung, T.-W., Shu, C.-W., Chuang, K.-P., Duh, T.-H., Yang, M.-H., & Tyan, Y.-C. (2022). Hydrogels: Properties and Applications in Biomedicine. Molecules, 27(9), 2902. https://doi.org/10.3390/molecules27092902
  • Hosseinzadeh, B., & Ahmadi, M. (2023). Degradable hydrogels: Design mechanisms and versatile applications. Materials Today Sustainability, 23, 100468. https://doi.org/10.1016/j.mtsust.2023.100468
  • Jayakumar, A., Jose, V. K., & Lee, J. (2020). Hydrogels for Medical and Environmental Applications. Small Methods, 4(3), 1900735. https://doi.org/10.1002/smtd.201900735
  • Kaith, B. S., Singh, A., Sharma, A. K., & Sud, D. (2021). Hydrogels: Synthesis, Classification, Properties and Potential Applications—A Brief Review. Journal of Polymers and the Environment, 29(12), 3827-3841. https://doi.org/10.1007/s10924-021-02184-5
  • Kaur, P., Agrawal, R., Pfeffer, F. M., Williams, R., & Bohidar, H. B. (2023). Hydrogels in Agriculture: Prospects and Challenges. Journal of Polymers and the Environment, 31(9), 3701-3718. https://doi.org/10.1007/s10924-023-02859-1
  • Kesharwani, P., Bisht, A., Alexander, A., Dave, V., & Sharma, S. (2021). Biomedical applications of hydrogels in drug delivery system: An update. Journal of Drug Delivery Science and Technology, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
  • Kumar, A., & Kumar, A. (2018). Antimicrobial polymeric gels. Içinde Polymeric Gels (ss. 357-371). Elsevier. https://doi.org/10.1016/B978-0-08-102179-8.00014-4
  • Li, H., & Silberschmidt, V. V. (Ed.). (2022). The mechanics of hydrogels: Mechanical properties, testing, and applications. Woodhead Publishing, an imprint of Elsevier.
  • Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 1(12), 16071. https://doi.org/10.1038/natrevmats.2016.71
  • Li, M., He, X., Zhao, R., Shi, Q., Nian, Y., & Hu, B. (2022). Hydrogels as promising carriers for the delivery of food bioactive ingredients. Frontiers in Nutrition, 9, 1006520. https://doi.org/10.3389/fnut.2022.1006520
  • Li, Z., Li, Y., Chen, C., & Cheng, Y. (2021). Magnetic-responsive hydrogels: From strategic design to biomedical applications. Journal of Controlled Release, 335, 541-556. https://doi.org/10.1016/j.jconrel.2021.06.003
  • Liu, B., & Chen, K. (2024). Advances in Hydrogel-Based Drug Delivery Systems. Gels, 10(4), 262. https://doi.org/10.3390/gels10040262
  • Ma, X., Ahadian, S., Liu, S., Zhang, J., Liu, S., Cao, T., Lin, W., Wu, D., De Barros, N. R., Zare, M. R., Diltemiz, S. E., Jucaud, V., Zhu, Y., Zhang, S., Banton, E., Gu, Y., Nan, K., Xu, S., Dokmeci, M. R., & Khademhosseini, A. (2021). Smart Contact Lenses for Biosensing Applications. Advanced Intelligent Systems, 3(5), 2000263. https://doi.org/10.1002/aisy.202000263
  • Madduma‐Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138(19), 50376. https://doi.org/10.1002/app.50376
  • Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42-55. https://doi.org/10.1016/j.mtchem.2018.02.004
  • Mahmood, A., Patel, D., Hickson, B., DesRochers, J., & Hu, X. (2022). Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. International Journal of Molecular Sciences, 23(3), 1415. https://doi.org/10.3390/ijms23031415
  • McBath, R. A., & Shipp, D. A. (2010). Swelling and degradation of hydrogels synthesized with degradable poly(β-amino ester) crosslinkers. Polymer Chemistry, 1(6), 860. https://doi.org/10.1039/c0py00074d
  • Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics: Review. Journal of Materials Science: Materials in Medicine, 31(6), 50. https://doi.org/10.1007/s10856-020-06390-w
  • Mo, C., Luo, R., & Chen, Y. (2022). Advances in the Stimuli‐Responsive Injectable Hydrogel for Controlled Release of Drugs. Macromolecular Rapid Communications, 43(10), 2200007. https://doi.org/10.1002/marc.202200007
  • Palem, R. R., Shimoga, G., Rao, K. S. V. K., Lee, S.-H., & Kang, T. J. (2020). Guar gum graft polymer-based silver nanocomposite hydrogels: Synthesis, characterization and its biomedical applications. Journal of Polymer Research, 27(3), 68. https://doi.org/10.1007/s10965-020-2026-8
  • Ramiah, P., Du Toit, L. C., Choonara, Y. E., Kondiah, P. P. D., & Pillay, V. (2020). Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Frontiers in Materials, 7, 76. https://doi.org/10.3389/fmats.2020.00076 Rezakhani, L., Gharibshahian, M., Salehi, M., Zamani, S., Abpeikar, Z., Ghaderzadeh, O., Alizadeh, M., Masoudi, A.,
  • Rezaei, N., & Cheraghali, D. (2024). Recent advances in hydrogels applications for tissue engineering and clinical trials. Regenerative Therapy, 26, 635-645. https://doi.org/10.1016/j.reth.2024.08.015
  • Rizwan, M., Rubina Gilani, S., Iqbal Durani, A., & Naseem, S. (2021). Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. Journal of Advanced Research, 33, 15-40. https://doi.org/10.1016/j.jare.2021.03.007
  • Sharma, S., & Tiwari, S. (2020). RETRACTED: A review on biomacromolecular hydrogel classification and its applications. International Journal of Biological Macromolecules, 162, 737-747. https://doi.org/10.1016/j.ijbiomac.2020.06.110
  • Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. Md. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 57, 414-433. https://doi.org/10.1016/j.msec.2015.07.053
  • Vasile, C., Pamfil, D., Stoleru, E., & Baican, M. (2020). New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules, 25(7), 1539. https://doi.org/10.3390/molecules25071539
  • Wang, R., Cheng, C., Wang, H., & Wang, D. (2024). Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels. ChemPhysMater, 3(4), 357-375. https://doi.org/10.1016/j.chphma.2024.07.006
  • Xue, L., & Sun, J. (2022). Magnetic hydrogels with ordered structure for biomedical applications. Frontiers in Chemistry, 10, 1040492. https://doi.org/10.3389/fchem.2022.1040492
  • Yarali, E., Baniasadi, M., Zolfagharian, A., Chavoshi, M., Arefi, F., Hossain, M., Bastola, A., Ansari, M., Foyouzat, A., Dabbagh, A., Ebrahimi, M., Mirzaali, M. J., & Bodaghi, M. (2022). Magneto‐/ electro‐responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Applied Materials Today, 26, 101306. https://doi.org/10.1016/j.apmt.2021.101306
  • Zhang, Z., Fu, H., Li, Z., Huang, J., Xu, Z., Lai, Y., Qian, X., & Zhang, S. (2022). Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chemical Engineering Journal, 439, 135756. https://doi.org/10.1016/j.cej.2022.135756
  • Zhuo, S., Zhang, F., Yu, J., Zhang, X., Yang, G., & Liu, X. (2020). pH-Sensitive Biomaterials for Drug Delivery. Molecules, 25(23), 5649. https://doi.org/10.3390/molecules25235649

Water-Based Smart Polymeric Materials: Hydrogels

Year 2024, Volume: 7 Issue: 1, 58 - 70, 31.12.2024

Abstract

Hydrogels, with their high water content and three-dimensional polymer network structures, possess unique properties that serve a wide range of applications in the biomedical field. These materials, which can be produced from natural or synthetic polymers, perform various functions such as drug and cell delivery, tissue regeneration, wound healing, and enhancing the biocompatibility of medical implants, while also being useful in fields like environmental engineering. Their chemical structures, crosslinking, and production methods can be tailored, allowing them to be adapted as smart materials for different needs. The crosslinks, which prevent the dissolution of polymer chains, can be created through both chemical and physical methods, providing the material with elasticity and stability. Moreover, the high water content of hydrogels makes them physically similar to living tissues, rendering them an ideal choice for biomedical applications. Their porous structure enables encapsulation of water, biomolecules, and drugs. Formed in aqueous environments, these materials exhibit resistance to organic solvents and minimize the risk of denaturation of biological agents. Additionally, the recyclability and reusability of hydrogels make them attractive for sustainable material design. This review article provides a concise overview of the structural properties, synthesis methods, and biomedical roles of hydrogels, aiming to offer key insights into their future development.

References

  • Akhtar, M. F., Hanif, M., & Ranjha, N. M. (2016). Methods of synthesis of hydrogels … A review. Saudi Pharmaceutical Journal, 24(5), 554-559. https://doi.org/10.1016/j.jsps.2015.03.022
  • Andrade, F., Roca-Melendres, M. M., Durán-Lara, E. F., Rafael, D., & Schwartz, S. (2021). Stimuli-Responsive Hydrogels for Cancer Treatment: The Role of pH, Light, Ionic Strength and Magnetic Field. Cancers, 13(5), 1164. https://doi.org/10.3390/cancers13051164
  • Awasthi, S., Gaur, J. K., Bobji, M. S., & Srivastava, C. (2022). Nanoparticle-reinforced polyacrylamide hydrogel composites for clinical applications: A review. Journal of Materials Science, 57(17), 8041-8063. https://doi.org/10.1007/s10853-022-07146-3
  • Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020a). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702
  • Bashir, S., Hina, M., Iqbal, J., Rajpar, A. H., Mujtaba, M. A., Alghamdi, N. A., Wageh, S., Ramesh, K., & Ramesh, S. (2020b). Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 12(11), 2702. https://doi.org/10.3390/polym12112702
  • Bustamante-Torres, M., Romero-Fierro, D., Arcentales-Vera, B., Palomino, K., Magaña, H., & Bucio, E. (2021). Hydrogels Classification According to the Physical or Chemical Interactions and as Stimuli-Sensitive Materials. Gels, 7(4), 182. https://doi.org/10.3390/gels7040182
  • Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252-267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  • Chelu, M., & Musuc, A. M. (2023). Polymer Gels: Classification and Recent Developments in Biomedical Applications. Gels, 9(2), 161. https://doi.org/10.3390/gels9020161
  • Estrada Villegas, G. M., Morselli, G. R., González-Pérez, G., & Lugão, A. B. (2018). Enhancement swelling properties of PVGA hydrogel by alternative radiation crosslinking route. Radiation Physics and Chemistry, 153, 44-50. https://doi.org/10.1016/j.radphyschem.2018.08.038
  • Feng, W., & Wang, Z. (2023). Tailoring the Swelling‐Shrinkable Behavior of Hydrogels for Biomedical Applications. Advanced Science, 10(28), 2303326. https://doi.org/10.1002/advs.202303326
  • Gholamali, I. (2021). Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: A Review. Regenerative Engineering and Translational Medicine, 7(1), 91-114. https://doi.org/10.1007/s40883-019-00134-1
  • Grosjean, M., Gangolphe, L., & Nottelet, B. (2023). Degradable Self‐healable Networks for Use in Biomedical Applications. Advanced Functional Materials, 33(13), 2205315. https://doi.org/10.1002/adfm.202205315
  • Ho;, T. C., Chang;, C. C., Chan;, H. P., Chung;, T. W., Shu;, C. W., Chuang;, K. P., Duh;, T. H., Yang;, M. H., & Tyan;, Y. C. (2022). Hydrogels: Properties and Applications in Biomedicine. Molecules, 27(9), 1-29. https://doi.org/10.3390/molecules27092902
  • Ho, T.-C., Chang, C.-C., Chan, H.-P., Chung, T.-W., Shu, C.-W., Chuang, K.-P., Duh, T.-H., Yang, M.-H., & Tyan, Y.-C. (2022). Hydrogels: Properties and Applications in Biomedicine. Molecules, 27(9), 2902. https://doi.org/10.3390/molecules27092902
  • Hosseinzadeh, B., & Ahmadi, M. (2023). Degradable hydrogels: Design mechanisms and versatile applications. Materials Today Sustainability, 23, 100468. https://doi.org/10.1016/j.mtsust.2023.100468
  • Jayakumar, A., Jose, V. K., & Lee, J. (2020). Hydrogels for Medical and Environmental Applications. Small Methods, 4(3), 1900735. https://doi.org/10.1002/smtd.201900735
  • Kaith, B. S., Singh, A., Sharma, A. K., & Sud, D. (2021). Hydrogels: Synthesis, Classification, Properties and Potential Applications—A Brief Review. Journal of Polymers and the Environment, 29(12), 3827-3841. https://doi.org/10.1007/s10924-021-02184-5
  • Kaur, P., Agrawal, R., Pfeffer, F. M., Williams, R., & Bohidar, H. B. (2023). Hydrogels in Agriculture: Prospects and Challenges. Journal of Polymers and the Environment, 31(9), 3701-3718. https://doi.org/10.1007/s10924-023-02859-1
  • Kesharwani, P., Bisht, A., Alexander, A., Dave, V., & Sharma, S. (2021). Biomedical applications of hydrogels in drug delivery system: An update. Journal of Drug Delivery Science and Technology, 66, 102914. https://doi.org/10.1016/j.jddst.2021.102914
  • Kumar, A., & Kumar, A. (2018). Antimicrobial polymeric gels. Içinde Polymeric Gels (ss. 357-371). Elsevier. https://doi.org/10.1016/B978-0-08-102179-8.00014-4
  • Li, H., & Silberschmidt, V. V. (Ed.). (2022). The mechanics of hydrogels: Mechanical properties, testing, and applications. Woodhead Publishing, an imprint of Elsevier.
  • Li, J., & Mooney, D. J. (2016). Designing hydrogels for controlled drug delivery. Nature Reviews Materials, 1(12), 16071. https://doi.org/10.1038/natrevmats.2016.71
  • Li, M., He, X., Zhao, R., Shi, Q., Nian, Y., & Hu, B. (2022). Hydrogels as promising carriers for the delivery of food bioactive ingredients. Frontiers in Nutrition, 9, 1006520. https://doi.org/10.3389/fnut.2022.1006520
  • Li, Z., Li, Y., Chen, C., & Cheng, Y. (2021). Magnetic-responsive hydrogels: From strategic design to biomedical applications. Journal of Controlled Release, 335, 541-556. https://doi.org/10.1016/j.jconrel.2021.06.003
  • Liu, B., & Chen, K. (2024). Advances in Hydrogel-Based Drug Delivery Systems. Gels, 10(4), 262. https://doi.org/10.3390/gels10040262
  • Ma, X., Ahadian, S., Liu, S., Zhang, J., Liu, S., Cao, T., Lin, W., Wu, D., De Barros, N. R., Zare, M. R., Diltemiz, S. E., Jucaud, V., Zhu, Y., Zhang, S., Banton, E., Gu, Y., Nan, K., Xu, S., Dokmeci, M. R., & Khademhosseini, A. (2021). Smart Contact Lenses for Biosensing Applications. Advanced Intelligent Systems, 3(5), 2000263. https://doi.org/10.1002/aisy.202000263
  • Madduma‐Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138(19), 50376. https://doi.org/10.1002/app.50376
  • Mahinroosta, M., Jomeh Farsangi, Z., Allahverdi, A., & Shakoori, Z. (2018). Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Materials Today Chemistry, 8, 42-55. https://doi.org/10.1016/j.mtchem.2018.02.004
  • Mahmood, A., Patel, D., Hickson, B., DesRochers, J., & Hu, X. (2022). Recent Progress in Biopolymer-Based Hydrogel Materials for Biomedical Applications. International Journal of Molecular Sciences, 23(3), 1415. https://doi.org/10.3390/ijms23031415
  • McBath, R. A., & Shipp, D. A. (2010). Swelling and degradation of hydrogels synthesized with degradable poly(β-amino ester) crosslinkers. Polymer Chemistry, 1(6), 860. https://doi.org/10.1039/c0py00074d
  • Mitura, S., Sionkowska, A., & Jaiswal, A. (2020). Biopolymers for hydrogels in cosmetics: Review. Journal of Materials Science: Materials in Medicine, 31(6), 50. https://doi.org/10.1007/s10856-020-06390-w
  • Mo, C., Luo, R., & Chen, Y. (2022). Advances in the Stimuli‐Responsive Injectable Hydrogel for Controlled Release of Drugs. Macromolecular Rapid Communications, 43(10), 2200007. https://doi.org/10.1002/marc.202200007
  • Palem, R. R., Shimoga, G., Rao, K. S. V. K., Lee, S.-H., & Kang, T. J. (2020). Guar gum graft polymer-based silver nanocomposite hydrogels: Synthesis, characterization and its biomedical applications. Journal of Polymer Research, 27(3), 68. https://doi.org/10.1007/s10965-020-2026-8
  • Ramiah, P., Du Toit, L. C., Choonara, Y. E., Kondiah, P. P. D., & Pillay, V. (2020). Hydrogel-Based Bioinks for 3D Bioprinting in Tissue Regeneration. Frontiers in Materials, 7, 76. https://doi.org/10.3389/fmats.2020.00076 Rezakhani, L., Gharibshahian, M., Salehi, M., Zamani, S., Abpeikar, Z., Ghaderzadeh, O., Alizadeh, M., Masoudi, A.,
  • Rezaei, N., & Cheraghali, D. (2024). Recent advances in hydrogels applications for tissue engineering and clinical trials. Regenerative Therapy, 26, 635-645. https://doi.org/10.1016/j.reth.2024.08.015
  • Rizwan, M., Rubina Gilani, S., Iqbal Durani, A., & Naseem, S. (2021). Materials diversity of hydrogel: Synthesis, polymerization process and soil conditioning properties in agricultural field. Journal of Advanced Research, 33, 15-40. https://doi.org/10.1016/j.jare.2021.03.007
  • Sharma, S., & Tiwari, S. (2020). RETRACTED: A review on biomacromolecular hydrogel classification and its applications. International Journal of Biological Macromolecules, 162, 737-747. https://doi.org/10.1016/j.ijbiomac.2020.06.110
  • Ullah, F., Othman, M. B. H., Javed, F., Ahmad, Z., & Akil, H. Md. (2015). Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C, 57, 414-433. https://doi.org/10.1016/j.msec.2015.07.053
  • Vasile, C., Pamfil, D., Stoleru, E., & Baican, M. (2020). New Developments in Medical Applications of Hybrid Hydrogels Containing Natural Polymers. Molecules, 25(7), 1539. https://doi.org/10.3390/molecules25071539
  • Wang, R., Cheng, C., Wang, H., & Wang, D. (2024). Swollen hydrogel nanotechnology: Advanced applications of the rudimentary swelling properties of hydrogels. ChemPhysMater, 3(4), 357-375. https://doi.org/10.1016/j.chphma.2024.07.006
  • Xue, L., & Sun, J. (2022). Magnetic hydrogels with ordered structure for biomedical applications. Frontiers in Chemistry, 10, 1040492. https://doi.org/10.3389/fchem.2022.1040492
  • Yarali, E., Baniasadi, M., Zolfagharian, A., Chavoshi, M., Arefi, F., Hossain, M., Bastola, A., Ansari, M., Foyouzat, A., Dabbagh, A., Ebrahimi, M., Mirzaali, M. J., & Bodaghi, M. (2022). Magneto‐/ electro‐responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applications. Applied Materials Today, 26, 101306. https://doi.org/10.1016/j.apmt.2021.101306
  • Zhang, Z., Fu, H., Li, Z., Huang, J., Xu, Z., Lai, Y., Qian, X., & Zhang, S. (2022). Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chemical Engineering Journal, 439, 135756. https://doi.org/10.1016/j.cej.2022.135756
  • Zhuo, S., Zhang, F., Yu, J., Zhang, X., Yang, G., & Liu, X. (2020). pH-Sensitive Biomaterials for Drug Delivery. Molecules, 25(23), 5649. https://doi.org/10.3390/molecules25235649
There are 44 citations in total.

Details

Primary Language Turkish
Subjects Health Services and Systems (Other)
Journal Section Derleme
Authors

Pelin Saraçoğlu

Publication Date December 31, 2024
Submission Date December 23, 2024
Acceptance Date December 31, 2024
Published in Issue Year 2024 Volume: 7 Issue: 1

Cite

APA Saraçoğlu, P. (2024). Su Bazlı Akıllı Polimerik Malzemeler: Hidrojeller. Biruni Sağlık Ve Eğitim Bilimleri Dergisi, 7(1), 58-70.