Research Article
BibTex RIS Cite

Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method

Year 2023, , 60 - 67, 01.04.2023
https://doi.org/10.34248/bsengineering.1239298

Abstract

The efficient transmission of electrical energy depends on amplifying voltage values with power transformers. To obtain higher efficiency from transformers, the core and winding type of transformer, the geometric structure of the core, and the shaping techniques in the windings are changed. This requires modeling transformer windings with equivalent circuits and calculating the inductance and electrical parameters appropriately. In this study, two-dimensional (2D) finite element solutions with energy perturbation and flux-coupling methods are used. The correctness of the inductance values of transformer windings was established, and the design was performed, by considering the inductance and electrical parameter values, which are comparable to the energy perturbation and flux connection. However, when two-dimensional calculated fields are used, the flux coupling method requires less computation and gives numerically more accurate results than the energy perturbation method. So, it is concluded that the flux-coupling approach should be chosen as the preferred method for calculating the inductance and electrical parameters of transformer windings. The numerical properties and equivalence of energy perturbation and flux-connection methods, the “apparent” inductance value of the primary and secondary field windings of power transformer operating under transient conditions, using the temperature-time parameter method, are calculated and its accuracy is demonstrated.

References

  • Awadallah SKE, Milanović JV, Jarman PN. 2014. The influence of modeling transformer age related failures on system reliability. IEEE Transact Power Syst, 30(2): 970-979. doi:10.1109/TPWRS.2014.2331103.
  • Božidar FG, Franc B, Uglešić I, Pavić I, Keitoue S, Murat I, Ivanković I. 2017. Monitoring of transient overvoltages on the power transformers and shunt reactors–field experience in the Croatian power transmission system. Procedia Eng, 202: 29-42. doi:10.1016/j.proeng.2017.09.692.
  • Delghavi MB, Yazdani A, Alizadeh A. 2021. Iterative learning control of dispatchable grid-connected distributed energy resources for compensation of grid current harmonic distortions. Int J Electrical Power Energy Syst, 131: 107064. doi:10.1016/j.ijepes.2021.107064.
  • Ding X, Ning W. 2012. Analysis of the dry-type transformer temperature field based on fluid-solid coupling. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, December 8-10, 2012, Harbin City, Heilongjiang, China, pp: 520-523.
  • Emiroglu S, Uyaroglu Y, Gumus TE. 2021. Recursive backstepping control of ferroresonant chaotic oscillations consisting between grading capacitor with nonlinear inductance of voltage transformer. European Physical J, 230: 1829-1837. doi:10.1140/epjs/s11734-021-00150-9.
  • Ertl M, Landes H. 2007. Investigation of load noise generation of large power transformer by means of coupled 3D FEM analysis. Int J Comput Math Electr Electron Eng, 26(3): 788-799. doi:10.1108/03321640710751226.
  • Fornasiero E, Bianchi N, Soong WL. 2014. Analysis of torque versus current capability of reluctance and interior pm machines under limited current and flux-linkage operation. IEEE Energy Conversion Congress and Exposition (ECCE), September 14-18, 2014, Pittsburgh, Pennsylvania, US, pp: 4162-4169. doi:10.1109/ECCE.2014.6953968.
  • Hashemnia N, Abu-Siada A, Islam S. 2015. Improved power transformer winding fault detection using FRA diagnostics–part 2: radial deformation simulation, IEEE Transact Dielectrics Electr Insulation, 22(1): 564-570. doi:10.1109/TDEI.2014.004592.
  • He JH. 2003. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput, 135(1): 73-79. doi:10.1016/S0096-3003(01)00312-5.
  • Jia X, Lin M, Su S, Wang Q, Yang J. 2022. Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer. Energy, 239(A): 121788. doi:10.1016/j.energy.2021.121788.
  • Johnson A, Wang X, Xue M, Kong F, Zhao G, Wang Y, Thomas KW, Brewster KA, Gao J. 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Monthly Weather Rev, 142(3): 1053-1073. doi:10.1175/MWR-D-13-00204.1.
  • Kunicki M, Borucki S, Zmarzły D, Frymus J. 2020. Data acquisition system for on-line temperature monitoring in power transformers. Measurement, 161: 107909. doi:10.1016/j.measurement.2020.107909.
  • Kwon YW, Bang H. 2018. The finite element method using MATLAB, 2nd Edition. CRC Press, London, UK, pp: 622.
  • Lee M, Abdullah HA, Jofriet JC, Patel D. 2010. Thermal modeling of disc-type winding for ventilated dry-type transformers. Electr Power Syst Res, 80(1): 121-129. doi:10.1016/j.epsr.2009.08.007.
  • Liu C, Ruan J, Wen W, Gong R, Liao C. 2016. Temperature rise of a dry‐type transformer with quasi‐3D coupled‐field method. IET Electric Power Appl, 10(7): 598-603. doi:10.1049/iet-epa.2015.0491.
  • Mariprasath T, Ravindaran M. 2022. An experimental study of partial discharge analysis on environmental friendly insulating oil as alternate insulating material for transformer. Sādhanā, 47: 204. doi:10.1007/s12046-022-01946-8.
  • Mejia-Barron A, Valtierra-Rodriguez M, Granados-Lieberman D, Olivares-Galvan JC, Escarela-Perez R. 2018. The application of EMD-based methods for diagnosis of winding faults in a transformer using transient and steady state currents. Measurement, 117: 371-379. doi:10.1016/j.measurement.2017.12.003.
  • Metwally IA. 2011. Failures, monitoring and new trends of power transformers. IEEE Potentials, 30(3): 36-43. doi:10.1109/MPOT.2011.940233.
  • Oliveira LMR, Cardoso AJM. 2014. Leakage inductances calculation for power transformers interturn fault studies. IEEE Transact Power Deliv, 30(3): 1213-1220. doi:10.1109/TPWRD.2014.2371877.
  • Oliveira MO, Ferreira GD, García FH, Bretas AS, Perrone OE, Reversat JH. 2012. Adaptive differential protection for power transformer based on transient signal analysis. IEEE Power and Energy Society General Meeting, July 22-26, 2012, San Diego, CA, US, pp: 1-7. doi:10.1109/PESGM.2012.6344824.
  • Pamuk N. 2017. Identification of critical values based on natural ester oils as potential insulating liquid for high voltage power transformers. J Polytech, 20(4): 869-877. doi:10.2339/politeknik.369050.
  • Shadab S, Revati G, Wagh SR, Singh NM. 2023. Finite-time parameter estimation for an online monitoring of transformer: A system identification perspective. Int J Elect Power Energy Syst, 145: 108639. doi:10.1016/j.ijepes.2022.108639.
  • Shirakawa T, Yamasaki G, Umetani K, Hiraki E. 2016. Copper loss analysis based on extremum co-energy principle for high frequency forward transformers with parallel-connected windings. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, October 23-26, 2016, Florence, Italy, pp: 1099-1105.

Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method

Year 2023, , 60 - 67, 01.04.2023
https://doi.org/10.34248/bsengineering.1239298

Abstract

The efficient transmission of electrical energy depends on amplifying voltage values with power transformers. To obtain higher efficiency from transformers, the core and winding type of transformer, the geometric structure of the core, and the shaping techniques in the windings are changed. This requires modeling transformer windings with equivalent circuits and calculating the inductance and electrical parameters appropriately. In this study, two-dimensional (2D) finite element solutions with energy perturbation and flux-coupling methods are used. The correctness of the inductance values of transformer windings was established, and the design was performed, by considering the inductance and electrical parameter values, which are comparable to the energy perturbation and flux connection. However, when two-dimensional calculated fields are used, the flux coupling method requires less computation and gives numerically more accurate results than the energy perturbation method. So, it is concluded that the flux-coupling approach should be chosen as the preferred method for calculating the inductance and electrical parameters of transformer windings. The numerical properties and equivalence of energy perturbation and flux-connection methods, the “apparent” inductance value of the primary and secondary field windings of power transformer operating under transient conditions, using the temperature-time parameter method, are calculated and its accuracy is demonstrated.

References

  • Awadallah SKE, Milanović JV, Jarman PN. 2014. The influence of modeling transformer age related failures on system reliability. IEEE Transact Power Syst, 30(2): 970-979. doi:10.1109/TPWRS.2014.2331103.
  • Božidar FG, Franc B, Uglešić I, Pavić I, Keitoue S, Murat I, Ivanković I. 2017. Monitoring of transient overvoltages on the power transformers and shunt reactors–field experience in the Croatian power transmission system. Procedia Eng, 202: 29-42. doi:10.1016/j.proeng.2017.09.692.
  • Delghavi MB, Yazdani A, Alizadeh A. 2021. Iterative learning control of dispatchable grid-connected distributed energy resources for compensation of grid current harmonic distortions. Int J Electrical Power Energy Syst, 131: 107064. doi:10.1016/j.ijepes.2021.107064.
  • Ding X, Ning W. 2012. Analysis of the dry-type transformer temperature field based on fluid-solid coupling. Second International Conference on Instrumentation, Measurement, Computer, Communication and Control, December 8-10, 2012, Harbin City, Heilongjiang, China, pp: 520-523.
  • Emiroglu S, Uyaroglu Y, Gumus TE. 2021. Recursive backstepping control of ferroresonant chaotic oscillations consisting between grading capacitor with nonlinear inductance of voltage transformer. European Physical J, 230: 1829-1837. doi:10.1140/epjs/s11734-021-00150-9.
  • Ertl M, Landes H. 2007. Investigation of load noise generation of large power transformer by means of coupled 3D FEM analysis. Int J Comput Math Electr Electron Eng, 26(3): 788-799. doi:10.1108/03321640710751226.
  • Fornasiero E, Bianchi N, Soong WL. 2014. Analysis of torque versus current capability of reluctance and interior pm machines under limited current and flux-linkage operation. IEEE Energy Conversion Congress and Exposition (ECCE), September 14-18, 2014, Pittsburgh, Pennsylvania, US, pp: 4162-4169. doi:10.1109/ECCE.2014.6953968.
  • Hashemnia N, Abu-Siada A, Islam S. 2015. Improved power transformer winding fault detection using FRA diagnostics–part 2: radial deformation simulation, IEEE Transact Dielectrics Electr Insulation, 22(1): 564-570. doi:10.1109/TDEI.2014.004592.
  • He JH. 2003. Homotopy perturbation method: a new nonlinear analytical technique. Appl Math Comput, 135(1): 73-79. doi:10.1016/S0096-3003(01)00312-5.
  • Jia X, Lin M, Su S, Wang Q, Yang J. 2022. Numerical study on temperature rise and mechanical properties of winding in oil-immersed transformer. Energy, 239(A): 121788. doi:10.1016/j.energy.2021.121788.
  • Johnson A, Wang X, Xue M, Kong F, Zhao G, Wang Y, Thomas KW, Brewster KA, Gao J. 2014. Multiscale characteristics and evolution of perturbations for warm season convection-allowing precipitation forecasts: Dependence on background flow and method of perturbation. Monthly Weather Rev, 142(3): 1053-1073. doi:10.1175/MWR-D-13-00204.1.
  • Kunicki M, Borucki S, Zmarzły D, Frymus J. 2020. Data acquisition system for on-line temperature monitoring in power transformers. Measurement, 161: 107909. doi:10.1016/j.measurement.2020.107909.
  • Kwon YW, Bang H. 2018. The finite element method using MATLAB, 2nd Edition. CRC Press, London, UK, pp: 622.
  • Lee M, Abdullah HA, Jofriet JC, Patel D. 2010. Thermal modeling of disc-type winding for ventilated dry-type transformers. Electr Power Syst Res, 80(1): 121-129. doi:10.1016/j.epsr.2009.08.007.
  • Liu C, Ruan J, Wen W, Gong R, Liao C. 2016. Temperature rise of a dry‐type transformer with quasi‐3D coupled‐field method. IET Electric Power Appl, 10(7): 598-603. doi:10.1049/iet-epa.2015.0491.
  • Mariprasath T, Ravindaran M. 2022. An experimental study of partial discharge analysis on environmental friendly insulating oil as alternate insulating material for transformer. Sādhanā, 47: 204. doi:10.1007/s12046-022-01946-8.
  • Mejia-Barron A, Valtierra-Rodriguez M, Granados-Lieberman D, Olivares-Galvan JC, Escarela-Perez R. 2018. The application of EMD-based methods for diagnosis of winding faults in a transformer using transient and steady state currents. Measurement, 117: 371-379. doi:10.1016/j.measurement.2017.12.003.
  • Metwally IA. 2011. Failures, monitoring and new trends of power transformers. IEEE Potentials, 30(3): 36-43. doi:10.1109/MPOT.2011.940233.
  • Oliveira LMR, Cardoso AJM. 2014. Leakage inductances calculation for power transformers interturn fault studies. IEEE Transact Power Deliv, 30(3): 1213-1220. doi:10.1109/TPWRD.2014.2371877.
  • Oliveira MO, Ferreira GD, García FH, Bretas AS, Perrone OE, Reversat JH. 2012. Adaptive differential protection for power transformer based on transient signal analysis. IEEE Power and Energy Society General Meeting, July 22-26, 2012, San Diego, CA, US, pp: 1-7. doi:10.1109/PESGM.2012.6344824.
  • Pamuk N. 2017. Identification of critical values based on natural ester oils as potential insulating liquid for high voltage power transformers. J Polytech, 20(4): 869-877. doi:10.2339/politeknik.369050.
  • Shadab S, Revati G, Wagh SR, Singh NM. 2023. Finite-time parameter estimation for an online monitoring of transformer: A system identification perspective. Int J Elect Power Energy Syst, 145: 108639. doi:10.1016/j.ijepes.2022.108639.
  • Shirakawa T, Yamasaki G, Umetani K, Hiraki E. 2016. Copper loss analysis based on extremum co-energy principle for high frequency forward transformers with parallel-connected windings. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, October 23-26, 2016, Florence, Italy, pp: 1099-1105.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Nihat Pamuk 0000-0001-8980-6913

Publication Date April 1, 2023
Submission Date January 19, 2023
Acceptance Date February 23, 2023
Published in Issue Year 2023

Cite

APA Pamuk, N. (2023). Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method. Black Sea Journal of Engineering and Science, 6(2), 60-67. https://doi.org/10.34248/bsengineering.1239298
AMA Pamuk N. Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method. BSJ Eng. Sci. April 2023;6(2):60-67. doi:10.34248/bsengineering.1239298
Chicago Pamuk, Nihat. “Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method”. Black Sea Journal of Engineering and Science 6, no. 2 (April 2023): 60-67. https://doi.org/10.34248/bsengineering.1239298.
EndNote Pamuk N (April 1, 2023) Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method. Black Sea Journal of Engineering and Science 6 2 60–67.
IEEE N. Pamuk, “Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method”, BSJ Eng. Sci., vol. 6, no. 2, pp. 60–67, 2023, doi: 10.34248/bsengineering.1239298.
ISNAD Pamuk, Nihat. “Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method”. Black Sea Journal of Engineering and Science 6/2 (April 2023), 60-67. https://doi.org/10.34248/bsengineering.1239298.
JAMA Pamuk N. Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method. BSJ Eng. Sci. 2023;6:60–67.
MLA Pamuk, Nihat. “Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method”. Black Sea Journal of Engineering and Science, vol. 6, no. 2, 2023, pp. 60-67, doi:10.34248/bsengineering.1239298.
Vancouver Pamuk N. Determining Accuracy of Temperature Limit Change in Power Transformer Core Using Temperature-Time Parameter Method. BSJ Eng. Sci. 2023;6(2):60-7.

                                                24890