Research Article
BibTex RIS Cite

Shooting Trials with Light Weapons to Determine the Defensive Usability of Polymer Composites

Year 2023, , 74 - 86, 01.04.2023
https://doi.org/10.34248/bsengineering.1240694

Abstract

In this study, unsaturated polyester resin for general use and woven E-glass fiber were used as the components required for structure formation and as the reinforcement material. In the production of target composite plates prepared as square and circular sections, the thickness of the composite plates was variable, together with the number of fiber layers. The shots were fired on target composite plates from a distance of 10 m at the range, using two different weapons that fired 22-caliber and 9-mm rounds, respectively. As a result of the shots, it was determined that if the number of woven fiber layers was 9 and the plate thickness was greater than 12 mm, the target composite was successful against 22 caliber and 9 mm bullets. The level of protection for composite plates has been determined to be IIA according to NIJ Standard-0101.06. The target is of vital importance in shooting with a gun, and in this study, the characteristics of the target composite plate that prevent the bullet from passing gave results according to the determined production operating parameters. For increased shell calibers, it is necessary to carefully plan the target composite production parameters and necessarily conduct field shooting experiments.

References

  • Aguiar R, Petel OE, Miller RE. 2022. Effect of a Halloysite-polyurethane nanocomposite interlayer on the ballistic performance of laminate transparent armour. Composites Part C, 7: 100231.
  • Aisyah HA, Paridah MT, Sapuan SM. 2021. A Comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers, 13: 471.
  • Attwood JP, Khaderi SN, Karthikeyan K. 2014. The out-of-plane compressive response of Dyneemas composites. J Mechan Physics Solids, 70: 200-226.
  • Bitlisli B. 2019. Zırhlı araçlarda kullanılan kompozit zırh malzemelerinin balistik performanslarının incelenmesi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Fen bilimleri Enstitüsü, Otomotiv Mühendisliği ABD, Bursa, Türkiye, pp: 89.
  • Bodepati VR, Reddy CJ, Vemuri M. 2020. Numerical prediction of damage mechanisms of E-Glass/epoxy composite material against ballistic impact of 7.62 MS projectile. Int J Protective Struct, 12(2): 206-225.
  • Carr DJ, Crawford C. 2016. High performance fabrics and 3D materials, Cranfield University at The Defence Academy of the UK, Shrivenham, United Kingdom. Lightweight Ballistic Composites, 2nd Ed., Military and Law-Enforcement Applications. Woodhead Publishing, London, UK, pp: 41-53.
  • Czech K, Oliwa R, Krajewski D. 2021. Hybrid polymer composites used in the arms ındustry: A review. Materials, 14: 3047.
  • Deora PS, Khurana M, Priya Muhal RA. 2022. A review on fibrous materials for body armor application. Materials Today, 60: 2230-2235.
  • Dragan K, Leski A. 2012. Failure of polymer matrix composites in defence applications. In: Robinson P, Greenhalgh E, Pinho S, editors. Failure mechanisms in polymer matrix composites: Criteria, testing and industrial applications. Woodhead Publishing, London, UK, pp: 272-299.
  • Farias-Aguilar JC, Ramı´rez-Moreno MJ, Gonzalez-Garcı´a DM. 2021. Evaluation of the ballistic protection level of (glass-fiber reinforced polyamide 6)-aramid fabric sandwich composite panels. J Mater Technol, 12: 1606-1614.
  • ISSF. 2017. International Shooting Sport Federation, ISSF Headquarters, Bavariaring 21, D-80336 München-Germany. Kurallar ve Genel Mevzuat. URL: https://www.issf-sports.org/ (erişim tarihi: 12 Ekim 2022).
  • Karthikeyan K, Russell BP, Fleck NA. 2013. The effect of shear strength on the ballistic response of laminated composite plates. European J Mechanics A/Solids, 42: 35-53.
  • Larsson F. 1997. Damage tolerance of a stitched carbon/epoxy laminate. Composites Part A, App Sci Manufact, 28(11): 923-934.
  • Larsson F, Svensson L. 2002. Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour. Composites Part A, Applied Sci Manufact, 33(2): 221-231.
  • Morye SS, Hine PJ, Duckett RA. 2000. Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Sci Technol, 60: 2631-2642.
  • NATO. 2004. NATO Standard. AEP-97. Multi Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition. URL: https://diweb.hq.nato.int/naag/Public%20Release%20Documents/AEP-97%20EDA%20V1%20E.pdf (erişim tarihi: 01 Aralık 2022).
  • Naveen J, Jawaid M, Goh KL, Reddy DM, Muthukumar C, Loganathan TM, Reshwanth KNGL. 2021. Advancement in graphene-based materials and their nacre ınspired composites for armour applications-A review. Nanomaterials, 11: 1239.
  • Naveen J, Jawaid M, Zainudin ES, Yahaya R. 2019. Effect of graphene nanoplatelets on the ballistic performance of hybrid Kevlar/Cocos nucifera sheath-reinforced epoxy composites. Textile Res J, 89 (21-22): 4349-4362.
  • Nayak N, Sivaraman P, Banerjee A. 2012. Effect of matrix on the ballistic impact of aramid fabric composite laminates by armor piercing projectiles. Polymer Composit, 33(3): 443-450.
  • NIJ. 2008. NIJ Standard-0101.06. Ballistic Resistance of Body Armor. July.
  • NIJ. 1985. NIJ Standard-0108.01. Ballistic Resistant Protective Materials. September.
  • Tam T, Bhatnagar A. 2016. High-performance ballistic fibers and tapes. Honeywell International Inc., U. S. Lightweight Ballistic Composites, Military and Law-Enforcement Applications, 2nd Ed. Woodhead Publishing, London, UK, pp: 1-39.
  • Varma TV, Sarkar S. 2021. Designing polymer metamaterial for protective armor: A coarse-grained formulation. Meccanica, 56: 383-392.
  • Verdi A, Bulut MO. 2022. NIJ Standardı Seviye-IV korumalı zırh bileşenlerinin incelenmesi ve balistik koruma standartları. Teknik Bil Derg,12(1): 69-81.
  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES. 2016. Measurement of ballistic impact properties of woven kenaf–aramid hybrid composites. Measurement, 77: 335-343.

Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri

Year 2023, , 74 - 86, 01.04.2023
https://doi.org/10.34248/bsengineering.1240694

Abstract

Bu çalışmada, matris yapı malzemesi olarak genel kullanım amaçlı doymamış polyester reçine ile yapı oluşumu için gerekli bileşenler ve takviye malzemesi olarak dokuma E-cam elyaf kullanılmıştır. Kare ve daire kesitli olarak hazırlanan hedef kompozit plakaların üretiminde, elyaf tabaka sayısıyla birlikte kompozit plakaların kalınlıkları değişken olarak kullanılmıştır. Hedef kompozit plakalara, poligonda 10 m mesafeden, sırasıyla 22 kalibre ve 9 mm mermi atan iki farklı silah kullanarak atışlar yapılmıştır. Atışlar sonucunda, dokuma elyaf tabaka sayısının 9, plaka kalınlığının 12 mm’den daha fazla olması halinde, 9 mm mermi'ye karşı hedef kompozitin başarılı olduğu belirlenmiştir. Kompozit plakalar için koruma seviyesinin NIJ Standard-0101.06’ya göre IIA olduğu belirlenmiştir. Silahla atışlarda hedef hayati önem taşımaktadır ve bu çalışmada, merminin geçmesine engel olan hedef kompozit plaka özellikleri, belirlenen üretim çalışma parametrelerine göre sonuçlar vermiştir. Artan mermi kalibreleri için hedef kompozit üretim parametrelerinin dikkatli bir şekilde planlanması ve mutlaka saha atış deneylerinin yapılması gerekir.

References

  • Aguiar R, Petel OE, Miller RE. 2022. Effect of a Halloysite-polyurethane nanocomposite interlayer on the ballistic performance of laminate transparent armour. Composites Part C, 7: 100231.
  • Aisyah HA, Paridah MT, Sapuan SM. 2021. A Comprehensive review on advanced sustainable woven natural fibre polymer composites. Polymers, 13: 471.
  • Attwood JP, Khaderi SN, Karthikeyan K. 2014. The out-of-plane compressive response of Dyneemas composites. J Mechan Physics Solids, 70: 200-226.
  • Bitlisli B. 2019. Zırhlı araçlarda kullanılan kompozit zırh malzemelerinin balistik performanslarının incelenmesi. Yüksek Lisans Tezi, Bursa Uludağ Üniversitesi, Fen bilimleri Enstitüsü, Otomotiv Mühendisliği ABD, Bursa, Türkiye, pp: 89.
  • Bodepati VR, Reddy CJ, Vemuri M. 2020. Numerical prediction of damage mechanisms of E-Glass/epoxy composite material against ballistic impact of 7.62 MS projectile. Int J Protective Struct, 12(2): 206-225.
  • Carr DJ, Crawford C. 2016. High performance fabrics and 3D materials, Cranfield University at The Defence Academy of the UK, Shrivenham, United Kingdom. Lightweight Ballistic Composites, 2nd Ed., Military and Law-Enforcement Applications. Woodhead Publishing, London, UK, pp: 41-53.
  • Czech K, Oliwa R, Krajewski D. 2021. Hybrid polymer composites used in the arms ındustry: A review. Materials, 14: 3047.
  • Deora PS, Khurana M, Priya Muhal RA. 2022. A review on fibrous materials for body armor application. Materials Today, 60: 2230-2235.
  • Dragan K, Leski A. 2012. Failure of polymer matrix composites in defence applications. In: Robinson P, Greenhalgh E, Pinho S, editors. Failure mechanisms in polymer matrix composites: Criteria, testing and industrial applications. Woodhead Publishing, London, UK, pp: 272-299.
  • Farias-Aguilar JC, Ramı´rez-Moreno MJ, Gonzalez-Garcı´a DM. 2021. Evaluation of the ballistic protection level of (glass-fiber reinforced polyamide 6)-aramid fabric sandwich composite panels. J Mater Technol, 12: 1606-1614.
  • ISSF. 2017. International Shooting Sport Federation, ISSF Headquarters, Bavariaring 21, D-80336 München-Germany. Kurallar ve Genel Mevzuat. URL: https://www.issf-sports.org/ (erişim tarihi: 12 Ekim 2022).
  • Karthikeyan K, Russell BP, Fleck NA. 2013. The effect of shear strength on the ballistic response of laminated composite plates. European J Mechanics A/Solids, 42: 35-53.
  • Larsson F. 1997. Damage tolerance of a stitched carbon/epoxy laminate. Composites Part A, App Sci Manufact, 28(11): 923-934.
  • Larsson F, Svensson L. 2002. Carbon, polyethylene and PBO hybrid fibre composites for structural lightweight armour. Composites Part A, Applied Sci Manufact, 33(2): 221-231.
  • Morye SS, Hine PJ, Duckett RA. 2000. Modelling of the energy absorption by polymer composites upon ballistic impact. Composites Sci Technol, 60: 2631-2642.
  • NATO. 2004. NATO Standard. AEP-97. Multi Calibre Manual of Proof and Inspection (M-CMOPI) for NATO Small Arms Ammunition. URL: https://diweb.hq.nato.int/naag/Public%20Release%20Documents/AEP-97%20EDA%20V1%20E.pdf (erişim tarihi: 01 Aralık 2022).
  • Naveen J, Jawaid M, Goh KL, Reddy DM, Muthukumar C, Loganathan TM, Reshwanth KNGL. 2021. Advancement in graphene-based materials and their nacre ınspired composites for armour applications-A review. Nanomaterials, 11: 1239.
  • Naveen J, Jawaid M, Zainudin ES, Yahaya R. 2019. Effect of graphene nanoplatelets on the ballistic performance of hybrid Kevlar/Cocos nucifera sheath-reinforced epoxy composites. Textile Res J, 89 (21-22): 4349-4362.
  • Nayak N, Sivaraman P, Banerjee A. 2012. Effect of matrix on the ballistic impact of aramid fabric composite laminates by armor piercing projectiles. Polymer Composit, 33(3): 443-450.
  • NIJ. 2008. NIJ Standard-0101.06. Ballistic Resistance of Body Armor. July.
  • NIJ. 1985. NIJ Standard-0108.01. Ballistic Resistant Protective Materials. September.
  • Tam T, Bhatnagar A. 2016. High-performance ballistic fibers and tapes. Honeywell International Inc., U. S. Lightweight Ballistic Composites, Military and Law-Enforcement Applications, 2nd Ed. Woodhead Publishing, London, UK, pp: 1-39.
  • Varma TV, Sarkar S. 2021. Designing polymer metamaterial for protective armor: A coarse-grained formulation. Meccanica, 56: 383-392.
  • Verdi A, Bulut MO. 2022. NIJ Standardı Seviye-IV korumalı zırh bileşenlerinin incelenmesi ve balistik koruma standartları. Teknik Bil Derg,12(1): 69-81.
  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES. 2016. Measurement of ballistic impact properties of woven kenaf–aramid hybrid composites. Measurement, 77: 335-343.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Ergun Ateş 0000-0001-7611-4854

Publication Date April 1, 2023
Submission Date January 23, 2023
Acceptance Date March 10, 2023
Published in Issue Year 2023

Cite

APA Ateş, E. (2023). Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri. Black Sea Journal of Engineering and Science, 6(2), 74-86. https://doi.org/10.34248/bsengineering.1240694
AMA Ateş E. Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri. BSJ Eng. Sci. April 2023;6(2):74-86. doi:10.34248/bsengineering.1240694
Chicago Ateş, Ergun. “Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri”. Black Sea Journal of Engineering and Science 6, no. 2 (April 2023): 74-86. https://doi.org/10.34248/bsengineering.1240694.
EndNote Ateş E (April 1, 2023) Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri. Black Sea Journal of Engineering and Science 6 2 74–86.
IEEE E. Ateş, “Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri”, BSJ Eng. Sci., vol. 6, no. 2, pp. 74–86, 2023, doi: 10.34248/bsengineering.1240694.
ISNAD Ateş, Ergun. “Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri”. Black Sea Journal of Engineering and Science 6/2 (April 2023), 74-86. https://doi.org/10.34248/bsengineering.1240694.
JAMA Ateş E. Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri. BSJ Eng. Sci. 2023;6:74–86.
MLA Ateş, Ergun. “Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri”. Black Sea Journal of Engineering and Science, vol. 6, no. 2, 2023, pp. 74-86, doi:10.34248/bsengineering.1240694.
Vancouver Ateş E. Polimer Kompozitlerin Savunma Amaçlı Kullanılabilirliğinin Belirlemesi İçin Hafif Silahlarla Atış Denemeleri. BSJ Eng. Sci. 2023;6(2):74-86.

                                                24890