Research Article
BibTex RIS Cite

Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi

Year 2023, , 155 - 164, 01.07.2023
https://doi.org/10.34248/bsengineering.1265196

Abstract

Yapı tasarımı sürecinde zemin sınıfının doğru olarak tespit edilmesi oldukça önemlidir. Yapı-zemin etkileşiminde binalara etkiyen deprem yüklerini belirleyen en önemli parametrelerden birisi zemin hakim periyodudur. Zemin hakim periyodu ise ortalama kayma dalgası hızı ile ilişkilidir. Birçok deprem yönetmeliğinde zemin sınıflarının belirlenmesinde kullanılan önemli parametrelerden birisinin ortalama kayma dalgası hızı olduğu görülmektedir. Ortalama kayma dalgası hızı ve buradan hareketle zemin hakim periyodunun belirlenmesi ile ilgili literatürde ve farklı deprem yönetmeliklerinde önerilen birçok bağıntı bulunmaktadır. Bu çalışmada ilk olarak literatürde hali hazırda kullanılan yaklaşık bağıntılar irdelenmiş ve kesin çözüm olarak nitelendirilebilecek çözümle karşılaştırılmıştır. Çalışmada kesin çözüm olarak zemin hakim periyodu esas alınmıştır. Kesin çözüm için literatürde yer alan değiştirilmiş sonlu elemanlar taşıma matrisi yöntemi kullanılmıştır. Ayrıca bu yöntemi doğrulamak için Transfer Function Tool programı kullanılarak transfer fonksiyonları elde edilerek zemin hakim periyotları bulunmuştur. İki yöntemle elde edilen kesin periyot değerlerinin birebir aynı olduğu görülmüştür. Bu kapsamda zemin hakim periyodunun hesaplanması için biri kesin çözüm olmak üzere 6 farklı yöntem belirlenmiştir. Çalışmanın ikinci aşamasında ise Edirne ili sınırlarında bulunan 10 farklı sahadan alınan zemin etütleri incelenmiştir. İncelenen zemin etüt sonuçlarından faydalanılarak bu sahalara ait zemin profilleri belirlenmiştir. Ardından belirlenen zemin profilleri kullanılarak literatürde önerilen bağıntıların performansları irdelenmiştir. Çalışma sonucunda deprem yönetmelikleri arasında kesin çözüme en yakın sonucun Japon Deprem Yönetmeliğinin önerdiği bağıntıda gerçekleştiği sonucuna varılmıştır.

References

  • Babayev G, Telesca L. 2016. Site specific ground motion modeling and seismic response analysis for microzonation of Baku, Azerbaijan. Acta Geophys, 64: 2151–2170. https://doi.org/10.1515/acgeo-2016-0105.
  • BSSC (Building Seismic Safety Council). 2003. 2003 edition NEHRP recommended provisions for seismic regulations for new buildings and other structures. Part 1: provisions, FEMA, New York, USA, pp: 450.
  • Diaz-Segura EG. 2021. Evolution of seismic site classification according to the criteria in chilean design codes. Appl Sci, 11: 10754. https://doi.org/10.3390/app112210754.
  • Dobry R, Oweis I, Urzua A. 1976. Simplified procedures for estimating the fundamental period of a soil profile. Bullet Seismol Soc America, 66: 1293–1321. https://doi.org/10.1785/BSSA0660041293.
  • European Committee for Standardization (CEN). 2004. Eurocode 8: Design of structures for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings. EN, Brussels, Belgium, pp: 1998–2004.
  • Holtrigter M, Thorp A. 2021. The use of scpt and hvsr for site period and subsoil class estimation. NZGS Symposium, 24 – 26 March, Dunedin, New Zealand, pp: 21.
  • Kim DK. 2019. Evaluation of average shear-wave velocity estimation methods of multi-layered strata considering site period. J Earthquake Engin Soc Koreai 23: 191-199. https://doi.org/10.5000/eesk.2019.23.3.191.
  • Lee VW, Trifunac MD. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification. Soil Dynam Earthquake Engin, 30: 1250-1258. https://doi.org/10.1016/j.soildyn.2010.05.007.
  • Luzi L, Puglia R, Pacor E, Gallipoli MR, Bindi D, Mucciarelli. 2011. Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bullet Earthquake Engin, 9: 1877-1898. https://doi.org/10.1007/s10518-011-9274-2.
  • Mariano EM, Nakashima M, Mosalam KM. 2005. Comparison of European and Japanese seismic design of steel building structures. Engin Struct, 27(6): 827-840. https://doi.org/10.1016/j.engstruct.2005.01.004.
  • Miao Y, Wang SY. 2018. A study on the natural periods of soil site based on ground motion data from kik-net in Japan. Adv Soil Dynamics Foundation Engin, 36-43. https://doi.org/10.1007/978-981-13-0131-5_4.
  • Ozturk D, Bozdogan KB. 2017. A method for determination of the fundamental period of layered soil profiles. J Appl Computat Mechan, 3(4): 267-273. https://doi.org/10.22055/jacm.2017.21810.1116.
  • Raddatz D, Aguirre G, Taiba O. 2021. Seismic soil classification using a new standard proposal and comparison with the current standard for sites located in Reñaca and Concón. Obras y Proyectos, 30: 30-38.
  • Sadek M, Hussein M, Hage CF, Arab A. 2020. Influence of soil–structure interaction on the fundamental frequency of shear wall structures. Arabian J Geosci, 13: 877. https://doi.org/10.1007/s12517-020-05872-z.
  • Sil A, Sitharam TG. 2014. Dynamic site characterization and correlation of shear wave velocity with standard penetration test ‘N’ values for the city of Agartala, Tripura State, India. Pure Appl Geophys, 171: 1859–1876. https://doi.org/10.1007/s00024-013-0754-y.
  • Takabatake H, Kitada Y, Takewaki I, Kishida A. 2019. Simplified dynamic analysis of high-rise buildings. Springer, Nature Singapore Pte Ltd., London, UK, pp: 277. https://doi.org/10.1007/978-981-13-7185-1_1.
  • Tena-Colunga A, Mena-Hernandez U, Perez-Rocha LE, Javier A, Ordaz M, Vilar JI. 2009. Updated seismic design guidelines for model building code of mexico. Earthquake Spect, 25(4): 869-898. https://doi.org/10.1193/1.3240413
  • Türkiye Bina Deprem Yönetmeliği. 2018. Afet ve acil durum daire başkanlığı. URL: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2-1.pdf (Erişim tarihi: 23 Mart 2022).
  • Verdugo R. 2019. Seismic site classification. Soil Dynam Earthquake Engin, 124(2019): 317-329. https://doi.org/10.1016/j.soildyn.2018.04.045.
  • Wang S, Shi Y, Jiang W, Yao E, Miao Y. 2018. Estimating site fundamental period from shear-wave velocity profile. Bullet Seismol Soc America. 108(6): 3431-3445. https://doi.org/10.1785/0120180103.
  • Yaghmaei-Sabegh S, Rupakhety R. 2020. A new method of seismic site classification using HVSR curves: A case study of the 12 November 2017 Mw 7.3 Ezgeleh earthquake in Iran. Engin Geology, 270: 105574. https://doi.org/10.1016/j.enggeo.2020.105574.
  • Zhang H, Zhao Y. 2018. A simple approach for estimating the first resonance peak of layered soil profiles. J Earthquake Tsunami, 12(1): 1850005 (2018). https://doi.org/10.1142/S1793431118500057.
  • Zhang H, Zhao Y. 2021. Effect of radiation damping on the fundamental period of linear soil profiles. J Earthquake Engin, 26(12): 6082-6101. https://doi.org/10.1080/13632469.2021.1911884.

Determination of the Average Shear Velociy with Different Methods and Evaluation of Edirne Province

Year 2023, , 155 - 164, 01.07.2023
https://doi.org/10.34248/bsengineering.1265196

Abstract

It is very important to determine the soil class correctly in the building design process. One of the most important parameters determining the earthquake loads acting on the buildings in the soil -structure interaction is the fundamental soil period. The fundamental soil period is related to the average shear wave velocity. It is seen that one of the important parameters used in the determination of soil classes in many earthquake codes is the average shear wave velocity. There are many correlations proposed in the literature and different earthquake codes for the determination of average shear wave velocity and fundamental soil period. Within the scope of the study, firstly, the approximate relations currently used in the literature were examined and compared with the solution that can be described as the exact solution. In the study, the fundamental soil period was taken as an exact solution. For the exact solution, the modified finite element transfer matrix method in the literature was used. In addition, to verify this method, transfer functions were obtained using the Transfer Function Tool program, and fundamental soil periods were found. It has been observed that the exact period values obtained by the two methods are exactly the same. In this context, 6 different methods, one of which is the exact solution, have been determined for the calculation of the fundamental soil period. In the second stage of the study, soil surveys taken from 10 different site within the borders of Edirne province were examined. Soil profiles of these sites were determined by using the soil survey results. Then, using the determined soil profiles, the performances of the relations suggested in the literature were examined. As a result of the study, it was concluded that the closest result to the final solution among earthquake regulations was realized in the correlation suggested by the Japanese Earthquake Code.

References

  • Babayev G, Telesca L. 2016. Site specific ground motion modeling and seismic response analysis for microzonation of Baku, Azerbaijan. Acta Geophys, 64: 2151–2170. https://doi.org/10.1515/acgeo-2016-0105.
  • BSSC (Building Seismic Safety Council). 2003. 2003 edition NEHRP recommended provisions for seismic regulations for new buildings and other structures. Part 1: provisions, FEMA, New York, USA, pp: 450.
  • Diaz-Segura EG. 2021. Evolution of seismic site classification according to the criteria in chilean design codes. Appl Sci, 11: 10754. https://doi.org/10.3390/app112210754.
  • Dobry R, Oweis I, Urzua A. 1976. Simplified procedures for estimating the fundamental period of a soil profile. Bullet Seismol Soc America, 66: 1293–1321. https://doi.org/10.1785/BSSA0660041293.
  • European Committee for Standardization (CEN). 2004. Eurocode 8: Design of structures for earthquake resistance, Part 1: general rules, seismic actions and rules for buildings. EN, Brussels, Belgium, pp: 1998–2004.
  • Holtrigter M, Thorp A. 2021. The use of scpt and hvsr for site period and subsoil class estimation. NZGS Symposium, 24 – 26 March, Dunedin, New Zealand, pp: 21.
  • Kim DK. 2019. Evaluation of average shear-wave velocity estimation methods of multi-layered strata considering site period. J Earthquake Engin Soc Koreai 23: 191-199. https://doi.org/10.5000/eesk.2019.23.3.191.
  • Lee VW, Trifunac MD. 2010. Should average shear-wave velocity in the top 30 m of soil be used to describe seismic amplification. Soil Dynam Earthquake Engin, 30: 1250-1258. https://doi.org/10.1016/j.soildyn.2010.05.007.
  • Luzi L, Puglia R, Pacor E, Gallipoli MR, Bindi D, Mucciarelli. 2011. Proposal for a soil classification based on parameters alternative or complementary to Vs,30. Bullet Earthquake Engin, 9: 1877-1898. https://doi.org/10.1007/s10518-011-9274-2.
  • Mariano EM, Nakashima M, Mosalam KM. 2005. Comparison of European and Japanese seismic design of steel building structures. Engin Struct, 27(6): 827-840. https://doi.org/10.1016/j.engstruct.2005.01.004.
  • Miao Y, Wang SY. 2018. A study on the natural periods of soil site based on ground motion data from kik-net in Japan. Adv Soil Dynamics Foundation Engin, 36-43. https://doi.org/10.1007/978-981-13-0131-5_4.
  • Ozturk D, Bozdogan KB. 2017. A method for determination of the fundamental period of layered soil profiles. J Appl Computat Mechan, 3(4): 267-273. https://doi.org/10.22055/jacm.2017.21810.1116.
  • Raddatz D, Aguirre G, Taiba O. 2021. Seismic soil classification using a new standard proposal and comparison with the current standard for sites located in Reñaca and Concón. Obras y Proyectos, 30: 30-38.
  • Sadek M, Hussein M, Hage CF, Arab A. 2020. Influence of soil–structure interaction on the fundamental frequency of shear wall structures. Arabian J Geosci, 13: 877. https://doi.org/10.1007/s12517-020-05872-z.
  • Sil A, Sitharam TG. 2014. Dynamic site characterization and correlation of shear wave velocity with standard penetration test ‘N’ values for the city of Agartala, Tripura State, India. Pure Appl Geophys, 171: 1859–1876. https://doi.org/10.1007/s00024-013-0754-y.
  • Takabatake H, Kitada Y, Takewaki I, Kishida A. 2019. Simplified dynamic analysis of high-rise buildings. Springer, Nature Singapore Pte Ltd., London, UK, pp: 277. https://doi.org/10.1007/978-981-13-7185-1_1.
  • Tena-Colunga A, Mena-Hernandez U, Perez-Rocha LE, Javier A, Ordaz M, Vilar JI. 2009. Updated seismic design guidelines for model building code of mexico. Earthquake Spect, 25(4): 869-898. https://doi.org/10.1193/1.3240413
  • Türkiye Bina Deprem Yönetmeliği. 2018. Afet ve acil durum daire başkanlığı. URL: https://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2-1.pdf (Erişim tarihi: 23 Mart 2022).
  • Verdugo R. 2019. Seismic site classification. Soil Dynam Earthquake Engin, 124(2019): 317-329. https://doi.org/10.1016/j.soildyn.2018.04.045.
  • Wang S, Shi Y, Jiang W, Yao E, Miao Y. 2018. Estimating site fundamental period from shear-wave velocity profile. Bullet Seismol Soc America. 108(6): 3431-3445. https://doi.org/10.1785/0120180103.
  • Yaghmaei-Sabegh S, Rupakhety R. 2020. A new method of seismic site classification using HVSR curves: A case study of the 12 November 2017 Mw 7.3 Ezgeleh earthquake in Iran. Engin Geology, 270: 105574. https://doi.org/10.1016/j.enggeo.2020.105574.
  • Zhang H, Zhao Y. 2018. A simple approach for estimating the first resonance peak of layered soil profiles. J Earthquake Tsunami, 12(1): 1850005 (2018). https://doi.org/10.1142/S1793431118500057.
  • Zhang H, Zhao Y. 2021. Effect of radiation damping on the fundamental period of linear soil profiles. J Earthquake Engin, 26(12): 6082-6101. https://doi.org/10.1080/13632469.2021.1911884.
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Erdinç Keskin 0000-0002-8728-2906

Kanat Burak Bozdoğan 0000-0001-7528-2418

Early Pub Date June 18, 2023
Publication Date July 1, 2023
Submission Date March 14, 2023
Acceptance Date April 10, 2023
Published in Issue Year 2023

Cite

APA Keskin, E., & Bozdoğan, K. B. (2023). Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi. Black Sea Journal of Engineering and Science, 6(3), 155-164. https://doi.org/10.34248/bsengineering.1265196
AMA Keskin E, Bozdoğan KB. Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi. BSJ Eng. Sci. July 2023;6(3):155-164. doi:10.34248/bsengineering.1265196
Chicago Keskin, Erdinç, and Kanat Burak Bozdoğan. “Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi Ve Edirne İli Özelinde Değerlendirilmesi”. Black Sea Journal of Engineering and Science 6, no. 3 (July 2023): 155-64. https://doi.org/10.34248/bsengineering.1265196.
EndNote Keskin E, Bozdoğan KB (July 1, 2023) Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi. Black Sea Journal of Engineering and Science 6 3 155–164.
IEEE E. Keskin and K. B. Bozdoğan, “Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi”, BSJ Eng. Sci., vol. 6, no. 3, pp. 155–164, 2023, doi: 10.34248/bsengineering.1265196.
ISNAD Keskin, Erdinç - Bozdoğan, Kanat Burak. “Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi Ve Edirne İli Özelinde Değerlendirilmesi”. Black Sea Journal of Engineering and Science 6/3 (July 2023), 155-164. https://doi.org/10.34248/bsengineering.1265196.
JAMA Keskin E, Bozdoğan KB. Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi. BSJ Eng. Sci. 2023;6:155–164.
MLA Keskin, Erdinç and Kanat Burak Bozdoğan. “Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi Ve Edirne İli Özelinde Değerlendirilmesi”. Black Sea Journal of Engineering and Science, vol. 6, no. 3, 2023, pp. 155-64, doi:10.34248/bsengineering.1265196.
Vancouver Keskin E, Bozdoğan KB. Ortalama Kayma Dalgası Hızının Farklı Yöntemlerle Belirlenmesi ve Edirne İli Özelinde Değerlendirilmesi. BSJ Eng. Sci. 2023;6(3):155-64.

                                                24890