Research Article
BibTex RIS Cite

Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi

Year 2023, , 185 - 192, 01.07.2023
https://doi.org/10.34248/bsengineering.1273089

Abstract

İnsansız hava araçları(İHA) son yıllarda popülerliği artan hava araçları olarak endüstriyel ve bilimsel çevrede dikkatleri üzerine çekmektedir. İHA’lar üzerinde bulundurduğu rotor sayısına göre isimlendirilir. Bu çalışmada döner kanat kategorisinde ve sekiz rotora sahip bir octorotor incelenmiştir. Çalışma kapsamında octorotor kol uzunlukları değiştirilerek(uzatılarak ya da kısaltılarak) başkalaşım uygulanmıştır. Başkalaşım, İHA’larda son yıllarda uçuş üzerine olan etkisinin incelenmesi konusunda araştırmacılar tarafından tercih edilen yöntem olmuştur. Başkalaşım döner kanatlı İHA’larda en yaygın olarak kol uzunluklarının eşzamanlı ya da eş zamanlı olmayan bir şekilde değiştirilmesi ile gerçekleştirilmektedir. Başkalaşımın boylamasına uçuşa olan etkisi yükselme zamanı, yerleşme zamanı ve aşım gibi parametreler kontrol edilerek incelenmiştir. Octorotor tam modeli ve başkalaşım durumuna ait dört adet modeli Solidworks çizim programında gerçeğine uygun olarak çizilmiştir. Ardından buradan elde edilen kütle ve eylemsizlik momenti değerleri ile durum uzay modeli yaklaşımı kullanılarak Matlab/Simulink ortamında 1ᵒ’lik yörüngeyi izleyen boylamasına uçuş simülasyonları oransal-integral-türev (PID) kontrol algoritması ile gerçekleştirilmiştir. Octorotor matematiksel modeli için Newton Euler yöntemi kullanılmıştır. Bu yöntemde doğrusal olmayan yapıya sahip hareket denklemleri doğrusal denklemlere dönüştürülmüştür. Simülasyonlarda verilen yörünge başarılı bir şekilde izlenmiş ve tasarım performans kriterlerine göre değerlendirmeler yapılmıştır.

References

  • Ahmadian N, Lim GJ, Torabbeigi M, Kim SJ. 2022. Smart border patrol using drones and wireless charging system under budget limitation. Comput Indust Engin, 164: 107891. doi: 10.1016/j.cie.2021.107891.
  • Bai Y. 2017. Control and simulation of morphing quadcopter. MSc thesis, Saint Louis University, Institute of Science, Missouri, USA, pp: 72.
  • Chen X, Li G, Yang L, Nie Q, Ye X, Liang Y, Xu T. 2020. Profiling unmanned aerial vehicle photography tourists. Current Issue Tourism, 23(14): 1705–1710. doi: 10.1080/13683500.2019.1653832.
  • Clarke DW. 1984. PID algorithms and their computer implementation. Transact Instit Measure Control, 6(6): 305–316. doi: 10.1177/014233128400600605.
  • Estrada MAR, Ndoma A. 2019. The uses of unmanned aerial vehicles -UAV’s- (or drones): in social logistic: Natural disasters response and humanitarian relief aid. Proc Comput Sci, 149: 375–383. doi: 10.1016/j.procs.2019.01.151.
  • Gupta H, Verma OP. 2022. Monitoring and surveillance of urban road traffic using low altitude drone images: a deep learning approach. Multimed Tools Applicat, 81(14): 19683–19703. doi: 10.1007/s11042-021-11146-x.
  • Hemza S, Boualem D. 2018. Study and realization of a prototype octocopter system with PID controller. Inter J Vehicle Struct Systems, 10(4): 273–277. doi: 10.4273/ijvss.10.4.09.
  • Iwata K, Onda M, Sano M, Komoriya K. 2007. UAV for small cargo transportation. AIAA InfoTech at Aerospace Conference, 7-10 May, California, USA, pp: 734–739. doi: 10.2514/6.2007-2784.
  • Kose O. 2021. İnovatif yöntemlerle kuadkopter modellenmesi kontrolü ve gerçek zamanlı uygulamaları. Doktora Tezi, Erciyes Üniversitesi, Fenbilimleri Enstitüsü, Kayseri, Türkiye, ss: 127.
  • Kose Oguz Oktay T. 2020a. Investigation of the effect of differential morphing on forward flight by using PID algorithm in quadrotors. J Aviation, 4(1): 15–21.
  • Kose Oguz Oktay T. 2020b. Investigation of the effect of differential morphing on lateral flight by using PID algorithm in quadrotors. European J Sci Technol, 18 636–644. doi: 10.31590/ejosat.702727.
  • Kose Oguz Oktay T. 2022. Hexarotor yaw flight control with SPSA PID algorithm and morphing. Inter J Intel Systems Applicat Engin, 10(2): 216–221. doi: 10.1039/b000000x.
  • Kose Oguz Oktay T. 2023. Simultaneous design of morphing hexarotor and autopilot system by using deep neural network and SPSA. Aircraft Engin Aerospace Technol, 95(6): 0002-2667. doi: 10.1108/AEAT-07-2022-0178.
  • Kurak S, Hodzic M. 2018. Control and estimation of a quadcopter dynamical model. Period Engin Nat Sci, 6(1): 63–75. doi: 10.21533/pen.v6i1.164.
  • Le D.-K, Nam T.-K. 2015. A study on the modeling of a hexacopter. J Korean Soci Marine Engin, 39(10): 1023–1030. doi: 10.5916/jkosme.2015.39.10.1023.
  • Mademlis I, Torres-González A, Capitán J, Montagnuolo M, Messina A, Negro F, Le Barz C, Gonçalves T, Cunha R, Guerreiro B, Zhang F, Boyle S, Guerout G, Tefas A, Nikolaidis N, Bull D, Pitas I. 2023. A multiple-UAV architecture for autonomous media production. Multimedia Tools Applicat, 82(2): 1905–1934. doi: 10.1007/s11042-022-13319-8.
  • Oktay T, Coban S. 2017. Lateral autonomous performance maximization of tactical unmanned aerial vehicles by integrated passive and active morphing. Inter J Adv Res Engin, 3(1): 1. doi: 10.24178/ijare.2017.3.1.01.
  • Sadeghi PS, Shahri AM, Ardestani MA, Rezazadeh S. 2016. LQG-I control for attitude stabilization of V8 octorotor flying robot. 2016 Artificial Intell Robot IRANOPEN, 2016: 151–157. doi: 10.1109/RIOS.2016.7529506.
  • Şahin H, Kose O, Oktay T. 2022. Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircraft Engin Aerospace Technol, 94(8): 1228–1241. doi: 10.1108/AEAT-06-2021-0180.
  • Sharipov D, Abdullaev Z, Tazhiev Z, Khafizov O. 2019. Implementation of a mathematical model of a hexacopter control system. International Conference on Information Science and Communications Technologies: Applications Trends and Opportunities ICISCT, 3-4 November, Tashkent, Uzbekistan, pp: 1-5. doi: 10.1109/ICISCT47635.2019.9011842.
  • Singhal G, Bansod B, Mathew L. 2018. Unmanned aerial vehicle classification applications and challenges: A review. Preprint, 1–19. doi: 10.20944/preprints201811.0601.v1.
  • Oktay T, Kose O. 2020a. Simultaneous quadrotor autopilot system and collective morphing system design. Aircraft Engin Aerospace Technol, 92(7): 1093–1100. doi: 10.1108/AEAT-01-2020-0026.
  • Oktay T, Kose O. 2020b. Hover control with differential and collective morphing in quadrotors. 10th International Conference on Mathematics Engin Natural and Medical Sciences, 5-7 May 2020, Batumi, Georgia, pp: 124–132.
  • Wang P, Man Z, Cao Z, Zheng J, Zhao Y. 2016. Dynamics modelling and linear control of quadcopter. International Conference on Advanced Mechatronic Systems ICAMechS, November 30 - December 3, Melbourne, Australia, pp: 498–503. doi: 10.1109/ICAMechS.2016.7813499.
  • Wilcox L. 2015. Drone warfare and the making of bodies out of place. Crit Stud Secur, 3(1): 127–131. doi: 10.1080/21624887.2015.1005422.

Effect of Morphing on Octorotor Longitudinal Flight

Year 2023, , 185 - 192, 01.07.2023
https://doi.org/10.34248/bsengineering.1273089

Abstract

Unmanned aerial vehicles (UAVs) have attracted attention in industrial and scientific environment as air vehicles that have increased in popularity in recent years. UAVs are named according to the number of rotors on them. In this study, an octorotor in the rotary wing category with eight rotors is analysed. Within the scope of the study, morphing was applied by changing (lengthening or shortening) the octorotor arm lengths. In recent years, morphing has been the method preferred by researchers to examine the effect on flight in UAVs. Morphing is most commonly performed by changing the arm lengths collectively or differentially in rotary wing UAVs. Effect of morphing on longitudinal flight was analysed by controlling parameters such as rise time, settling time and overshoot. The full model of the octorotor and four models of the morphing state were drawn in Solidworks drawing program in accordance with the reality. Then, with the mass and inertia moments values obtained from here, longitudinal flight simulations following a 1ᵒ trajectory in Matlab/Simulink environment with the state space model approach were performed with the proportional-integral-derivative (PID) control algorithm. Newton Euler method was used for the mathematical model of the octorotor. In this method, equations of motion with nonlinear structure are transformed into linear equations. In the simulations, the given trajectory was successfully followed and evaluated according to the design performance criteria.

References

  • Ahmadian N, Lim GJ, Torabbeigi M, Kim SJ. 2022. Smart border patrol using drones and wireless charging system under budget limitation. Comput Indust Engin, 164: 107891. doi: 10.1016/j.cie.2021.107891.
  • Bai Y. 2017. Control and simulation of morphing quadcopter. MSc thesis, Saint Louis University, Institute of Science, Missouri, USA, pp: 72.
  • Chen X, Li G, Yang L, Nie Q, Ye X, Liang Y, Xu T. 2020. Profiling unmanned aerial vehicle photography tourists. Current Issue Tourism, 23(14): 1705–1710. doi: 10.1080/13683500.2019.1653832.
  • Clarke DW. 1984. PID algorithms and their computer implementation. Transact Instit Measure Control, 6(6): 305–316. doi: 10.1177/014233128400600605.
  • Estrada MAR, Ndoma A. 2019. The uses of unmanned aerial vehicles -UAV’s- (or drones): in social logistic: Natural disasters response and humanitarian relief aid. Proc Comput Sci, 149: 375–383. doi: 10.1016/j.procs.2019.01.151.
  • Gupta H, Verma OP. 2022. Monitoring and surveillance of urban road traffic using low altitude drone images: a deep learning approach. Multimed Tools Applicat, 81(14): 19683–19703. doi: 10.1007/s11042-021-11146-x.
  • Hemza S, Boualem D. 2018. Study and realization of a prototype octocopter system with PID controller. Inter J Vehicle Struct Systems, 10(4): 273–277. doi: 10.4273/ijvss.10.4.09.
  • Iwata K, Onda M, Sano M, Komoriya K. 2007. UAV for small cargo transportation. AIAA InfoTech at Aerospace Conference, 7-10 May, California, USA, pp: 734–739. doi: 10.2514/6.2007-2784.
  • Kose O. 2021. İnovatif yöntemlerle kuadkopter modellenmesi kontrolü ve gerçek zamanlı uygulamaları. Doktora Tezi, Erciyes Üniversitesi, Fenbilimleri Enstitüsü, Kayseri, Türkiye, ss: 127.
  • Kose Oguz Oktay T. 2020a. Investigation of the effect of differential morphing on forward flight by using PID algorithm in quadrotors. J Aviation, 4(1): 15–21.
  • Kose Oguz Oktay T. 2020b. Investigation of the effect of differential morphing on lateral flight by using PID algorithm in quadrotors. European J Sci Technol, 18 636–644. doi: 10.31590/ejosat.702727.
  • Kose Oguz Oktay T. 2022. Hexarotor yaw flight control with SPSA PID algorithm and morphing. Inter J Intel Systems Applicat Engin, 10(2): 216–221. doi: 10.1039/b000000x.
  • Kose Oguz Oktay T. 2023. Simultaneous design of morphing hexarotor and autopilot system by using deep neural network and SPSA. Aircraft Engin Aerospace Technol, 95(6): 0002-2667. doi: 10.1108/AEAT-07-2022-0178.
  • Kurak S, Hodzic M. 2018. Control and estimation of a quadcopter dynamical model. Period Engin Nat Sci, 6(1): 63–75. doi: 10.21533/pen.v6i1.164.
  • Le D.-K, Nam T.-K. 2015. A study on the modeling of a hexacopter. J Korean Soci Marine Engin, 39(10): 1023–1030. doi: 10.5916/jkosme.2015.39.10.1023.
  • Mademlis I, Torres-González A, Capitán J, Montagnuolo M, Messina A, Negro F, Le Barz C, Gonçalves T, Cunha R, Guerreiro B, Zhang F, Boyle S, Guerout G, Tefas A, Nikolaidis N, Bull D, Pitas I. 2023. A multiple-UAV architecture for autonomous media production. Multimedia Tools Applicat, 82(2): 1905–1934. doi: 10.1007/s11042-022-13319-8.
  • Oktay T, Coban S. 2017. Lateral autonomous performance maximization of tactical unmanned aerial vehicles by integrated passive and active morphing. Inter J Adv Res Engin, 3(1): 1. doi: 10.24178/ijare.2017.3.1.01.
  • Sadeghi PS, Shahri AM, Ardestani MA, Rezazadeh S. 2016. LQG-I control for attitude stabilization of V8 octorotor flying robot. 2016 Artificial Intell Robot IRANOPEN, 2016: 151–157. doi: 10.1109/RIOS.2016.7529506.
  • Şahin H, Kose O, Oktay T. 2022. Simultaneous autonomous system and powerplant design for morphing quadrotors. Aircraft Engin Aerospace Technol, 94(8): 1228–1241. doi: 10.1108/AEAT-06-2021-0180.
  • Sharipov D, Abdullaev Z, Tazhiev Z, Khafizov O. 2019. Implementation of a mathematical model of a hexacopter control system. International Conference on Information Science and Communications Technologies: Applications Trends and Opportunities ICISCT, 3-4 November, Tashkent, Uzbekistan, pp: 1-5. doi: 10.1109/ICISCT47635.2019.9011842.
  • Singhal G, Bansod B, Mathew L. 2018. Unmanned aerial vehicle classification applications and challenges: A review. Preprint, 1–19. doi: 10.20944/preprints201811.0601.v1.
  • Oktay T, Kose O. 2020a. Simultaneous quadrotor autopilot system and collective morphing system design. Aircraft Engin Aerospace Technol, 92(7): 1093–1100. doi: 10.1108/AEAT-01-2020-0026.
  • Oktay T, Kose O. 2020b. Hover control with differential and collective morphing in quadrotors. 10th International Conference on Mathematics Engin Natural and Medical Sciences, 5-7 May 2020, Batumi, Georgia, pp: 124–132.
  • Wang P, Man Z, Cao Z, Zheng J, Zhao Y. 2016. Dynamics modelling and linear control of quadcopter. International Conference on Advanced Mechatronic Systems ICAMechS, November 30 - December 3, Melbourne, Australia, pp: 498–503. doi: 10.1109/ICAMechS.2016.7813499.
  • Wilcox L. 2015. Drone warfare and the making of bodies out of place. Crit Stud Secur, 3(1): 127–131. doi: 10.1080/21624887.2015.1005422.
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Articles
Authors

Oguz Kose 0000-0002-8069-8749

Early Pub Date June 19, 2023
Publication Date July 1, 2023
Submission Date March 29, 2023
Acceptance Date April 17, 2023
Published in Issue Year 2023

Cite

APA Kose, O. (2023). Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi. Black Sea Journal of Engineering and Science, 6(3), 185-192. https://doi.org/10.34248/bsengineering.1273089
AMA Kose O. Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi. BSJ Eng. Sci. July 2023;6(3):185-192. doi:10.34248/bsengineering.1273089
Chicago Kose, Oguz. “Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi”. Black Sea Journal of Engineering and Science 6, no. 3 (July 2023): 185-92. https://doi.org/10.34248/bsengineering.1273089.
EndNote Kose O (July 1, 2023) Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi. Black Sea Journal of Engineering and Science 6 3 185–192.
IEEE O. Kose, “Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi”, BSJ Eng. Sci., vol. 6, no. 3, pp. 185–192, 2023, doi: 10.34248/bsengineering.1273089.
ISNAD Kose, Oguz. “Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi”. Black Sea Journal of Engineering and Science 6/3 (July 2023), 185-192. https://doi.org/10.34248/bsengineering.1273089.
JAMA Kose O. Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi. BSJ Eng. Sci. 2023;6:185–192.
MLA Kose, Oguz. “Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi”. Black Sea Journal of Engineering and Science, vol. 6, no. 3, 2023, pp. 185-92, doi:10.34248/bsengineering.1273089.
Vancouver Kose O. Başkalaşımın Octorotor Boylamasına Uçuşuna Etkisi. BSJ Eng. Sci. 2023;6(3):185-92.

                                                24890