Research Article
BibTex RIS Cite

Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges

Year 2023, , 557 - 571, 15.10.2023
https://doi.org/10.34248/bsengineering.1357849

Abstract

Power electronics stand as the cornerstone of our electrified world, and versatile DC-DC converters are a key component of this technology. In this comprehensive analysis, we investigate deeply the realm of DC-DC converters, examining their pivotal role in modern power systems. From the evolution of converter topologies to their wide-ranging applications, we explore the advancements that propel this field forward. Whether maintaining continuous power in portable devices or facilitating renewable energy integration, DC-DC converters are the fundamental components. Yet, they face formidable challenges, from complex control strategies to voltage stress management. This study reveals the complex configuration of DC-DC converters, detailing a narrative of adaptability, resilience, and innovation in response to the increasing energy demands of our time.

References

  • Alhurayyis I, Elkhateb A, Morrow J. 2020. Isolated and nonisolated dc-to-dc converters for medium-voltage dc networks: a review. IEEE J Emerg Sel, 9(6): 7486-500.
  • Al-Obaidi NA, Abbas RA, Khazaal HF. 2022. A review of non-isolated bidirectional dc-dc converters for hybrid energy storage system. In: 5th International Conference On Engineering Technology And Its Applications (IICETA), 31 May - 1 June, Al-Najaf, Iraq, pp: 248-253.
  • Bakas P, Harnefors L, Norrga S,Nami A, Ilves K, Dijkhuizen F, Nee HP. 2016. A review of hybrid topologies combining line-commutated and cascaded full-bridge converters. IEEE J Emerg Sel, 32(10): 7435-48.
  • Basso C. 2008. Switch-mode power supplies: spice simulations and practical designs. McGraw-Hill, New York, USA, 2th ed., pp: 321.
  • Chen J, MaksimoviC D, Erickson R. 2001. Buck-boost pwm converters having two independently controlled switches. In: IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), 17-21 June, Vancouver, BC, Canada, pp: 736-741.
  • Chen, W, Lee FC, Jovanovic MM, Sabate JA. 1995. A comparative study of a class of full bridge zero-voltage-switched pwm converters. In: Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition-APEC'95, 5-9 March, Dallas, TX, USA, pp: 893-899.
  • Chen W, Xu P, Lee FC. 2001. The optimization of asymmetric half bridge converter. In: Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 01CH37181), 4-8 March, Anaheim, CA, USA, pp: 703-707.
  • Davari P, Zare F, Ghosh A, Akiyama H. 2012. High-voltage modular power supply using parallel and series configurations of flyback converter for pulsed power applications. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc, 40(10): 2578-87.
  • Erickson R, Madigan M, Singer S. 1990. Design of a simple high-power-factor rectifier based on the flyback converter. In: Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, 11-16 March, Los Angeles, CA, USA, pp: 792-801.
  • Erickson R, Dragan M. 2007. Fundamentals of power electronics. Springer science & business media, London, UK, 2th ed., pp: 253.
  • Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. 2017. Step-up dc–dc converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron, 32(12): 9143-78.
  • Gorji SA, Mostaan A, My HT, Ektesabi M. 2019. Non‐isolated buck–boost dc–dc converter with quadratic voltage gain ratio. IET Power Electron, 12(6): 1425-33.
  • Hossain MZ, Rahim NA. 2018. Recent progress and development on power dc-dc converter topology, control, design and applications: a review. Renew. Sust Energ Rev, 81:205-30.
  • İnci M, Büyük M, Demir MH, İlbey G. 2021. A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renew Sust Energ Rev, 137: 110648.
  • Ivanovic Z, Knezic M. 2022. Modeling push–pull converter for efficiency improvement. J Electron, 11(17): 2713.
  • Kazimierczuk MK. 2015. Pulse-width modulated dc-dc power converters: John Wiley & Sons, London, UK, pp: 143.
  • Khaligh A, Onar OC. 2017. Energy harvesting: solar, wind, and ocean energy conversion systems, CRC press, London, UK, pp: 218.
  • Kim EH, Kwon BH. 2009. High step-up resonant push–pull converter with high efficiency. IET Power Electron, 2(1): 79-89.
  • Kim YH, Soo CS, Lee JH, Yong CJ, Chung YW. 2013. Soft-switching current-fed push–pull converter for 250-w ac module applications. IEEE Trans Power Electron, 29(2): 863-872.
  • Krishnan R. 2017. Switched reluctance motor drives: modeling, simulation, analysis, design, and applications: CRC press, London, UK, pp: 142.
  • Kundu U, Yenduri K, Sensarma P. 2016. Accurate zvs analysis for magnetic design and efficiency improvement of full-bridge llc resonant converter. IEEE Trans Power Electron, 32(3): 1703-1706.
  • Li Z, Ruopei Z, Yazhou L, Yan H, Jinming H, Xiaoling Z, Xiao-Ping Z. 2018. Recent developments in HVDC transmission systems to support renewable energy integration. Glob Energy Interconnect, 1(5): 595-607.
  • Lipo TA. 2017. Introduction to ac machine design. John Wiley & Sons, London, UK, pp: 154.
  • Luo FL, Ye H. 2016. Advanced Dc/Dc converters. CRC press, London, UK, pp: 125.
  • Mohan N, Undeland TM, Robbins WP. 2003. Power electronics: converters, applications, and design: John Wiley & Sons, London, UK, pp: 121.
  • Mumtaz F, Yahaya NZ, Meraj ST, Singh B, Kannan R, Ibrahim O. 2021. Review on non-isolated dc-dc converters and their control techniques for renewable energy applications. Ain Shams Eng J, 12(4): 3747-3763.
  • Nouri T, Nouri N, Vosoughi N. 2019. A novel high step-up high efficiency interleaved dc–dc converter with coupled inductor and built-in transformer for renewable energy systems. IEEE Trans Power Electron, 67(8): 6505-6516.
  • Park J, Kim M, Choi S. 2014. Zero‐current switching series loaded resonant converter insensitive to resonant component tolerance for battery charger. IET Power Electron, 7(10): 2517-2524.
  • Pressman A. 2009. Switching power supply design. McGraw-Hill Education, London, UK, pp: 102.
  • Raghavendra KVG, Zeb K, Muthusamy A, Krishna TNV, Kumar SVSVP, Kim DH, Kim MS, Cho HG, Kim HJ. 2019. A comprehensive review of dc–dc converter topologies and modulation strategies with recent advances in solar photovoltaic systems. J Electron, 9(1): 31.
  • Rashid MH. 2010. Power electronics circuits devices and application. Pearson, London, UK, pp: 101.
  • Rashid MH. 2017. Power electronics handbook. Butterworth-heinemann, London, UK, pp: 124.
  • Revathi BS, Prabhakar M. 2016. Non isolated high gain dc-dc converter topologies for pv applications–a comprehensive review. Renew Sust Energ Rev, 66: 920-933.
  • Saeedifard M, Graovac M, Dias RF, Iravani R. 2010. Dc power systems: challenges and opportunities. In: IEEE PES general meeting: IEEE, 25-29 July, Minneapolis, MN, USA, pp: 1-7
  • Skvarenina T. L. 2018. The power electronics handbook. CRC press, London, UK, pp: 97.
  • Steigerwald RL. 1988. A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron, 3(2): 174-182.
  • Tan FD. 2002. The forward converter: from the classic to the contemporary. In: APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), 10-14 March, Dallas, TX, USA, pp: 857-863.
  • Tseng KC, Huang CC. 2013. High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans Ind Electron, 61(3): 1311-1319.
  • Wang K, Lee FC, Lai J. 2000. Operation principles of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability. In: Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 00CH37058), 6-10 Feb, New Orleans, LA, USA, pp: 111-118
  • Wei Y, Luo Q, Mantooth A. 2020. Overview of modulation strategies for llc resonant converter. IEEE Trans. Power Electron, 35(10): 10423-10443.
  • Wu G, Ruan X, Ye Z. 2014. Nonisolated high step-up dc–dc converters adopting switched-capacitor cell. IEEE Trans. Ind Electron, 62(1): 383-393.
  • Yang B, Lee FC, Zhang AJ, Huang G. 2002. Llc resonant converter for front end dc/dc conversion. In: Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), 10-14 March, Dallas, TX, pp: 1108-1112.
  • Zeng J, Zhang G, Yu SS, Zhang B, Zhang Y. 2020. LLC resonant converter topologies and industrial applications—a review. Chin J Electr Eng, 6(3): 73-84.
  • Zhang MT, Jovanovic MM, Lee FCY. 1998. Analysis and evaluation of interleaving techniques in forward converters. IEEE Trans Power Electron, 13(4): 690-698.

Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges

Year 2023, , 557 - 571, 15.10.2023
https://doi.org/10.34248/bsengineering.1357849

Abstract

Power electronics stand as the cornerstone of our electrified world, and versatile DC-DC converters are a key component of this technology. In this comprehensive analysis, we investigate deeply the realm of DC-DC converters, examining their pivotal role in modern power systems. From the evolution of converter topologies to their wide-ranging applications, we explore the advancements that propel this field forward. Whether maintaining continuous power in portable devices or facilitating renewable energy integration, DC-DC converters are the fundamental components. Yet, they face formidable challenges, from complex control strategies to voltage stress management. This study reveals the complex configuration of DC-DC converters, detailing a narrative of adaptability, resilience, and innovation in response to the increasing energy demands of our time.

References

  • Alhurayyis I, Elkhateb A, Morrow J. 2020. Isolated and nonisolated dc-to-dc converters for medium-voltage dc networks: a review. IEEE J Emerg Sel, 9(6): 7486-500.
  • Al-Obaidi NA, Abbas RA, Khazaal HF. 2022. A review of non-isolated bidirectional dc-dc converters for hybrid energy storage system. In: 5th International Conference On Engineering Technology And Its Applications (IICETA), 31 May - 1 June, Al-Najaf, Iraq, pp: 248-253.
  • Bakas P, Harnefors L, Norrga S,Nami A, Ilves K, Dijkhuizen F, Nee HP. 2016. A review of hybrid topologies combining line-commutated and cascaded full-bridge converters. IEEE J Emerg Sel, 32(10): 7435-48.
  • Basso C. 2008. Switch-mode power supplies: spice simulations and practical designs. McGraw-Hill, New York, USA, 2th ed., pp: 321.
  • Chen J, MaksimoviC D, Erickson R. 2001. Buck-boost pwm converters having two independently controlled switches. In: IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No. 01CH37230), 17-21 June, Vancouver, BC, Canada, pp: 736-741.
  • Chen, W, Lee FC, Jovanovic MM, Sabate JA. 1995. A comparative study of a class of full bridge zero-voltage-switched pwm converters. In: Proceedings of 1995 IEEE Applied Power Electronics Conference and Exposition-APEC'95, 5-9 March, Dallas, TX, USA, pp: 893-899.
  • Chen W, Xu P, Lee FC. 2001. The optimization of asymmetric half bridge converter. In: Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 01CH37181), 4-8 March, Anaheim, CA, USA, pp: 703-707.
  • Davari P, Zare F, Ghosh A, Akiyama H. 2012. High-voltage modular power supply using parallel and series configurations of flyback converter for pulsed power applications. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc, 40(10): 2578-87.
  • Erickson R, Madigan M, Singer S. 1990. Design of a simple high-power-factor rectifier based on the flyback converter. In: Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, 11-16 March, Los Angeles, CA, USA, pp: 792-801.
  • Erickson R, Dragan M. 2007. Fundamentals of power electronics. Springer science & business media, London, UK, 2th ed., pp: 253.
  • Forouzesh M, Siwakoti YP, Gorji SA, Blaabjerg F, Lehman B. 2017. Step-up dc–dc converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron, 32(12): 9143-78.
  • Gorji SA, Mostaan A, My HT, Ektesabi M. 2019. Non‐isolated buck–boost dc–dc converter with quadratic voltage gain ratio. IET Power Electron, 12(6): 1425-33.
  • Hossain MZ, Rahim NA. 2018. Recent progress and development on power dc-dc converter topology, control, design and applications: a review. Renew. Sust Energ Rev, 81:205-30.
  • İnci M, Büyük M, Demir MH, İlbey G. 2021. A review and research on fuel cell electric vehicles: topologies, power electronic converters, energy management methods, technical challenges, marketing and future aspects. Renew Sust Energ Rev, 137: 110648.
  • Ivanovic Z, Knezic M. 2022. Modeling push–pull converter for efficiency improvement. J Electron, 11(17): 2713.
  • Kazimierczuk MK. 2015. Pulse-width modulated dc-dc power converters: John Wiley & Sons, London, UK, pp: 143.
  • Khaligh A, Onar OC. 2017. Energy harvesting: solar, wind, and ocean energy conversion systems, CRC press, London, UK, pp: 218.
  • Kim EH, Kwon BH. 2009. High step-up resonant push–pull converter with high efficiency. IET Power Electron, 2(1): 79-89.
  • Kim YH, Soo CS, Lee JH, Yong CJ, Chung YW. 2013. Soft-switching current-fed push–pull converter for 250-w ac module applications. IEEE Trans Power Electron, 29(2): 863-872.
  • Krishnan R. 2017. Switched reluctance motor drives: modeling, simulation, analysis, design, and applications: CRC press, London, UK, pp: 142.
  • Kundu U, Yenduri K, Sensarma P. 2016. Accurate zvs analysis for magnetic design and efficiency improvement of full-bridge llc resonant converter. IEEE Trans Power Electron, 32(3): 1703-1706.
  • Li Z, Ruopei Z, Yazhou L, Yan H, Jinming H, Xiaoling Z, Xiao-Ping Z. 2018. Recent developments in HVDC transmission systems to support renewable energy integration. Glob Energy Interconnect, 1(5): 595-607.
  • Lipo TA. 2017. Introduction to ac machine design. John Wiley & Sons, London, UK, pp: 154.
  • Luo FL, Ye H. 2016. Advanced Dc/Dc converters. CRC press, London, UK, pp: 125.
  • Mohan N, Undeland TM, Robbins WP. 2003. Power electronics: converters, applications, and design: John Wiley & Sons, London, UK, pp: 121.
  • Mumtaz F, Yahaya NZ, Meraj ST, Singh B, Kannan R, Ibrahim O. 2021. Review on non-isolated dc-dc converters and their control techniques for renewable energy applications. Ain Shams Eng J, 12(4): 3747-3763.
  • Nouri T, Nouri N, Vosoughi N. 2019. A novel high step-up high efficiency interleaved dc–dc converter with coupled inductor and built-in transformer for renewable energy systems. IEEE Trans Power Electron, 67(8): 6505-6516.
  • Park J, Kim M, Choi S. 2014. Zero‐current switching series loaded resonant converter insensitive to resonant component tolerance for battery charger. IET Power Electron, 7(10): 2517-2524.
  • Pressman A. 2009. Switching power supply design. McGraw-Hill Education, London, UK, pp: 102.
  • Raghavendra KVG, Zeb K, Muthusamy A, Krishna TNV, Kumar SVSVP, Kim DH, Kim MS, Cho HG, Kim HJ. 2019. A comprehensive review of dc–dc converter topologies and modulation strategies with recent advances in solar photovoltaic systems. J Electron, 9(1): 31.
  • Rashid MH. 2010. Power electronics circuits devices and application. Pearson, London, UK, pp: 101.
  • Rashid MH. 2017. Power electronics handbook. Butterworth-heinemann, London, UK, pp: 124.
  • Revathi BS, Prabhakar M. 2016. Non isolated high gain dc-dc converter topologies for pv applications–a comprehensive review. Renew Sust Energ Rev, 66: 920-933.
  • Saeedifard M, Graovac M, Dias RF, Iravani R. 2010. Dc power systems: challenges and opportunities. In: IEEE PES general meeting: IEEE, 25-29 July, Minneapolis, MN, USA, pp: 1-7
  • Skvarenina T. L. 2018. The power electronics handbook. CRC press, London, UK, pp: 97.
  • Steigerwald RL. 1988. A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron, 3(2): 174-182.
  • Tan FD. 2002. The forward converter: from the classic to the contemporary. In: APEC. Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), 10-14 March, Dallas, TX, USA, pp: 857-863.
  • Tseng KC, Huang CC. 2013. High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system. IEEE Trans Ind Electron, 61(3): 1311-1319.
  • Wang K, Lee FC, Lai J. 2000. Operation principles of bi-directional full-bridge dc/dc converter with unified soft-switching scheme and soft-starting capability. In: Fifteenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 00CH37058), 6-10 Feb, New Orleans, LA, USA, pp: 111-118
  • Wei Y, Luo Q, Mantooth A. 2020. Overview of modulation strategies for llc resonant converter. IEEE Trans. Power Electron, 35(10): 10423-10443.
  • Wu G, Ruan X, Ye Z. 2014. Nonisolated high step-up dc–dc converters adopting switched-capacitor cell. IEEE Trans. Ind Electron, 62(1): 383-393.
  • Yang B, Lee FC, Zhang AJ, Huang G. 2002. Llc resonant converter for front end dc/dc conversion. In: Seventeenth Annual IEEE Applied Power Electronics Conference and Exposition (Cat. No. 02CH37335), 10-14 March, Dallas, TX, pp: 1108-1112.
  • Zeng J, Zhang G, Yu SS, Zhang B, Zhang Y. 2020. LLC resonant converter topologies and industrial applications—a review. Chin J Electr Eng, 6(3): 73-84.
  • Zhang MT, Jovanovic MM, Lee FCY. 1998. Analysis and evaluation of interleaving techniques in forward converters. IEEE Trans Power Electron, 13(4): 690-698.
There are 44 citations in total.

Details

Primary Language English
Subjects Electrical Circuits and Systems, Electrical Machines and Drives
Journal Section Research Articles
Authors

Fuad Alhaj Omar 0000-0001-5969-2513

Early Pub Date October 4, 2023
Publication Date October 15, 2023
Submission Date September 9, 2023
Acceptance Date September 29, 2023
Published in Issue Year 2023

Cite

APA Alhaj Omar, F. (2023). Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges. Black Sea Journal of Engineering and Science, 6(4), 557-571. https://doi.org/10.34248/bsengineering.1357849
AMA Alhaj Omar F. Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges. BSJ Eng. Sci. October 2023;6(4):557-571. doi:10.34248/bsengineering.1357849
Chicago Alhaj Omar, Fuad. “Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges”. Black Sea Journal of Engineering and Science 6, no. 4 (October 2023): 557-71. https://doi.org/10.34248/bsengineering.1357849.
EndNote Alhaj Omar F (October 1, 2023) Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges. Black Sea Journal of Engineering and Science 6 4 557–571.
IEEE F. Alhaj Omar, “Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges”, BSJ Eng. Sci., vol. 6, no. 4, pp. 557–571, 2023, doi: 10.34248/bsengineering.1357849.
ISNAD Alhaj Omar, Fuad. “Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges”. Black Sea Journal of Engineering and Science 6/4 (October 2023), 557-571. https://doi.org/10.34248/bsengineering.1357849.
JAMA Alhaj Omar F. Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges. BSJ Eng. Sci. 2023;6:557–571.
MLA Alhaj Omar, Fuad. “Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges”. Black Sea Journal of Engineering and Science, vol. 6, no. 4, 2023, pp. 557-71, doi:10.34248/bsengineering.1357849.
Vancouver Alhaj Omar F. Comprehensive Analysis and Evaluation of DC-DC Converters: Advancements, Applications, and Challenges. BSJ Eng. Sci. 2023;6(4):557-71.

                                                24890