Research Article
BibTex RIS Cite

Numerical Modeling of the Movement of Self-Propelled Microorganisms in Newtonian Fluid

Year 2024, , 36 - 42, 15.01.2024
https://doi.org/10.34248/bsengineering.1358188

Abstract

The movement of micro-organisms is important both in understanding their biological behavior and in micro-robot design. The micro swimmer is often displaced by squirming motion at very low speeds in stationary fluid, a flow dominated by viscosity due to the low Reynolds number. The squirming movement differentiates the effect of the drag forces of the swimmer. Time-dependent periodic squirming motion for forward, reverse and neutral mode movements is modeled by ANSYS® software. The results are presented as streamlines, velocity isocurves, and wall shear force, vorticity, and drag coefficient variation at the swimmer wall for a full period after steady state is reached. It has been shown that the swimming efficiency of a squirming swimmer is dependent on both the Reynolds number and the swimmer's mode.

References

  • Blake JR. 1971. Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull Aust Math Soc, 5(2): 255-264.
  • Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJ, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. 2018. State diagram of a three-sphere microswimmer in a channel. J Phys Condens Matter, 30(25): 254004.
  • Datt C, Natale G, Hatzikiriakos SG, Elfring GJ. 2017. An active particle in a complex fluid. J Fluid Mech, 823: 675-688.
  • Gijsen FJH, Allanic E, Van de Vosse FN, Janssen JD. 1999. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. J Biomechanics, 32(7): 705-713
  • Hamilton JK, Gilbert AD, Petrov PG, Ogrin FY. 2018. Torque driven ferromagnetic swimmers. Phys Fluids, 30(9): 092001. https://doi.org/10.1063/1.5046360.
  • Kuhr JT, Rühle F, Stark H. 2019. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity. Soft Matter, 15(28): 5685-5694.
  • Kuhr JT, Blaschke J, Rühle F, Stark H. 2017. Collective sedimentation of squirmers under gravity. Soft Matter, 13(41): 7548-7555.
  • Lighthill MJ. 1952. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math, 5(2): 109-118.
  • Mercan H, Atalık K. 2018. Numerical investigation of blood flow features in intracranial saccular aneurysms. J Thermal Eng, 4(2): 1867-1878.
  • Narinder N, Bechinger C, Gomez-Solano JR. 2018. Memory-induced transition from a persistent random walk to circular motion for achiral microswimmers. Physical Rev Lett, 121(7) : 78003.
  • Ouyang Z, Lin J, Ku X. 2018. The hydrodynamic behavior of a squirmer swimming in power-law fluid. Physics Fluids, 30(8): 083301. https://doi.org/10.1063/1.5045701.
  • Pedley TJ. 2016. Spherical squirmers: models for swimming micro-organisms. IMA J Appl Math, 81(3): 488-521.
  • Şahin Ç, Atalık K. 2019. Comparison of inelastic and elastic non-Newtonian effects on the flow around a circular cylinder in periodic vortex shedding. J Non-Newtonian Fluid Mechanics, 263: 1-14.
  • Valencia A, Solis F. 2006. Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Comput Struct, 84(21), 1326-1337.
  • Zöttl A, Stark H. 2014. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Physical Rev Lett, 112(11): 118101.
  • Zöttl A, Stark H. 2018. Simulating squirmers with multiparticle collision dynamics. European Physical J E, 41(5): 61.

Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi

Year 2024, , 36 - 42, 15.01.2024
https://doi.org/10.34248/bsengineering.1358188

Abstract

Mikro organizmaların hareketi gerek biyolojik davranışlarını anlamada gerekse mikro robot dizaynında önem taşımaktadır. Mikro yüzücü çoğu zaman durağan akışkanda oldukça düşük hızlarda kıvranma hareketi ile yer değiştirmektedir, bu da düşük Reynolds sayısından dolayı viskozitenin domine ettiği bir akıştır. Kıvranma hareketi yüzücünün sürüklenme kuvvetlerinin etkisini farklılaştırmaktadır. İleri, geri ve nötral moddaki hareketler için zamana bağlı periyodik kıvranma hareketi ANSYS® yazılımı ile modellenmiştir. Sonuçlar durağan duruma erişildikten sonraki tam bir periyod için akış çizgileri, hız vektörü eş eğrileri ve yüzücü çeperindeki duvar kesme kuvveti, girdaplılık ve sürükleme katsayısı değişimi olarak sunulmuştur. Kıvranan yüzücünün yüzme verimliliğinin hem Reynolds sayısına hem de yüzücü moduna bağlı olduğu gösterilmiştir.

References

  • Blake JR. 1971. Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number. Bull Aust Math Soc, 5(2): 255-264.
  • Daddi-Moussa-Ider A, Lisicki M, Mathijssen AJ, Hoell C, Goh S, Bławzdziewicz J, Menzel AM, Löwen H. 2018. State diagram of a three-sphere microswimmer in a channel. J Phys Condens Matter, 30(25): 254004.
  • Datt C, Natale G, Hatzikiriakos SG, Elfring GJ. 2017. An active particle in a complex fluid. J Fluid Mech, 823: 675-688.
  • Gijsen FJH, Allanic E, Van de Vosse FN, Janssen JD. 1999. The influence of the non-Newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved tube. J Biomechanics, 32(7): 705-713
  • Hamilton JK, Gilbert AD, Petrov PG, Ogrin FY. 2018. Torque driven ferromagnetic swimmers. Phys Fluids, 30(9): 092001. https://doi.org/10.1063/1.5046360.
  • Kuhr JT, Rühle F, Stark H. 2019. Collective dynamics in a monolayer of squirmers confined to a boundary by gravity. Soft Matter, 15(28): 5685-5694.
  • Kuhr JT, Blaschke J, Rühle F, Stark H. 2017. Collective sedimentation of squirmers under gravity. Soft Matter, 13(41): 7548-7555.
  • Lighthill MJ. 1952. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun Pure Appl Math, 5(2): 109-118.
  • Mercan H, Atalık K. 2018. Numerical investigation of blood flow features in intracranial saccular aneurysms. J Thermal Eng, 4(2): 1867-1878.
  • Narinder N, Bechinger C, Gomez-Solano JR. 2018. Memory-induced transition from a persistent random walk to circular motion for achiral microswimmers. Physical Rev Lett, 121(7) : 78003.
  • Ouyang Z, Lin J, Ku X. 2018. The hydrodynamic behavior of a squirmer swimming in power-law fluid. Physics Fluids, 30(8): 083301. https://doi.org/10.1063/1.5045701.
  • Pedley TJ. 2016. Spherical squirmers: models for swimming micro-organisms. IMA J Appl Math, 81(3): 488-521.
  • Şahin Ç, Atalık K. 2019. Comparison of inelastic and elastic non-Newtonian effects on the flow around a circular cylinder in periodic vortex shedding. J Non-Newtonian Fluid Mechanics, 263: 1-14.
  • Valencia A, Solis F. 2006. Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Comput Struct, 84(21), 1326-1337.
  • Zöttl A, Stark H. 2014. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Physical Rev Lett, 112(11): 118101.
  • Zöttl A, Stark H. 2018. Simulating squirmers with multiparticle collision dynamics. European Physical J E, 41(5): 61.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Computational Methods in Fluid Flow, Heat and Mass Transfer (Incl. Computational Fluid Dynamics), Biomedical Fluid Mechanics
Journal Section Research Articles
Authors

Hatice Mercan 0000-0002-3445-3441

Tufan Tuna Köseler This is me 0009-0000-4138-6219

Early Pub Date December 1, 2023
Publication Date January 15, 2024
Submission Date September 11, 2023
Acceptance Date November 22, 2023
Published in Issue Year 2024

Cite

APA Mercan, H., & Köseler, T. T. (2024). Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi. Black Sea Journal of Engineering and Science, 7(1), 36-42. https://doi.org/10.34248/bsengineering.1358188
AMA Mercan H, Köseler TT. Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi. BSJ Eng. Sci. January 2024;7(1):36-42. doi:10.34248/bsengineering.1358188
Chicago Mercan, Hatice, and Tufan Tuna Köseler. “Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi”. Black Sea Journal of Engineering and Science 7, no. 1 (January 2024): 36-42. https://doi.org/10.34248/bsengineering.1358188.
EndNote Mercan H, Köseler TT (January 1, 2024) Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi. Black Sea Journal of Engineering and Science 7 1 36–42.
IEEE H. Mercan and T. T. Köseler, “Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi”, BSJ Eng. Sci., vol. 7, no. 1, pp. 36–42, 2024, doi: 10.34248/bsengineering.1358188.
ISNAD Mercan, Hatice - Köseler, Tufan Tuna. “Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi”. Black Sea Journal of Engineering and Science 7/1 (January 2024), 36-42. https://doi.org/10.34248/bsengineering.1358188.
JAMA Mercan H, Köseler TT. Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi. BSJ Eng. Sci. 2024;7:36–42.
MLA Mercan, Hatice and Tufan Tuna Köseler. “Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi”. Black Sea Journal of Engineering and Science, vol. 7, no. 1, 2024, pp. 36-42, doi:10.34248/bsengineering.1358188.
Vancouver Mercan H, Köseler TT. Kendinden Tahrikli Mikro Organizmaların Newtonyen Akışkan İçindeki Harketinin Sayısal Modellenmesi. BSJ Eng. Sci. 2024;7(1):36-42.

                                                24890