Research Article
BibTex RIS Cite

A Compact GaN Power Amplifier Module for New Generation Cellular Basestations

Year 2024, , 587 - 593, 15.05.2024
https://doi.org/10.34248/bsengineering.1455495

Abstract

This paper presents a compact class-AB Power Amplifier Module (PAM) designed for new generation massive Multiple Input Multiple Output (MiMo) cellular base stations. The module is designed at the center frequency of 3.5GHz targeting Long Term Evolution (LTE) and 5G New Radio (NR) bands. The module is a hybrid design that incorporates a Gallium Nitride (GaN) High Mobility-Electron Transistor (HEMT) die, discrete components-based input, and output matching networks. The entire design is realized on an 8.5 x 5.2 mm, 2-layer Rogers4003C substrate. The module is assembled on a PCB as an open-top for post-characterization tuning. The small signal and large signal measurements are in quite good agreement. The measurement results show that the amplifier is unconditionally stable, the input return loss is 12.2 dB, the output return loss is 7.7 dB, and the small signal gain is 13.4 dB. The saturated output power is 33.3 dBm with a Power Added Efficiency of 20.1%. The small signal gain drops to 11.2 dB at around 22 dBm of input power due to GaN technology’s intrinsic soft compression characteristics.

References

  • Barisich GC, Ulusoy AC, Gebara E, Papapolymerou J. 2015. A reactively matched 1.0–11.5 GHz hybrid packaged gan high power amplifier. IEEE Microw Wirel Compon Lett, 25(12): 811-813. https://doi.org/10.1109/lmwc.2015.2495195.
  • Bode HW. 1945. Network analysis and feedback amplifier design. D. Van Nostrand Company, New Jersey, US, pp: 54.
  • Colantonio P, Giannini F, Limiti E. 2009. Power amplifier fundamentals. High Efficiency RF and Microwave Solid State Power Amplifiers, Wiley, London, UK, pp: 1-47. https://doi.org/10.1002/9780470746547.ch1.
  • Crescenzi EJ, Pengelly RS, Wood SM, Buss RE. 2005. 60 watt doherty amplifiers using high gain 2-stage hybrid amplifier modules. IEEE MTT-S International Microwave Symposium Digest, June 17, Long Beach, US. https://doi.org/10.1109/mwsym.2005.1516941.
  • Hsu YC, Li JY, Wu LK. 2017. High reliable Doherty power amplifier module for LTE Small Cell Base Station. IEEE CPMT Symposium, November 20-22, Kyoto, Japan. https://doi.org/10.1109/icsj.2017.8240083.
  • Inoue S, Ebihara K. 2016. Broadband 2-stage gan power amplifier in an 8×8mm package. 11th European Microwave Integrated Circuits Conference, October 3-4, London, UK. https://doi.org/10.1109/eumic.2016.7777532.
  • Iqbal M, Piacibello A. 2016. A 5W class-AB power amplifier based on a Gan HEMT for LTE Communication Band. 16th Mediterranean Microwave Symposium, November 14-16, Abu Dhabi, United Arab Emirates. https://doi.org/10.1109/mms.2016.7803827.
  • Komatsuzaki Y, Nakatani K, Shinjo S, Miwa S, Ma R, Yamanaka K. 2017. 3.0–3.6 GHz wideband, over 46% average efficiency Gan Doherty power amplifier with frequency dependency compensating circuits. EEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, January 15-18, Phoenix, US. https://doi.org/10.1109/pawr.2017.7875563.
  • Kurokawa K. 1969. Some basic characteristics of broadband negative resistance oscillator circuits. Bell Syst Tech J, 48(6): 1937-1955. https://doi.org/10.1002/j.1538-7305.1969.tb01158.x.
  • Li SH, Hsu SS, Zhang J, Huang KC. 2018. A sub-6 ghz compact Gan Mmic Doherty pa with a 49.5% 6 DB back-off PAE for 5G communications. IEEE/MTT-S International Microwave Symposium, June 10-15, Philadelphia, US. https://doi.org/10.1109/mwsym.2018.8439474.
  • Mini-Circuits. 2020. ZHL-5W-63-S+ Amplifier. URL: https://www.minicircuits.com/WebStore/dashboard.html?model=ZHL-5W-63-S (accessed date: January 15, 2024).
  • Monprasert G, Suebsombut P, Pongthavornkamol T, Chalermwisutkul S. 2010. 2.45 GHz GaN HEMT Class-AB RF power amplifier design for wireless communication systems. ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, May 19-21, Chiang Mai, Thailand, pp: 566-569.
  • Nazarian AL, Tiemeijer LF, John DL, van Steenwijk JA, de Langen M, Pijper RM. 2012. A physics-based causal bond-wire model for RF Applications. IEEE Transact Microw Theory Techniq, 60(12): 3683-3692. https://doi.org/10.1109/tmtt.2012.2217983.
  • Ozalas M. 2021. Designing for stability in high frequency circuits, Keysight. URL: https://www.keysight.com/us/en/assets/3121-1255/application-notes/Designing-for-Stability-in-High-Frequency-Circuits.pdf (accessed date: January 15, 2024).
  • Saad P, Fager C, Haiying Cao Zirath H, Andersson K. 2010. Design of a highly efficient 2–4-GHz octave bandwidth Gan-HEMT power amplifier. IEEE Transact Microw Theory Techniq, 58(7): 1677–1685. https://doi.org/10.1109/tmtt.2010.2049770.
  • Sakata S, Kato K, Teranishi E, Sugitani T, Ma R, Chuang K, Shinjo S. 2020. A fully-integrated GAN doherty power amplifier module with a compact frequency-dependent compensation circuit for 5G massive MIMO base stations. IEEE/MTT-S International Microwave Symposium, August 4-6, Los Angeles, US, pp: 711-714. https://doi.org/10.1109/ims30576.2020.9223897.
  • Sedra AS, Smith KC, Carusone CT, Gaudet V. 2021. Microelectronic circuits. Oxford University Press, New York, US, pp: 1264.
  • Tao Y, Ishikawa R, Honjo K. 2015. Optimum load impedance estimation for high-efficiency microwave power amplifier based on low-frequency active multi-harmonic load-pull measurement. Asia Pacific Microwave Conference, December 6-9, Nanjing, China, pp: 1-3. https://doi.org/10.1109/apmc.2015.7411814.
  • Zhao B, Sanabria C, Hon T. 2022. A 2-stage S-band 2W CW GAN MMIC Power Amplifier in an Overmold QFN package. IEEE Texas Symposium on Wireless and Microwave Circuits and Systems, April 19-20, Waco, US, pp: 1-5. https://doi.org/10.1109/wmcs55582.2022.9866273.

A Compact GaN Power Amplifier Module for New Generation Cellular Basestations

Year 2024, , 587 - 593, 15.05.2024
https://doi.org/10.34248/bsengineering.1455495

Abstract

This paper presents a compact class-AB Power Amplifier Module (PAM) designed for new generation massive Multiple Input Multiple Output (MiMo) cellular base stations. The module is designed at the center frequency of 3.5GHz targeting Long Term Evolution (LTE) and 5G New Radio (NR) bands. The module is a hybrid design that incorporates a Gallium Nitride (GaN) High Mobility-Electron Transistor (HEMT) die, discrete components-based input, and output matching networks. The entire design is realized on an 8.5 x 5.2 mm, 2-layer Rogers4003C substrate. The module is assembled on a PCB as an open-top for post-characterization tuning. The small signal and large signal measurements are in quite good agreement. The measurement results show that the amplifier is unconditionally stable, the input return loss is 12.2 dB, the output return loss is 7.7 dB, and the small signal gain is 13.4 dB. The saturated output power is 33.3 dBm with a Power Added Efficiency of 20.1%. The small signal gain drops to 11.2 dB at around 22 dBm of input power due to GaN technology’s intrinsic soft compression characteristics.

References

  • Barisich GC, Ulusoy AC, Gebara E, Papapolymerou J. 2015. A reactively matched 1.0–11.5 GHz hybrid packaged gan high power amplifier. IEEE Microw Wirel Compon Lett, 25(12): 811-813. https://doi.org/10.1109/lmwc.2015.2495195.
  • Bode HW. 1945. Network analysis and feedback amplifier design. D. Van Nostrand Company, New Jersey, US, pp: 54.
  • Colantonio P, Giannini F, Limiti E. 2009. Power amplifier fundamentals. High Efficiency RF and Microwave Solid State Power Amplifiers, Wiley, London, UK, pp: 1-47. https://doi.org/10.1002/9780470746547.ch1.
  • Crescenzi EJ, Pengelly RS, Wood SM, Buss RE. 2005. 60 watt doherty amplifiers using high gain 2-stage hybrid amplifier modules. IEEE MTT-S International Microwave Symposium Digest, June 17, Long Beach, US. https://doi.org/10.1109/mwsym.2005.1516941.
  • Hsu YC, Li JY, Wu LK. 2017. High reliable Doherty power amplifier module for LTE Small Cell Base Station. IEEE CPMT Symposium, November 20-22, Kyoto, Japan. https://doi.org/10.1109/icsj.2017.8240083.
  • Inoue S, Ebihara K. 2016. Broadband 2-stage gan power amplifier in an 8×8mm package. 11th European Microwave Integrated Circuits Conference, October 3-4, London, UK. https://doi.org/10.1109/eumic.2016.7777532.
  • Iqbal M, Piacibello A. 2016. A 5W class-AB power amplifier based on a Gan HEMT for LTE Communication Band. 16th Mediterranean Microwave Symposium, November 14-16, Abu Dhabi, United Arab Emirates. https://doi.org/10.1109/mms.2016.7803827.
  • Komatsuzaki Y, Nakatani K, Shinjo S, Miwa S, Ma R, Yamanaka K. 2017. 3.0–3.6 GHz wideband, over 46% average efficiency Gan Doherty power amplifier with frequency dependency compensating circuits. EEE Topical Conference on RF/Microwave Power Amplifiers for Radio and Wireless Applications, January 15-18, Phoenix, US. https://doi.org/10.1109/pawr.2017.7875563.
  • Kurokawa K. 1969. Some basic characteristics of broadband negative resistance oscillator circuits. Bell Syst Tech J, 48(6): 1937-1955. https://doi.org/10.1002/j.1538-7305.1969.tb01158.x.
  • Li SH, Hsu SS, Zhang J, Huang KC. 2018. A sub-6 ghz compact Gan Mmic Doherty pa with a 49.5% 6 DB back-off PAE for 5G communications. IEEE/MTT-S International Microwave Symposium, June 10-15, Philadelphia, US. https://doi.org/10.1109/mwsym.2018.8439474.
  • Mini-Circuits. 2020. ZHL-5W-63-S+ Amplifier. URL: https://www.minicircuits.com/WebStore/dashboard.html?model=ZHL-5W-63-S (accessed date: January 15, 2024).
  • Monprasert G, Suebsombut P, Pongthavornkamol T, Chalermwisutkul S. 2010. 2.45 GHz GaN HEMT Class-AB RF power amplifier design for wireless communication systems. ECTI International Confernce on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, May 19-21, Chiang Mai, Thailand, pp: 566-569.
  • Nazarian AL, Tiemeijer LF, John DL, van Steenwijk JA, de Langen M, Pijper RM. 2012. A physics-based causal bond-wire model for RF Applications. IEEE Transact Microw Theory Techniq, 60(12): 3683-3692. https://doi.org/10.1109/tmtt.2012.2217983.
  • Ozalas M. 2021. Designing for stability in high frequency circuits, Keysight. URL: https://www.keysight.com/us/en/assets/3121-1255/application-notes/Designing-for-Stability-in-High-Frequency-Circuits.pdf (accessed date: January 15, 2024).
  • Saad P, Fager C, Haiying Cao Zirath H, Andersson K. 2010. Design of a highly efficient 2–4-GHz octave bandwidth Gan-HEMT power amplifier. IEEE Transact Microw Theory Techniq, 58(7): 1677–1685. https://doi.org/10.1109/tmtt.2010.2049770.
  • Sakata S, Kato K, Teranishi E, Sugitani T, Ma R, Chuang K, Shinjo S. 2020. A fully-integrated GAN doherty power amplifier module with a compact frequency-dependent compensation circuit for 5G massive MIMO base stations. IEEE/MTT-S International Microwave Symposium, August 4-6, Los Angeles, US, pp: 711-714. https://doi.org/10.1109/ims30576.2020.9223897.
  • Sedra AS, Smith KC, Carusone CT, Gaudet V. 2021. Microelectronic circuits. Oxford University Press, New York, US, pp: 1264.
  • Tao Y, Ishikawa R, Honjo K. 2015. Optimum load impedance estimation for high-efficiency microwave power amplifier based on low-frequency active multi-harmonic load-pull measurement. Asia Pacific Microwave Conference, December 6-9, Nanjing, China, pp: 1-3. https://doi.org/10.1109/apmc.2015.7411814.
  • Zhao B, Sanabria C, Hon T. 2022. A 2-stage S-band 2W CW GAN MMIC Power Amplifier in an Overmold QFN package. IEEE Texas Symposium on Wireless and Microwave Circuits and Systems, April 19-20, Waco, US, pp: 1-5. https://doi.org/10.1109/wmcs55582.2022.9866273.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering Electromagnetics, Wireless Communication Systems and Technologies (Incl. Microwave and Millimetrewave)
Journal Section Research Articles
Authors

Burak Berk Türk 0009-0005-7378-3960

Furkan Hürcan 0009-0009-7245-1410

Hüseyin Şerif Savcı 0000-0002-5881-1557

Hakan Dogan 0000-0001-5716-5488

Publication Date May 15, 2024
Submission Date March 19, 2024
Acceptance Date May 10, 2024
Published in Issue Year 2024

Cite

APA Türk, B. B., Hürcan, F., Savcı, H. Ş., Dogan, H. (2024). A Compact GaN Power Amplifier Module for New Generation Cellular Basestations. Black Sea Journal of Engineering and Science, 7(3), 587-593. https://doi.org/10.34248/bsengineering.1455495
AMA Türk BB, Hürcan F, Savcı HŞ, Dogan H. A Compact GaN Power Amplifier Module for New Generation Cellular Basestations. BSJ Eng. Sci. May 2024;7(3):587-593. doi:10.34248/bsengineering.1455495
Chicago Türk, Burak Berk, Furkan Hürcan, Hüseyin Şerif Savcı, and Hakan Dogan. “A Compact GaN Power Amplifier Module for New Generation Cellular Basestations”. Black Sea Journal of Engineering and Science 7, no. 3 (May 2024): 587-93. https://doi.org/10.34248/bsengineering.1455495.
EndNote Türk BB, Hürcan F, Savcı HŞ, Dogan H (May 1, 2024) A Compact GaN Power Amplifier Module for New Generation Cellular Basestations. Black Sea Journal of Engineering and Science 7 3 587–593.
IEEE B. B. Türk, F. Hürcan, H. Ş. Savcı, and H. Dogan, “A Compact GaN Power Amplifier Module for New Generation Cellular Basestations”, BSJ Eng. Sci., vol. 7, no. 3, pp. 587–593, 2024, doi: 10.34248/bsengineering.1455495.
ISNAD Türk, Burak Berk et al. “A Compact GaN Power Amplifier Module for New Generation Cellular Basestations”. Black Sea Journal of Engineering and Science 7/3 (May 2024), 587-593. https://doi.org/10.34248/bsengineering.1455495.
JAMA Türk BB, Hürcan F, Savcı HŞ, Dogan H. A Compact GaN Power Amplifier Module for New Generation Cellular Basestations. BSJ Eng. Sci. 2024;7:587–593.
MLA Türk, Burak Berk et al. “A Compact GaN Power Amplifier Module for New Generation Cellular Basestations”. Black Sea Journal of Engineering and Science, vol. 7, no. 3, 2024, pp. 587-93, doi:10.34248/bsengineering.1455495.
Vancouver Türk BB, Hürcan F, Savcı HŞ, Dogan H. A Compact GaN Power Amplifier Module for New Generation Cellular Basestations. BSJ Eng. Sci. 2024;7(3):587-93.

                                                24890